Skip to main content

Chapter 3 Mesophyll Conductance to CO2 Diffusion in a Climate Change Scenario: Effects of Elevated CO2, Temperature and Water Stress

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

Abstract

Mesophyll conductance to CO2 (gm) is a key component of leaf photosynthesis: it describes the inverse of the resistance of the CO2 diffusion from the substomatal cavity to the chloroplast, and thus it is highly determined by anatomical and biochemical features along that path. Over the years, gm has been acknowledged to be a key factor in limiting photosynthesis across plant groups, explaining part of the interspecific variation of photosynthetic capacity. However, gm has been scarcely considered in photosynthesis studies under a climate change scenario, especially regarding its response to [CO2] and temperature acclimation. Nonetheless, increasing evidence highlights the importance of gm in determining photosynthesis response to those factors, and of considering gm for further modelling of plant performance under future climate conditions. This chapter focuses on both short- and long-term responses of gm – and its effect on net CO2 assimilation – to [CO2] and temperature , among other climate change-related factors (water stress, ozone and nutrient availability), with special emphasis on the mechanistic basis that drive the gm response. Despite few studies reporting data on them, cell wall thickness, chloroplast distribution and aquaporins appear to be the key underlying factors of gm response to environmental changes. Nonetheless, gm response seems to be a species-specific feature, highlighting current uncertainties in the prediction of photosynthetic responses under future climate scenarios and the need to account for the mechanics and variability of gm in future research.

Abbreviations: An – Net CO2 assimilation rate; Ca – CO2 concentration in the atmosphere; Cc – CO2 concentration at the sites of carboxylation; Ci – CO2 concentration in the inter-cellular air spaces; FACE – Free-Air CO2 Enrichment; gliq – Conductance to CO2 diffusion through the liquid phase (cell wall, cytoplasm and chloroplast stroma); gm – Mesophyll conductance to CO2 diffusion; gmem – Conductance to CO2 diffusion across biological membranes (plasmalemma and chloroplast envelopes); gs – Stomatal conductance to CO2 diffusion; J – Electron transport rate; Jmax – Maximum electron transport rate; LMA – Leaf mass per area; NRH – Non-rectangular hyperbolic; OTC – Open Top Chamber; Sc/S – Ratio of exposed chloroplasts to mesophyll surface areas; Sm/S – Ratio of exposed mesophyll cells to leaf intercellular space; Tcw – Cell wall thickness; TDLAS – Tunable Diode Laser Absorption Spectroscopy Vcmax – Maximum Rubisco carboxylation rate; WTC – Whole-tree chamber

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, van der Linden L, Beier C (2011) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali AA, Medlyn BE, Crous KY, Reich PB (2013) A trait-based ecosystem model suggests that long-term responsiveness to rising atmospheric CO2 concentration is greater in slow-growing than fast-growing plants. Funct Ecol 27:1011–1022

    Article  Google Scholar 

  • Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, …, Zickfeld K (2018). Framing and context. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, …, Waterfield T (eds) Global Warming of 1.5°C. IPCC., in press

    Google Scholar 

  • Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogués S, Araus JL, Martínez-Carrasco R, Pérez P (2011) Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? J Exp Bot 62:3957–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranjuelo I, Sanz-Sáez A, Jáuregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G (2013) Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J Exp Bot 64:1879–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranjuelo I, Tcherkez G, Jauregui I, Gilard F, Ancín M, Fernández-San Millán A, Larraya L, Veramendi J, …, Farran I (2015) Alternation by thioredoxin f over-expression of primary carbon metabolism and its response to elevated CO2 in tobacco (Nicotiana tabacum L.). Environ Exp Bot 118: 40–48

    Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210:875–889

    Article  CAS  PubMed  Google Scholar 

  • Bellasio C, Beerling DJ, Griffiths H (2016) Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an excel tool: theory and practice. Plant Cell Environ 39:1164–1179

    Article  CAS  PubMed  Google Scholar 

  • Berghuijs HNC, Yin X, Ho QT, Driever SM, Retta MA, Nicolai BM, Struik PC (2018) Mesophyll conductance and reaction-diffusion models for CO2 transport in C3 leaves; needs, opportunities and challenges. Plant Sci 252:62–75

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo rubisco capacity. Planta 220:434–446

    Article  CAS  PubMed  Google Scholar 

  • Bockers M, Capková V, Tichá I, Scäfer C (1997) Growth at high CO2 affects the chloroplast number but not the photosynthetic efficiency of photoautotrophic Marchantia polymorpha culture cells. Plant Cell Tiss Org 48:103–110

    Article  Google Scholar 

  • Boyd RA, Gandin A, Cousins AB (2015) Temperature responses of C4 photosynthesis: biochemical analysis of rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase in Setaria viridis. Plant Physiol 169:1850–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, McAdam SAM (2013) Unique responsiveness of angiosperm stomata to elevated CO2 explained by calcium signalling. PLoS One 8:e82057

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, McAdam SAM, Jordan GJ, Field TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Bunce JA (2008) Acclimation of photosynthesis to temperature in Arabidopsis thaliana and Brassica oleracea. Photosynthetica 46:517–524

    Article  CAS  Google Scholar 

  • Bunce JA (2009) Use of the response of photosynthesis to oxygen to estimate mesophyll conductance to carbon dioxide in water-stressed soybean leaves. Plant Cell Environ 32:875–881

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Li G, Yang H, Yang J, Liu H, Struik PC, Luo W, Yin X, …, Guo X (2018) Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments? Glob Change Biol 24:1685–1707

    Google Scholar 

  • Carriquí M, Cabrera HM, Conesa MÀ, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, …, Flexas J (2015) Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ 38:448–460

    Google Scholar 

  • Carriquí M, Douthe C, Molins A, Flexas J (2019a) Leaf anatomy does not explain apparent short-term responses of mesophyll conductance to light and CO2 in tobacco. Physiol Plantarum 165:604–618

    Article  CAS  Google Scholar 

  • Carriquí M, Roig-Oliver M, Brodribb TJ, Coopman R, Gill W, Mark K, Niinemets U, Perera‐Castro AV, …, Flexas J (2019b) Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol 222 1256–1270

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Crous KY, Quentin AG, Lin YS, Medlyn BE, Williams DG, Barton CVM, Ellsworth DS (2013) Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob Change Biol 19:3790–3807

    Article  Google Scholar 

  • DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SCV, Sanglard LMVP, Morais LE, Torre-Neto A, Ghini R (2016) Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J Exp Bot 67:341–352

    Article  CAS  PubMed  Google Scholar 

  • Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T (2018) New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol 217:571–585

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Espejo A (2013) New challenges in modelling photosynthesis: temperature dependencies of rubisco kinetics. Plant Cell Environ 36:2104–2107

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Espejo A, Nicolás E, Fernández JE (2007) Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30:922–933

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Espejo A, Fernández JE, Torres-Ruiz JM, Rodriguez-Dominguez CM, Perez-Martin A, Hernandez-Santana V (2018) The olive tree under water stress: fitting the pieces of response mechanisms in the crop performance puzzle. In: García-Tejero IF, Duran-Zuazo VH (eds) Water Scarcity and Sustainable Agriculture in Semiarid Environment. Elsevier, London, pp 439–479

    Chapter  Google Scholar 

  • Dillaway DN, Kruger EL (2010) Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ 33:888–899

    Article  CAS  PubMed  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Article  CAS  Google Scholar 

  • Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I, Macek M, Altman J, Chlumska Z, …, Schweingruber F (2016) Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci Rep 6: 24881

    Google Scholar 

  • Douthe C, Dreyer E, Epron D, Warren CR (2011) Mesophyll conductance to CO2, assessed from online TDL-AS records of (CO2)-C-13 discrimination, displays small but significant short-term responses to CO2 and irradiance in eucalyptus seedlings. J Exp Bot 62:5335–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 39:435–448

    Article  CAS  PubMed  Google Scholar 

  • Earles JM, Théroux-Rancourt G, Roddy AB, Gilbert ME, McElrone AJ, Brodersen CR (2018) Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll conductance. Plant Physiol 178:148–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichelmann H, Oja V, Rasulov B, Padu E, Bichele I, Pettai H, Möls T, Kasparova I, …, Laisk A (2004) Photosynthetic parameters of birch (Betula pendula Roth) leaves growing in normal and in CO2- and O3-enriched atmospheres. Plant Cell Environ 27: 479–495

    Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137–153

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Aust J Plant Physiol 13:281–292

    CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of rubisco. Aust J Plant Physiol 21:475–495

    CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA (1996) Photosynthetic adjustment to temperature. In: Baker NR (ed) Photosynthesis and the Environment. Advances in Photosynthesis and Respiration, vol 5. Springer, Dordrecht, pp 367–385

    Google Scholar 

  • Fares S, Mahmood T, Liu S, Loreto F, Centritto M (2011) Influence of growth temperature and measuring temperature on isoprene emission, diffusive limitations of photosynthesis and respiration in hybrid poplars. Atmos Environ 45:155–161

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A (2015) Interspecific differences in temperature response of mesophyll conductance: food for thought on its origin and regulation. Plant Cell Environ 38:625–628

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbó M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, …, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194: 70–84

    Google Scholar 

  • Flexas J, Niinemets Ü, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Cyril C, Jeroni J, …, Medrano H (2013a) Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynth Res 117: 45–59

    Google Scholar 

  • Flexas J, Scoffoni C, Gago J, Sack L (2013b) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965–3981

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Carriquí M, Coopman RE, Gago J, Galmés J, Martorell S, Morales F, Diaz-Espejo A (2014) Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci 226:41–48

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, …, Niinemets Ü (2016) Mesophyll conductance to CO2 and rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ 39: 965–982

    Google Scholar 

  • Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D (2018a) CO2 diffusion inside photosynthetic organs. In: Adams W III, Terashima I (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes), vol 44. Springer, Cham, pp 163–208

    Chapter  Google Scholar 

  • Flexas J, Carriquí M, Nadal M (2018b) Gas exchange and hydraulics during drought in crops: who drives whom? J Exp Bot 69:3791–3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Fowler D, Cape IN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

    Article  CAS  Google Scholar 

  • Gago J, Douthe C, Florez-Sarasa I, Escalona JM, Galmes J, Fernie AR, Flexas J, Medrano H (2014) Opportunities for improving leaf water use efficiency under climate change conditions. Plant Sci 226:108–119

    Article  CAS  PubMed  Google Scholar 

  • Gago J, Daloso DM, Figueroa CM, Flexas J, Fernie AR, Nikoloski Z (2016) Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: a multispecies meta-analysis approach. Plant Physiol 171:1–15

    Article  CAS  Google Scholar 

  • Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J (2019) Photosynthesis optimized across land plant phylogeny. Trends Plant Sci 24:947–958

    Article  CAS  PubMed  Google Scholar 

  • Galle A, Florez-Sarasa I, Tomas M, Pou A, Medrano H, Ribas-Carbo M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390

    Article  CAS  PubMed  Google Scholar 

  • Galle A, Florez-Sarasa I, El Aououad H, Flexas J (2011) The Mediterranean evergreen Quercus ilex and the semideciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles. J Exp Bot 62:5207–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2006) Acclimation of rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. J Exp Bot 57:3659–3667

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Kapralov MV, Copolovici LO, Hermida-Carrera C, Niinemets Ü (2015) Temperature responses of the rubisco máximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photos Res 123:183–201

    Article  CAS  Google Scholar 

  • Galmés J, Hermida-Carrera C, Laanisto L, Niinemets Ü (2016) A compendium of temperature responses of rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling. J Exp Bot 67:5067–5091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao F, Calatayud V, García-Breijo F, Reig-Armiñana J, Feng ZZ (2016) Effects of elevated ozone on physiological, anatomical and ultrastructural characteristics of four common urban tree species in China. Ecol Indic 67:367–379

    Article  CAS  Google Scholar 

  • Ge ZM, Zhou X, Kellomäki S, Zhang C, Peltola H, Martikainen PJ, Wang KY (2012) Acclimation of photosynthesis in a boreal grass (Phalaris arundinacea L.) under different temperature, CO2, and soil water regimes. Photosynthetica 50(1): 141-151

    Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Greer DH (2018) Photosynthetic responses to CO2 at different leaf temperatures in leaves of apple trees (Malus domestica) grown in orchard conditions with different levels of soil nitrogen. Environ Exp Bot 155:56–65

    Article  CAS  Google Scholar 

  • Gu L, Sun Y (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ 37:1231–1249

    Article  CAS  PubMed  Google Scholar 

  • Han JM, Meng HF, Wang SY, Jiang CD, Liu F, Zhang WF, Zhang YL (2016) Variability of mesophyll conductance and its relationship with water use efficiency in cotton leaves under drought pretreatment. J Plant Physiol 194:61–71

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lei Z, Zhang Y, Yi X, Zhang W, Zhang Y (2019) Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. Physiol Plantarum 166:873–887

    Article  CAS  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharket TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener F, Dlugokencky E, …, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, …, Midgley PM (eds). Climate Change 2013: The Physical Science Basis. Cambridge/New York, IPCC/Cambridge University Press

    Google Scholar 

  • Hassiotou F, Ludwig M, Renton M, Veneklaas EJ, Evans JR (2009) Influence of leaf dry mass oer area, CO2, and irradiance on mesophyll conductance in sclerophylls. J Exp Bot 60:2303–2314

    Article  CAS  PubMed  Google Scholar 

  • Ho QT, Berghuijs HNC, Watté R, Verboven P, Herremans E, Yin X, Retta MA, Aernouts B, … Nicolai BM (2016) Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ 39: 50–51

    Google Scholar 

  • June T, Evans JR, Farquhar GD (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct Plant Biol 31:275–283

    Article  CAS  PubMed  Google Scholar 

  • Juurola E, Aalto T, Thum T, Vesala T, Hari P (2005) Temperature dependence of leaf-level CO2 fixation: revising biochemical coefficients through analysis of leaf three-dimensional structure. New Phytol 166:205–215

    Article  PubMed  Google Scholar 

  • Kitao M, Yazaki K, Kitaoka S, Fukatsu E, Tobita H, Komatsu M, Maruyama Y, Koike T (2015) Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Physiol Plantarum 155:435–445

    Article  CAS  Google Scholar 

  • Kolbe AR, Cousins AB (2018) Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops. New Phytol 217:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, Mitchell A, Bellasio C, … Fleming AJ (2017) Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant J 92: 981–994

    Google Scholar 

  • Lewis JD, Phillips NG, Logan BA, Smith RA, Aranjuelo I, Clarke S, Offord CA, Frith, A, …, Tissue DT (2015) Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct Plant Biol 42: 836–850

    Google Scholar 

  • Li P, Feng ZZ, Calatayud V, Yuan XY, Xu YS, Paoletti E (2017) A meta-analysis on growth, physiological, and biochemical responses of woody species to ground-level ozone highlights the role of plant functional types. Plant Cell Environ 40:2369–2380

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Song X, Li S, Salter WT, Barbour MM (2019) The role of leaf water potential in the temperature response of mesophyll conductance. New Phytol. https://doi.org/10.1111/nph.16214

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmosphere carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Centritto M (2008) Leaf carbon assimilation in a water-limited world. Plant Biosyst 142:154–161

    Article  Google Scholar 

  • Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98:1437–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 25:557–566

    Article  CAS  Google Scholar 

  • Majeau N, Coleman JR (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 112:569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomès E, Pascual I (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176

    Article  PubMed  CAS  Google Scholar 

  • Martins SCV, Galmés J, Molins A, DaMatta FM (2013) Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. J Exp Bot 64:3285–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matyssek R, Innes JL (1999) Ozone- a risk factor for forest trees and forests in Europe? Water Air Soil Pollut 116:199–226

    Article  CAS  Google Scholar 

  • Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. Prog Bot 64:349–404

    Article  CAS  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Keller T, Scheidegger C (1991) Impairment of the gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations. Trees 5:5–13

    Article  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, …, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149: 247–264

    Google Scholar 

  • Meng GT, Li GX, He LP, Chai Y, Kong JJ, Lei YB (2013) Combined effects of CO2 enrichment and drought stress on growth and energetic properties in the seedlings of a potential bioenergy crop Jatropha curcas. J Plant Growth Regul 32:542–550

    Article  CAS  Google Scholar 

  • Mizokami Y, Noguchi K, Kojima M, Sakakaibara H, Terashima I (2015) Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions. Plant Cell Environ 38:388–398

    Article  CAS  PubMed  Google Scholar 

  • Mizokami Y, Noguchi K, Kojima M, Sakakibara H, Terashima I (2019a) Effects of instantaneous and growth CO2 levels, and ABA on stomatal and mesophyll conductances. Plant Cell Environ 42:1257–1269

    Article  CAS  PubMed  Google Scholar 

  • Mizokami Y, Sugiura D, Watanbe CKA, Betsuyaku E, Inada N, Terashima I (2019b) Elevated CO2-induced changes in mesophyll conductance and anatomical traits in wild type and carbohydrate-metabolism mutants of Arabidopsis. J Exp Bot 70:4807–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal M, Flexas J (2018) Mesophyll conductance to CO2 diffusion: effects of drought and opportunities for improvement. In: García-Tejero IF, Duran-Zuazo VH (eds) Water Scarcity and Sustainable Agriculture in Semiarid Environment. Elsevier, London, pp 403–438

    Chapter  Google Scholar 

  • Nadal M, Flexas J (2019) Variation in photosynthetic characteristics with growth form in a water-limited scenario: implications for assimilation rates and water use efficiency in crops. Agr Water Manage 216:457–472

    Article  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J Geophys Res 108:4208

    Article  CAS  Google Scholar 

  • Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Flexas J, Peñuelas J (2011) Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol 26:136–142

    Article  PubMed  Google Scholar 

  • Ogée J, Wingate L, Genty B (2018) Estimating mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity. Plant Physiol 178:728–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Change Biol 11:732–748

    Article  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinmets Ü, Poorter H, Tosens T, …, Westoby M (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214: 1447–1463

    Google Scholar 

  • Osborn HL, Alonso-Cantabrana H, Sharwood RE, Covshoff S, Evans JR, Furbank RT, von Caemmerer S (2017) Effects of reduced carbonic anhydrase activity on CO2 assimilation rates in Setaria viridis: a transgenic analysis. J Exp Bot 68:299–310

    Article  CAS  PubMed  Google Scholar 

  • Ouyang W, Struik PC, Yin X, Yang J (2017) Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot 68:5191–5205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overdieck D (1989) The effects of preindustrial and predicted future atmospheric CO2 concentration on Lyonia mariana L.D. Don. Funct Ecol 3:569–576

    Article  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Gunthardt-Goerg MS, Vollenweider P (2009) Structural and physiological responses to ozone in manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631–1643

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernández JE, Sebastiani L, Diaz-Espejo A (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot 65:3143–3156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-Romero JA, Idaszkin YL, Barcia-Piedras JM, Duarte B, Redondo-Gómez S, Caçador I, Mateos-Naranjo E (2018) Disentangling the effect of atmospheric CO2 enrichment on the halophyte Salicornia ramosissima J. woods physiological performance under optimal and suboptimal saline conditions. Plant Physiol Bioch 127:617–629

    Article  CAS  Google Scholar 

  • Pons TL, Welschen RAM (2003) Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and rubisco. Tree Physiol 23:937–947

    Article  CAS  PubMed  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60:2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Porter MA, Grodzinski B (1984) Acclimation to CO2 in bean. Carbonic anhydrase and ribulose bisphosphate carboxylase. Plant Physiol 74:413–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Possell M, Hewitt CN (2009) Gas exchange and photosynthetic performance of the tropical tree Acacia nigrescens when grown in different CO2 concentrations. Planta 229:837–846

    Article  CAS  PubMed  Google Scholar 

  • Pou A, Medrano H, Tomàs M, Martorell S, Ribas-Carbó M, Flexas J (2012) Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour. Plant Soil 359:335–349

    Article  CAS  Google Scholar 

  • Qiu C, Ethier G, Pepin S, Dubé P, Desjardins Y, Grosselin A (2017) Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? Plant Cell Environ 40:1940–1959

    Article  CAS  PubMed  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD, Pastore MA (2018) Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360:317–320

    Article  CAS  PubMed  Google Scholar 

  • Robertson EJ, Leech RM (1995) Significant changes in cell and chloroplast development in young wheat leaves (Triticum aestivum cv Hereward) grown in elevated CO2. Plant Physiol 107:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, … Zaehle S (2017) A roadmap for improving the representation of photosynthesis in earth system models. New Phytol 213 22–42

    Google Scholar 

  • Roumet C, Bel MP, Sonie L, Jardon F, Roy J (1996) Growth response of grasses to elevated CO2: a physiological plurispecific analysis. New Phytol 133:595–603

    Article  Google Scholar 

  • Ruiz-Vera UM, De Souza AP, Long SP, Ort DR (2017) The role of sink strength and nitrogen availability in the down-regulation of photosynthetic capacity in field-grown Nicotiana tabacum L. at elevated CO2 concentration. Front Plant Sci 8:998

    Article  PubMed  PubMed Central  Google Scholar 

  • Sáez PL, Cavieres LA, Galmés J, Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D, Vivas M, Sanhueza C, … Bravo LA (2018a) In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. New Phytol 218: 1406–1418

    Google Scholar 

  • Sáez PL, Galmés J, Ramírez CF, Poblete L, Rivera BK, Cavieres LA, Clemente-Morenob MJ, Flexasb J, … Bravo LA (2018b) Mesophyll conductance to CO2 is the most significant limitation to photosynthesis at different temperatures and water availabilities in Antarctic vascular species. Env Exp Bot 156: 279–287

    Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Nakano T, Kachi N (2015) Effects of internal conductance and rubisco on the optimum temperature for leaf photosynthesis in Fallopia japonica growing at different altitudes. Ecol Res 30:163–171

    Article  CAS  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Morales F (2012) Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann Appl Biol 161:277–292

    Article  CAS  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Scafaro AP, von Caemmerer S, Evans JR, Atwell BJ (2011) Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness. Plant Cell Environ 34:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Sekhar KM, Reddy KS, Reddy AR (2017) Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynth Res 132:151–164

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Sharwood RE, Crous KY, Whitney SM, Ellsworth DS, Ghannoum O (2017) Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus. J Exp Bot 68:1157–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha A, Song X, Barbour MM (2019) The temperature response of mesophyll conductance, and its copmonent conductance, varies between species and genotypes. Photosynth Res 141:65–82

    Article  CAS  PubMed  Google Scholar 

  • Sicher RC, Kremer DF, Rodermel SR (1994) Photosynthetic acclimation to elevated CO2 occurs in transformed tobacco with decreased ribulose-1,5-bisphosphate carboxylase/oxygenase content. Plant Physiol 104:409–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silim SN, Ryan N, Kubien DS (2010) Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. Photosynth Res 104:19–30

    Article  CAS  PubMed  Google Scholar 

  • Silva EN, Silveira JAG, Ribeiro RV, Vieira SA (2015) Photoprotective function of energy dissipation by thermal processes and photorespiratory mechanisms in Jatropha curcas plants during different intensities of drought and after recovery. Env Exp Bot 110:36–45

    Article  Google Scholar 

  • Singh SK, Reddy VR (2016) Method of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. Physiol Plantarum 157:234–254

    Article  CAS  Google Scholar 

  • Singh SK, Reddy VR (2018) Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptations. Photosynth Res 137:183–200

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170:801–813

    Article  CAS  PubMed  Google Scholar 

  • Singsaas EL, Ort DR, DeLucia EH (2003) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ 27:41–50

    Article  Google Scholar 

  • Smith RA, Lewis JD, Ghannoum O, Tissue DT (2012) Leaf structural responses to pre-industrial, current and elevated atmospheric [CO2] and temperature affect leaf function in Eucalyptus sideroxylon. Funct Plant Biol 39:285–296

    Article  CAS  PubMed  Google Scholar 

  • Sonawane BV, Cousins AB (2019) Uncertainties and limitations of using carbon-13a¡ and oxygen-18 leaf isotope exchange to estimate the temperature response of mesophyll CO2 conductance in C3 plants. New Phytol 222:122–131

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Huang B (2014) Differential effectiveness of doubling ambient atmospheric CO2 concentration mitigating adverse effects of drought, heat, and combined stress in Kentucky bluegrass. J Amer Soc Hort Sci 139:364–373

    Article  Google Scholar 

  • Sorrentino G, Haworth M, Wahbi S, Mahmood T, Zuomin S, Centritto M (2016) Abscisic acid induces rapid reductions in mesophyll conductance to carbon dioxide. PLoS One 11:e0148554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sugiura D, Watanabe CKA, Betsuyaku E, Terashima I (2017) Sink-source balance and down-regulation of photosynthesis in Raphanus sativus: effects of grafting, N and CO2. Plant Cell Physiol 58:2043–2056

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Gu L, Dickinson RE, Norby RJ, Pallardy SG, Hoffman FM (2014) Impact of mesophyll diffusion on estimated global land CO2 fertilization. PNAS 111:15774–15779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazoe Y, von Caemmerer S, Badger MR, Evans JR (2009) Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves. J Exp Bot 60:2291–2301

    Article  CAS  PubMed  Google Scholar 

  • Teng N, Wang J, Chen T, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets Ü (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Théroux-Rancourt G, Éthier G, Pepin S (2015) Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiol 35:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Tomàs M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, …, Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64 2269–2281

    Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrero HM, Carriquí M, Laanisto L, Morales L, …, Flexas J (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209 1576–1590

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, Bracegirdle TJ, Marshall GJ, … Deb P (2016) Absence of 21st century warming on Antarctic peninsula consistent with natural variability. Nature 535: 411–415

    Google Scholar 

  • Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in vitro Vpmax. New Phytol 214:66–80

    Article  CAS  PubMed  Google Scholar 

  • Ubierna N, Gandin A, Cousins AB (2018) The response of mesophyll conductance to short-term variation in CO2 in the C4 plants Setaria viridis and Zea mays. J Exp Bot 69:1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uprety DC, Dwivedi N, Mohan R, Paswan G (2001) Effect of elevated CO2 concentration on leaf structure of Brassica juncea under water stress. Biol Plantarum 44:149–152

    Article  Google Scholar 

  • Varone L, Ribas-Carbo M, Cardona C, Gallé A, Medrano H, Gratani L, Flexas J (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and saplings of Mediterranean species pre-conditioned and aged in nurseries: different response to water stress. Env Exp Bot 75:235–247

    Article  CAS  Google Scholar 

  • Varone L, Vitale M, Catoni R, Gratani (2016) Physiological differences of five holm oak (Quercus ilex L.) ecotypes growing under common growth conditions were related to native local climate. Plant Spec Biol 31:196–210

    Article  Google Scholar 

  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F (2005) Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol 25:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Tsonev T, Barta C, Centritto M, Koleva D, Stefanova M, Busheva M, Loreto F (2009) BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environ Pollut 157:2629–2637

    Article  CAS  PubMed  Google Scholar 

  • Veromann-Jürgenson LL, Tosens T, Laanisto L, Niinemets Ü (2017) Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! J Exp Bot 68:1639–1653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vico G, Way DA, Hurry V, Manzoni S (2019) Can leaf photosynthesis acclimate to rising and more variable temperatures? Plant Cell Environ 42:1913–1928

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Evans JR (1991) Determination of the average partial pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18:287–305

    Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • von Cammerer S (2013) Steady-state models of photosynthesis. Plant Cell Environ 36:1617–1630

    Article  CAS  Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Anderson OR, Griffin KL (2004) Chloroplast numbers, mitochondrion numbers and carbon assimilation physiology of Nicotiana sylvestris as affected by CO2 concentration. Environ Exp Bot 51:21–31

    Article  CAS  Google Scholar 

  • Wang H, Prentice IC, Keenan TF, Davis TW, Wright IJ, Cornwell WK, Evans BJ, Peng C (2017) Towards a universal model for carbon dioxide uptake by plants. Nat Plants 3:734–741

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Du T, Huang J, Peng S, Xiong D (2018) Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J Exp Bot 69:4033–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren CR (2008a) Stand aside stomata, another actor deserves Centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  CAS  PubMed  Google Scholar 

  • Warren CR (2008b) Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol 28:11–19

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Löw M, Matyssek R, Tausz M (2007) Internal conductance to CO2 transfer of adult Fagus sylvatica: variation between sun and shade leaves and due to free-air ozone fumigation. Environ Exp Bot 59:130–138

    Article  CAS  Google Scholar 

  • Watanabe M, Kaminaki Y, Mori M, Okabe S, Arakawa I, Kinose Y, Nakaba S, Izuta T (2018) Mesophyll conductance to CO2 in leaves of Siebold’s beech (Fagus crenata) seedlings under elevated ozone. J Plant Res 131:907–914

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York. ISBN. isbn:978-3-319-24277-4

    Book  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, … Villar R (2004) The worldwide leaf economics spectrum. Nature 428: 821–827

    Google Scholar 

  • Xiong D, Liu X, Liu L, Douthe C, Li Y, Peng S, Huang J (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Flexas J, Yu T, Peng S, Huang J (2017) Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytol 213:572–583

    Article  CAS  PubMed  Google Scholar 

  • Xu CY, Salih A, Ghannoum O, Tissue DT (2012) Leaf structure characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. J Exp Bot 63:5829–5841

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Singh SK, Reddy VR, Barnaby JY, Sicher RC, Li T (2016) Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol 205:20–32

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Feng Z, Shang B, Dai L, Uddling J, Tarvainen L (2019) Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Science Total Environ 657:136–145

    Article  CAS  Google Scholar 

  • Xue W, Otieno D, Ko J, Werner C, Tenhunen J (2016) Conditional variations in temperature response of photosynthesis, mesophyll and stomatal control of water use in rice and winter wheat. Field Crop Res 199:77–88

    Article  Google Scholar 

  • Yamori W, Noguchi K, Hanba YT, Terashima I (2006a) Effects of internal conductance on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Physiol 47:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I (2006b) Effects of rubisco kinetics and rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ 29:1659–1670

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Liu J, Tischer SV, Christmann A, Windisch W, Schnyder H, Grill E (2016) Leveraging abscisic acid receptors for efficient water use in Arabidopsis. Proc Natl Acad Sci 113:6791–6796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosyntthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32: 448–464

    Google Scholar 

  • Yue X, Unger N, Harper K, Xia XG, Liao H, Zhu T, Xiao JF, Feng ZZ, Li J (2017) Ozone and haze pollution weakens net primary productivity in China. Atmos Chem Phys 17:6073–6089

    Article  CAS  Google Scholar 

  • Zait Y, Shtein I, Schwartz A (2019) Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: revealing different tradeoffs between mesophyll and stomatal conductance. Tree Physiol 39:701–716

    Article  CAS  PubMed  Google Scholar 

  • Zhang SB (2010) Temperature acclimation of photosynthesis in Mecanopsis horridula var. racemose Prain. Bot Stud 51:457–464

    Google Scholar 

  • Zhu C, Ziska L, Zhu J, Zeng Q, Xie Z, Tang H, Jia X, Hasegawa T (2012) The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide. Physiol Plantarum 145:395–405

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Flexas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadal, M., Carriquí, M., Flexas, J. (2021). Chapter 3 Mesophyll Conductance to CO2 Diffusion in a Climate Change Scenario: Effects of Elevated CO2, Temperature and Water Stress. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_3

Download citation

Publish with us

Policies and ethics