Skip to main content

Advertisement

Log in

Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Interest in the use of inoculants containing bacteria that promote plant growth is likely to increase in the coming years, due to higher costs of fertilizers, concerns over pollution and emphasis on sustainable agriculture. Although Brazil has a long tradition in research on nitrogen fixation in Azospirillum-grass associations, it has not led to recommendations of strains for use in commercial inoculants. In this study, we report the selection and evaluation of Azospirillum strains for the maize (Zea mays L.) and wheat (Triticum aestivum L.) crops, following protocols established by the Brazilian legislature, i.e. field experiments have to be performed in at least two different localities representing the crop growing regions, and for at least two seasons. In a first set of nine trials performed at Londrina and Ponta Grossa, southern Brazil, nine Azospirillum strains were evaluated after application to seeds as peat-based inoculants. A. brasilense strains Ab-V4, Ab-V5, Ab-V6 and Ab-V7 increased grain yields of maize by 662–823 kg ha−1, or 24–30%, in relation to non-inoculated controls. Two A. lipoferum strains were tested in two of these experiments and promising results were also obtained. With wheat, A. brasilense strains Ab-V1, Ab-V5, Ab-V6 and Ab-V8 were the most effective, increasing yields by 312–423 kg ha−1, or 13–18%. In a second trial set with eight field experiments at Londrina an Ponta Grossa, liquid and peat-based inoculants carrying a combination of A. brasilense strains Ab-V5 and Ab-V6 increased maize and wheat yields by 27% and 31%, respectively. Effects of inoculation were attributed to general increases in uptake of several macro and micronutrients and not specifically to biological nitrogen fixation. All experiments received only a low N-fertilizer starter at sowing (24 kg and 20 kg of N ha−1 for the maize and wheat, respectively) and although yields can be globally considered low, they were compatible with Brazilian mean yields. This study resulted in the identification of the first Azospirillum strains authorized for the production of commercial inoculants in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves BJR, Santos JCF, Urquiaga S, Boddey RM (1994) Métodos de determinação do nitrogênio em solo e em planta. In: Hungria M, Araujo RS (eds) Manual de métodos empregados em estudos de microbiologia agrícola. Embrapa-SPI, Brasília, pp 448–469

    Google Scholar 

  • Baldani VLD, Döbereiner J (1986) Effect of inoculation of Azospirillum spp. on the nitrogen assimilation of field grown wheat. Plant Soil 95:109–121

    Article  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum—plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relations physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis R (1989) Identification of gibberelins A1, A3, and iso-A3 in cultures of A. lipoferum. Plant Physiol 90:45–47

    Article  CAS  PubMed  Google Scholar 

  • Bouton JH, Albrecht SL, Zuberer DA (1985) Screening and selection of pearl millet for root associated bacterial nitrogen fixation. Field Crops Res 11:131–139

    Article  Google Scholar 

  • Burr IW, Foster LA (1972) A test for equality of variances. University of Purdue, West Lafayette 26 pp (Mimeo series, 282)

    Google Scholar 

  • Caballero-Mellado J, Carcano-Montiel M, Mascarua-Esparza MA (1992) Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–253

    Google Scholar 

  • Cassán FD, Garcia de Salamone I (2008) (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, 266 pp

  • Cassán F, Sgroy V, Perrig D, Masciarelli O, Luna V (2008) Producción de fitohormonas por Azospirillum sp Aspectos fisiológicos y tecnológicos de la promoción del crecimiento vegetal. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 59–84

    Google Scholar 

  • Cochran WG, Cox G (1957) Experimental designs. Wiley, New York 611 pp

    Google Scholar 

  • CONAB (Companhia Nacional de Abastecimento). Série Histórica—Brasil por produtos. Available at <http://www.conab.gov.br/conabweb/download/safra/BrasilProdutoSerieHist.xls>. Retrieved on the 15th of October, 2009

  • Correa OS, Romero AM, Soria MA, de Estrada M (2008) Azospirillum brasilense-plant genotype interactions modify tomato response to bacterial diseases, and root and foliar microbial communities. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 85–94

    Google Scholar 

  • Dardanelli MS, Rodríguez-Navarro DN, Megías-Guijo M, Okon Y (2008) Influencia de la coinoculación Azospirillum-rizobios sobre el crecimiento y la fijación de nitrógeno de leguminosas de interés agronómico. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 141–152

    Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Biotechnology 6:282–286

    Article  CAS  Google Scholar 

  • Díaz-Zorita M, Fernandez Canigia MV (2008) Análisis de la producción de cereales inoculados con Azospirillum brasilense en la República Argentina. In: Cassán FD, Garcia de Salamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 153–164

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Austr J Plant Physiol 28:871–879

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CT (eds) Proceedings of the international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, pp 518–538

    Google Scholar 

  • Döbereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants. Science Tech, Springer Verlag, Madison, pp 1–155 (Brock/Springer series in contemporary bioscience)

    Google Scholar 

  • Döbereiner J, Marriel I, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473

    Article  PubMed  Google Scholar 

  • Garcia de Salamone IE, Döbereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by 15N isotope dilution technique. Biol Fertil Soils 23:249–256

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66:1527–1531

    Article  CAS  PubMed  Google Scholar 

  • Hadas R, Okon Y (1987) Effect of Azospirillum brasilense inoculation of root morphology and respiration in tomato seedlings. Biol Fertil Soils 5:241–247

    Article  Google Scholar 

  • Huergo LF, Monteiro RA, Bonatto AC, Rigo LU, Steffens MBR, Cruz LM, Chubatsu LS, Souza EM, Pedrosa FO (2008) Regulation of nitrogen fixation in Azospirillum brasilense. In: Cassán FD, GarciadeSalamone I (eds) Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Asociación Argentina de Microbiologia, Argentina, pp 17–36

    Google Scholar 

  • Hungria M, Campo RJ (2007) Inoculantes microbianos: situação no Brasil. In: Izaguirre-Mayoral ML, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamérica: visión técnica, científica y empresarial. Cyted/Biofag, Montevideo, pp 22–31

    Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1987) Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol Fertil Soils 4:27–35

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Pavan MA, Bloch MF, Zempulski HD, Miyazawa M, Zocoler DC (1992) Manual de análise química do solo e controle de qualidade. Instituto Agronômico do Paraná, Londrina 40 pp (Circular 76)

    Google Scholar 

  • Penot I, Berges N, Guiguene C, Fages J (1992) Characterization of Azospirillum associated with maize (Zea mays L.) in France using biochemical tests and plasmid profiles. Can J Microbiol 38:798–803

    Article  CAS  Google Scholar 

  • Perrig D, Boiero L, Masciarelli O, Penna C, Cassán F, Luna V (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and their implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutiérrez-Mañero FJ (1996) The influence of native bacteria on European alder (Alnus glutinosa [L.] Gaertn.) growth. I. Characterization of growth-promoting and growth-inhibiting bacterial strains. Plant Soil 182:59–66

    Article  CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2001) Proprietary of software, version 8.2, 6th edn. SAS Institute, Cary

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality. Biometrika 52:591–611

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Strzelczyk E, Kamper M, Li C (1994) Cytocinin-like-substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149:55–60

    CAS  Google Scholar 

  • Sumner ME (1990) Crop responses to Azospirillum inoculation. Adv Soil Sci 12:54–123

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  CAS  PubMed  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  Google Scholar 

  • Tukey JW (1949) One degree of freedom for non-additivity. Biometrics 5:232–242

    Article  Google Scholar 

  • Wani SP, Chandrapalaih S, Dart PJ (1985) Responses of pearl millet cultivars to inoculation with nitrogen-fixing bacteria. Exp Agric 21:175–182

    Article  Google Scholar 

  • Weller DM, Tomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Biotechnology and release of GMOs. VCH Verlagsgesellschaft mbH, Weinheim, pp 1–18

    Chapter  Google Scholar 

Download references

Acknowledgments

The work was partially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil)/MCT, PRONEX. The authors thank Dr. Ricardo S. Araujo for helpful discussions and Dr. Allan R. J. Eaglesham for English review. Author thank to Julio C. Franchini and Fabio. L. Mostasso for technical help in several steps of this study and to José Zucca de Moraes, Rubson N. R. Sibaldelli and Rinaldo B. Conceição for agronomic support. This manuscript was reviewed by the internal editorial committee of the Embrapa Soybean Center, by Dr. Ricardo S. Araujo (Total Biotecnologia, Curitiba, Paraná, Brazil) and by Dr. Fabio B. Reis Junior (Embrapa Cerrados, Planaltina, Federal District, Brazil) prior to submission to Plant and Soil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariangela Hungria.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hungria, M., Campo, R.J., Souza, E.M. et al. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331, 413–425 (2010). https://doi.org/10.1007/s11104-009-0262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0262-0

Keywords

Navigation