Skip to main content

Bacilli and Sustainable Jhum Agrobiotechnology

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Bacillus, the name that rekindles a lot of inquisitiveness in agricultural research, has been known for its multifaceted impacts on microbial processes. Mostly soil-dwelling, the genera of Bacillus has been studied for various biotechnological usage in the environment and industry. This group of eubacteria undergo various external environmental influences which helped them develop adaptive mechanisms at the genetic level related to survival strategies, making them tough performers in biotechnological applications.

In the northeastern region of India, Jhumming , a primitive form of agriculture, is still in practice where the natural environmental set-up is taken under the control of man, employing several tools including different stressors, fire being the main. The jhum fields in their coordinated cropping and fallow cycles involving slash and burn undergo a net change in nutrients along with other important components which results in a competitive environment for the soil micro-dwellers. Eco-restoration and making the entire jhum system sustainable is a key goal of many research strategies. Organic and environmental-friendly farming being the trend of modern-day agriculture, the usage of Bacilli in the rehabilitation of degraded ecosystems look promising to be exploited for eco-restoration goals. The well-documented roles of Bacillus spp. in plant protection and plant growth-promoting (PGP ) properties along with other beneficial parameters is presented in this chapter, with reference to their usage in jhum agroecosystems prevalent in the north-eastern part of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriouel H, Franz CMAP, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 5:201–232

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO (2018) Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int J Microbiol 2018:1–11

    Article  Google Scholar 

  • Alquéres S, Meneses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol Plant Microbe Interact 26:937–945

    Article  PubMed  Google Scholar 

  • Arunachalam A, Pandey HN, Tripathi RS, Maithani K (1996) Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. For Ecol Manage 86:141–150

    Article  Google Scholar 

  • Bahadir PS, Liaqat F, Eltem R (2018) Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turk J Bot 42:1–14

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian V, Alves B, Aulakh M, Bekunda M, Cai Z, Drinkwater L, Mugendi D, van Kessel C, Oenema O (2004) Crop, environmental, and management factors affecting nitrogen use efficiency. In: Mosier AR, Syers JK, Freney J (eds) Agriculture and the nitrogen cycle, vol 65. Scope, pp 19–33

    Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aus J Crop Sci 4:378

    CAS  Google Scholar 

  • Banerjee A, Bareh DA, Joshi SR (2017) Native microorganisms as potent bioinoculants for plant growth promotion in shifting agriculture (Jhum) systems. J Soil Sci Plant Nutr 17:127–140

    CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. PNAS 110:E1621–E1630

    Google Scholar 

  • Beneduzi A, Passaglia LM (2011) Genetic and phenotypic diversity of plant growth promoting bacilli. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 1–20

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BFJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Boerner REJ, Decker KLM, Sutherland EK (2000) Prescribed burning effects on soil enzyme activity in a southern Ohio hardwood forest: a landscape scale analysis. Soil Biol Biochem 32:899–908

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin/Heidelberg, pp 41–76

    Chapter  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    Article  CAS  PubMed  Google Scholar 

  • Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8:e68555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazorla F, Romero D, Pérez-García A, Lugtenberg B, Vicente AD, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Northern Thailand. W J Microbiol Biotechnol 25:305–314

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2011) Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol 62:173–181

    Article  CAS  PubMed  Google Scholar 

  • Chang WT, Chen CS, Wang SL (2003) An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr Microbiol 47:0102–0108

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YM, Noh DO, Cho SH, Lee HK, Suh HJ, Chung SH (1999) Isolation of a phytase-producing Bacillus sp. KHU-10 and its phytase production. J Microbiol Biotechnol 9:223–226

    CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • da Silva MAC, Cavalett A, Spinner A, Rosa DC, Jasper RB, Quecine MC, Bonatelli ML, Pizzirani-Kleiner A, Corção G, de Souza Lima AO (2013) Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. SpringerPlus 2:1–10

    Article  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS USA 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JR (1999) Gods, groves and the culture of nature in Kerala. Mod Asian Stud 33:257–302

    Article  Google Scholar 

  • Gardener BBM (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol 94:1252–1258

    Google Scholar 

  • Garbeva P, Van Veen JA, Van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb Ecol 45:302–316

    Article  CAS  PubMed  Google Scholar 

  • Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K (2016) Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PloS one 11:e0166079

    Google Scholar 

  • George Z, Crickmore N (2012) Bacillus thuringiensis applications in agriculture. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology. Springer, Brighton, pp 19–39

    Chapter  Google Scholar 

  • Ghosh K, Banerjee S, Moon UM, Khan HA, Dutta D (2017) Evaluation of gut associated extracellular enzyme-producing and pathogen inhibitory microbial community as potential probiotics in Nile tilapia, Oreochromis niloticus. Int J Aquacult 7:143–158

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19

    Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 333–364

    Chapter  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gugliandolo C, Lentini V, Spanò A, Maugeri TL (2012) New bacilli from shallow hydrothermal vents of Panarea Island (Italy) and their biotechnological potential. J Appl Microbiol 112:1102–1112

    Article  CAS  PubMed  Google Scholar 

  • Guo JH, Zhang L, Wang D, Hu Q, Dai X, Xie Y, Li Q, Liu H (2019) Consortium of plant growth-promoting Rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668–1677

    Article  PubMed  PubMed Central  Google Scholar 

  • Guinebretière MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, Svensson B, Sanchis V, Nguyen-The C, Heyndrickx M, De VP (2008) Ecological diversification in the Bacillus cereus group. Environ Microbiol 10:851–865

    Article  PubMed  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza AN, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Hashem A, Tabassum B, Abd_Allah EF (2019) Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J of Biol Sci 26:1291–1297

    Google Scholar 

  • Helgason E, Tourasse NJ, Meisal R, Caugant DA, Kolstø AB (2004) Multilocus sequence typing scheme for bacteria of the Bacillus cereus group. Appl Environ Microbiol 70:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman MAB, Nault BA, Smart CD (2008) Effects of plant growth promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. J Crop Prot 27:996–1002

    Article  Google Scholar 

  • Hernandez JP, de Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant and Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil 331:413–425

    Article  CAS  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Ichimatsu T, Mizuki E, Nishimura K, Akao T, Saitoh H, Higuchi K, Ohba M (2001) Occurrence of Bacillus thuringiensis in fresh waters of Japan. Curr Microbiol 40:217–220

    Article  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-microbe Int 20:619–626

    Article  CAS  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1–12

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  CAS  PubMed  Google Scholar 

  • Jha LK (1997) Shifting cultivation. APH Publishing, Delhi, pp 1–189

    Google Scholar 

  • Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH (2014) Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol 54:427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karadeniz A, TopcuoÄŸlu ÅžF, Inan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064

    Article  CAS  Google Scholar 

  • Kaul S, Gupta S, Sharma T, Dhar MK (2018) Unfolding the role of rhizomicrobiome toward sustainable agriculture. In: Root biology. Springer, Cham, pp 341–365

    Chapter  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. In: Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C (eds) Sustainable agriculture, vol 5. Springer, Netherlands, pp 551–570

    Google Scholar 

  • Kim HM, Chae N, Jung JY, Lee YK (2013) Isolation of facultatively anaerobic soil bacteria from Ny-Ã…lesund, Svalbard. Polar Biol 36:787–796

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Kudryashova EB, Karlyshev AV, Ariskina EV, Streshinskaya GM, Vinokurova NG, Kopitsyn DS, Evtushenko LI (2018) Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost. Int J Syst Evol Micr 68:2912–2917

    Google Scholar 

  • Kumar A, Prakash A, Johri BN (2011) Bacillus as PGPR in crop ecosystem. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 37–59

    Chapter  Google Scholar 

  • Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013) Bacterial ccommunity structure from the perspective of the uranium ore deposits of domiasiat in India. Proc Natl Acad Sci India Sect B Biol Sci 83:485–497

    Article  Google Scholar 

  • Lele O, Deshmukh P (2016) Isolation and characterization of thermophilic Bacillus sp. with extracellular enzymatic activities from hot spring of Ganeshpuri, Maharashtra, India. Int J Appl Res 2:427–430

    Google Scholar 

  • Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK (2013) A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 25:3329–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Chiu CS, Ho PL, Wang SW (2009) Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. J Appl Microbiol 107:1031–1041

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y, Wang L, Shao Z (2015) Genomic insights into the taxonomic status of the Bacillus cereus group. Sci Rep 5:1–11

    Google Scholar 

  • Liu Y, Lai Q, Du J, Shao Z (2016) Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Micr 66:1193–1199

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lyngwi NA, Koijam K, Sharma D, Joshi SR (2013) Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev Biol Trop 61:467–490

    Article  PubMed  Google Scholar 

  • Lyngwi NA, Nongkhlaw M, Kalita D, Joshi SR (2016) Bioprospecting of plant growth promoting Bacilli and related genera prevalent in soils of pristine sacred groves: biochemical and molecular approach. PLoS One 11:e0152951

    Article  PubMed  PubMed Central  Google Scholar 

  • Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464

    Article  CAS  PubMed  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223

    Article  CAS  PubMed  Google Scholar 

  • Maithani K, Arunachalam A, Tripathi RS, Pandey HN (1998) Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths. Biol Fertil Soils 27:44–50

    Article  CAS  Google Scholar 

  • Matsui K, Yoshinami S, Narita M, Chien MF, Phung LT, Silver S, Endo G (2016) Mercury resistance transposons in Bacilli strains from different geographical regions. FEMS Microbiol 363:1–8

    Article  Google Scholar 

  • Matos AD, Gomes IC, Nietsche S, Xavier AA, Gomes WS, Dos Santos Neto JA, Pereira MC (2017) Phosphate solubilization by endophytic bacteria isolated from banana trees. An Acad Bras Ciênc 89:2945–2954

    Article  CAS  PubMed  Google Scholar 

  • McSpadden Gardener BB, Driks A (2004) Overview of the nature and applications of biocontrol microbes: Bacillus spp. Phytopathology 94:1244

    Article  PubMed  Google Scholar 

  • Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010) Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Curr Sci 98(4):538–542

    CAS  Google Scholar 

  • Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Miah S, Dey S, Haque SMS (2010) Shifting cultivation effects on soil fungi and bacterial population in Chittagong Hill Tracts, Bangladesh. J Forest Res 21:311–318

    Article  CAS  Google Scholar 

  • Minorsky PV (2008) On the inside. Plant Physiol 146:1455–1456

    Article  CAS  PubMed Central  Google Scholar 

  • Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017:1–12

    Article  Google Scholar 

  • Mondal KC, Banerjee D, Banerjee R, Pati BR (2001) Production and characterization of tannase from Bacillus cereus KBR9. J Gen Appl Microbiol 47:263–267

    Article  CAS  PubMed  Google Scholar 

  • Motta AS, Cladera-Olivera F, Brandelli A (2004) Screening for antimicrobial activity among bacteria isolated from the Amazon basin. Braz J Microbiol 35:307–310

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Nain L, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi-arid deserts. Appl Soil Ecol 59:124–135

    Article  Google Scholar 

  • Nair AS, Al-Battashi H, Al-Akzawi A, Annamalai N, Gujarathi A, Al-Bahry S, Dhillon GS, Sivakumar N (2018) Waste office paper: a potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. J Waste Manag 79:491–500

    Article  CAS  Google Scholar 

  • Panda MK, Sahu MK, Tayung K (2013) Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol 5:159–165

    PubMed  PubMed Central  Google Scholar 

  • Pandey A, Chaudhry S, Sharma A, Choudhary VS, Malviya MK, Chamoli S, Rinu K, Trivedi P, Palni LMS (2011) Recovery of Bacillus and Pseudomonas spp. from the ‘fired plots’ under shifting cultivation in northeast India. Curr Microbiol 62:273–280

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Dhakar K, Sharma A, Priti P, Sati P, Kumar B (2015) Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95°C) and Ringigad (80°C) hot springs of Uttarakhand, India. Ann Microbiol 65:809–816

    Article  CAS  Google Scholar 

  • Pena-Yam LP, Ruíz-Sánchez E, Barboza-Corona JE, Reyes-Ramírez A (2016) Isolation of Mexican bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv Jalapeño). Indian J Microbiol 56:375–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García A, Romero D, De Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Pingping SU, Jianchao CU, Xiaohui JI, Wenhui WA (2017) Isolation and characterization of Bacillus Amyloliquefaciens L-1 for biocontrol of pear ring rot. Hortic Plant J 3:183–189

    Article  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 1:363–377

    Google Scholar 

  • Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi MA, Ahmad ZA, Akhtar N, Iqbal A, Mujeeb F, Shakir MA (2012) Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. J Anim Plant Sci 22:204–210

    CAS  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd_Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ralte V, Pandey HN, Barik SK, Tripathi RS, Prabhu SD (2005) Changes in microbial biomass and activity in relation to shifting cultivation and horticultural practices in subtropical evergreen forest ecosystem of north-east India. Acta Oecologica 28:163–172

    Article  Google Scholar 

  • Ramakrishnan PS, Toky OP (1981) Soil nutrient status of hill agroecosystems and recovery pattern after slash and burn agriculture (jhum) in northeastern India. Plant and Soil 60:41–64

    Article  CAS  Google Scholar 

  • Ramani V, Patel HH (2011) Phosphate solubilization by Bacillus sphaericus and Burkholderia cepacia in presence of pesticides. J Agric Technol 7:1331–1337

    Google Scholar 

  • Ranjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716

    Article  CAS  PubMed  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  PubMed  Google Scholar 

  • Ray AK, Ghosh K, Ringø E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquacult Nutr 18:465–492

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  • Reza SK, Baruah U, Nath DJ, Sarkar D, Gogoi D (2014) Microbial biomass and enzyme activity in relation to shifting cultivation and horticultural practices in humid subtropical North-Eastern India. Range Manag Agrofor 35:78–84

    Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  CAS  PubMed  Google Scholar 

  • Rűger HJ, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Bacteriol 50:1305–1313

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33:1523–1538

    Article  CAS  PubMed  Google Scholar 

  • Saplalrinliana H, Thakuria D, Changkija S, Hazarika S (2016) Impact of shifting cultivation on litter accumulation and properties of Jhum soils of North East India. J Indian Soc Soil Sci 64:402–413

    Article  Google Scholar 

  • Sashidhar B, Podile A (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    Article  CAS  PubMed  Google Scholar 

  • Seldin L, Soares Rosado A, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shameer S, Prasad TNVKV (2018) Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2014) Growth promotion of the rice genotypes by PGPRs isolated from rice rhizosphere. J Soil Sci Plant Nutr 14:505–517

    Google Scholar 

  • Sharma P, Sood C, Singh G, Capalash N (2015) An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod 87:966–970

    Article  CAS  Google Scholar 

  • Sivasakthi S, Usharani G, Saranraj P (2014) Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: a review. African J Agri Res 9:1265–1277

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stabb EV, Jacobson L, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Google Scholar 

  • Swamy HMM, Asokan R (2013) Bacillus thuringiensis as ‘Nanoparticles’—a perspective for crop protection. Nanosci Nanotechnol Asia 3:102–105

    Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. Amb Express 4:1–9

    Article  CAS  Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka. India Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Tilak K, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34:279–289

    Article  CAS  Google Scholar 

  • Van Elsas JD, Chiurazzia M, Cyrus AM, Dana E, KriÅ¡tu VF, Sallesa JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas-Ayala R, Rodriguez-Kaban R, Morgan-Jones G, McInroy JA, Kloepper JW (2000) Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biol Control 17:11–22

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Mol Ther 21:573–590

    Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    Article  CAS  PubMed  Google Scholar 

  • Vilain S, Luo Y, Hildreth MB, Brözel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in sdoil. Appl Environ Microbiol 72:4970–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vimala Devi PS, Duraimurugan P, Chandrika KSVP (2019) Bacillus thuringiensis-based nanopesticides for crop protection. In: Nano-biopesticides today and future perspectives, pp 249–260

    Chapter  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Mery A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhao D, Shen L, Jing C, Zhang C (2018) Application and mechanisms of Bacillus subtilis in biological control of plant disease. In: Role of rhizospheric microbes in soil. Springer, pp 225–250

    Chapter  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    Article  CAS  PubMed  Google Scholar 

  • Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N (2012) Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Conserv 60:280–289

    Google Scholar 

  • Yang G, Chen M, Yu Z, Lu Q, Zhou S (2013) Bacillus composti sp. nov. and Bacillus thermophilus sp. nov., two thermophilic, Fe(III)-reducing bacteria isolated from compost. Int J Syst Evol Microbiol 63:3030–3036

    Google Scholar 

  • Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH (2014) Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Appl Microbiol Biotechnol 98:1449–1458

    Article  CAS  PubMed  Google Scholar 

  • Yanti Y, Hamid H, Habazar T (2020) The ability of indigenous Bacillus spp. consortia to control the anthracnose disease (Colletrotricum capsici) and increase the growth of chili plants. Biodivers J Biol Diversity 21

    Google Scholar 

  • Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL (2003) The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun 310:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microb Imm H 56:263–284

    Article  CAS  Google Scholar 

  • Zhu D, Zhang P, Niu L, Xie C, Li P, Sun J, Hang F (2016) Bacillus ectoiniformans sp. nov., a halotolerant bacterium isolated from deep-sea sediments. Int J Syst Evol Microb 66:616–622

    Google Scholar 

  • Zothansanga R, Senthilkumar N, Gurusubramanian G (2016) Diversity and toxicity of Bacillus thuringiensis from shifting cultivation (Jhum) habitat. Biocontrol Sci 21:99–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The present chapter forms a part of the study under the National Mission on Himalayan Studies (NMHS), Ministry of Environment, Forest and Climate Change, Government of India, and sanctioned project (MoEFCC-NMHS/LG-2016/005 Dated: 31/03/2016) to the authors.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Barik, S.K., Joshi, S.R. (2022). Bacilli and Sustainable Jhum Agrobiotechnology. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_11

Download citation

Publish with us

Policies and ethics