Skip to main content

Role of Bacterial Phytohormones in Plant Growth Regulation and Their Development

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

This review addresses the ability of some soil bacteria to promote plant growth due to production of substances of phytohormonal nature. We discuss possible mechanisms of the action of individual hormones (auxins, cytokinins, abscisic acid, gibberellins, jasmonic acid and salicylic acid) produced either by plants or bacteria on plant growth and development, their supply with mineral nutrients and water and defense responses against phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Vriezen WH, Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Google Scholar 

  • Aktuganov GE, Galimzyamova NF, Melent’ev AI, Kuz’mina LY (2007) Extracellular hydrolases of strain Bacillus sp. 739 and their involvement in the lysis of micromycete cell walls. Microbiology (Mikrobiologiya) 76(4):413–420

    Google Scholar 

  • Aktuganov G, Melent’ev A, Galimzianova N, Khalikova E, Korpela T, Susi P (2008) Wide-range antifungal antagonism of Paenibacillus ehimensis IB-x-b and its dependence on chitinase and β-1,3-glucanase production. Can J Microbiol 54(7):577–587

    Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  • Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipova TN, Anokhina NL (2009) Effects of wheat plant inoculation with cytokinin-producing microorganisms on plant growth at increasing level of mineral nutrition. Russ J Plant Physiol 56:814–819

    Article  CAS  Google Scholar 

  • Arkhipova TN, Melentiev AI, Martynenko EV, Kudoyarova GR, Veselov SU (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209

    Article  CAS  Google Scholar 

  • Arkhipova TN, Melent’ev AI, Martynenko EV, Kudoyarova GR, Veselov SY (2006) Comparison of effects of bacterial strains differing in their ability to synthesize cytokinins on growth and cytokinin content in wheat plants. Russ J Plant Physiol 53:507–513

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Azcon R, Barea J (1975) Sinthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter bijernkii related to effects produced on tomato plants. Plant Soil 43:609–619

    Article  CAS  Google Scholar 

  • Bacon MA (1999) The biochemical control of leaf expansion during drought. Plant Growth Regul 29:101–112

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Solano B, Santamaria C, Daza A, Manero FJG (2008) Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. J Appl Microbiol 105:1298–1309

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H, Dhondt S, Barka EA, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clement C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62(2):595–603

    Article  CAS  PubMed  Google Scholar 

  • Cakmakci R, Erat M, Erdogan U, Donmez MF (2007) The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Casson SA, Lindsey K (2003) Genes and signaling in root development. New Phytol 158:11–38

    Article  CAS  Google Scholar 

  • Chapin FS (1990) Effects of nutrient deficiency on plant growth: evidence for a centralised stress-response system. In: Davies WI, Jeffcoat B (eds) Plant roots from cells to systems. British Society for Plant Growth Regulation, Bristol, pp 135–148

    Google Scholar 

  • Choudhary DK, Prakash A, Wray V, Johri BN (2009) Insights of the fluorescent pseudomonads in plant growth regulation. Curr Sci 97(2):170–179

    Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux J-P, Höfte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    Article  PubMed  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol 150:1750–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    Article  CAS  PubMed  Google Scholar 

  • Glickman E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    Google Scholar 

  • Guo J, Hu X, Duan R (2005) Interactive effects of cytokinins, light, and sucrose on the phenotypes and the syntheses of anthocyanins and lignins in cytokinin overproducing transgenic Arabidopsis. J Plant Growth Regul 24:93–101

    Google Scholar 

  • Hager A (2003) Role of the plasma membrane H + -ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1997) The involvement of cytokinins in plant responses to environmental stresses. J Plant Growth Regul 23:79–103

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Kang SC, Chul GH, Lee TG, Maheshwari DK (2002) Solubilization of insoluble inorganic phosphates by a soil inhabiting fungus Fomitopsis spp. PS 102. Curr Sci 25:439–442

    Google Scholar 

  • Kang SM, Waqas M, Khan AL, Lee IJ (2014) Plant-growth-promoting rhizobacteria: potential candidates for gibberellins production and crop growth promotion. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 1–19

    Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  CAS  PubMed  Google Scholar 

  • Karadeniz A, Topcuoglu SF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kudoyarova G, Veselova S, Hartung W, Farhutdinov R, Veselov D, Sharipova G (2011) Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporation demand. Planta 233:87–94

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Lum MR, Hirsch AM (2007) ENOD40 gene expression and cytokinin responses in the nonnodulating, nonmycorrhizal (Nod-Myc-) mutant, Masym3, of Melilotus alba Desr. Plant Signal Behav 2:33–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Liu T-Y, Chang C-Y, Chiou T-J (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderon E, Velásquez-Becerra C, Farías-Rodríguez R, Macías-Rodríguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20(2):207–217

    Article  PubMed  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting bacteria. In: Microbiology monographs, vol 18. Springer, Heidelberg. ISBN:978-3-642-13611-5

    Google Scholar 

  • Maheshwari DK (2012) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Heidelberg

    Google Scholar 

  • Marulanda A, Barea J-M, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol 59:595–624

    Article  CAS  Google Scholar 

  • Melent’ev AI, Galimzyanova NF (1999) Effects of metabolites of antagonistic Bacilli on spore germination and development of fungi causing common root rot. Appl Biochem Microbiol 35(3):316–320

    Google Scholar 

  • Melent’ev AI, Aktuganov GE, Galimzyanova NF (2001) The role of chitinase in the antifungal activity of Bacillus sp. 739. Mikrobiologiya 70(5):548–552

    Google Scholar 

  • Miller CO, Skoog F, Okomura FS, Von Saltza MH, Strong FM (1956) Isolation, structure and synthesis of kinetine, a substance promoting cell division. J Am Chem Soc 78:1345–1350

    Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51(8):1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Omer ZS, Bjorkman PO, Nicander B, Tillberg E, Gerhardson B (2004) 5-Deoxyisopentenyladenosine and other cytokinins in culture filtrates of the bacterium Pantoea agglomerans. Physiol Plant 121:439–447

    Article  CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Bioformulation of Burkholderia sp. MSSP with a multi-species consortium for growth promotion of Cajanus cajan. Can J Microbiol 53:213–222

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MCE, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA 106(3):929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Sasidharan R, Voesenek LACJ (2007) Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26:188–200

    Article  CAS  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Rayle DL, Cleland RE (1980) Evidence that auxin-induced growth of soybean hypocotyls involves proton excretion. Plant Physiol 66:433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riviere M-P, Marais A, Ponchet M, Willats W, Galiana E (2008) Silencing of acidic pathogenesis-related PR-1 genes increases extracellular β-(1/3)-glucanase activity at the onset of tobacco defence reactions. J Exp Bot 59(6):1225–1239

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opinion Plant Biol 10:372–379

    Article  CAS  Google Scholar 

  • Sano H, Seo S, Koizumi N, Niki T, Iwamura H, Ohashi Y (1996) Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant Cell Physiol 37(6):762–769

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shakirova FM, Avalbaev AM, Bezrukova MV, Kudoyarova GR (2010) Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant stress. Global Science Books. doi:10.1007/s00425-010-1286-7

  • Silva T, Davies PJ (2007) Elongation rates and endogenous indole acetic acid levels in roots of pea mutants differing in internode length. Physiol Plant 129:804–812

    Article  CAS  Google Scholar 

  • Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, pp 247–256

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci USA 104:18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub D, Yang H, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30. J Exp Bot 64:4603–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Paponov IA, Ditengou F, Palme K (2005) Auxin and the developing root of Arabidopsis thaliana. Physiol Plant 123:130–138

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Touraine B, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Frontiers Plant Sci. doi:10.3389/fpls.2013.00356

    Google Scholar 

  • Van De Mortel JE, de Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, Van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Van Loven K, Beinsberger S, Valcke R, Van Onckelen H, Clijsters H (1993) Morphometric analysis of the growth of Phsp70-ipt transgenic tobacco plants. J Exp Bot 44:1671–1678

    Article  Google Scholar 

  • Veselov SY, Simonyan MV, Ivanova TN, Melent’ev AI (1998) Study of cytokinins produced by microorganisms of the rhizosphere. Appl Biochem Microbiol 34:159–163

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, De’fago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell (Suppl):131–151

    Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Google Scholar 

  • Weyens N, Van Der Lelie D, Taqhavi S, Newman L, Vanqronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–998

    Article  CAS  PubMed  Google Scholar 

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

  • Wittenmayer L, Wolfgang Merbach W (2005) Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J Plant Nutr Soil Sci 168:531–540

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (grant 14-04-00775; grant 14-04-97049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Kudoyarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kudoyarova, G.R., Arkhipova, T.N., Melent’ev, A.I. (2015). Role of Bacterial Phytohormones in Plant Growth Regulation and Their Development. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_4

Download citation

Publish with us

Policies and ethics