Skip to main content

Advertisement

Log in

Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptations

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Plants photosynthesis-related traits are co-regulated to capture light and CO2 to optimize the rate of CO2 assimilation (A). The rising CO2 often benefits, but potassium (K) deficiency adversely affects A that contributes to the majority of plant biomass. To evaluate mechanisms of photosynthetic limitations and adaptations, soybean was grown under controlled conditions with an adequate (control, 5.0 mM) and two K-deficient (moderate, 0.50 and severe, 0.02 mM) levels under ambient (aCO2; 400 µmol mol−1) and elevated CO2 (eCO2; 800 µmol mol−1). Results showed that under severe K deficiency, pigments, leaf absorption, processes of light and dark reactions, and CO2 diffusion through stomata and mesophyll were down co-regulated with A while light compensation point increased and photorespiration, alternative electron fluxes, and respiration were up-regulated. However, under moderate K deficiency, these traits were well co-regulated with the sustained A without any obvious limitations amid ≈ 50% reduction in leaf K level. Primary mechanism of K limitation to A was either biochemical processes (Lb ≈ 60%) under control and moderate K deficiency or the CO2 diffusion limitations (DL ≈ 70%) with greater impacts of mesophyll than stomatal pathways under severe K deficiency. The eCO2 increased DL while lessened the Lb under K deficiency. Adaptation strategies to severe K deficiency included an enhanced K utilization efficiency (KUE), and reduction of photosystem II excitation pressure by decreasing photosynthetic pigments, light absorption, and photochemical quenching while increasing photorespiration and alternative electron fluxes. The eCO2 also stimulated A and KUE when K deficiency was not severe. Thus, plants responded to K deficiency by a coordinated regulation of photosynthetic processes to optimize A, and eCO2 failed to alleviate the DL in severely K-deficient plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

The CO2 assimilation rate

A G :

Gross CO2 assimilation rate (i.e., A + RdYin)

A Imax :

The A obtained at the Imax beyond which there is no significant change in A

A/C i :

The curve referring to the A response to the Ci

A/PAR:

The curve referring to the A response to PAR

A std :

Standardized A as estimated at ≈ 400 µmol mol−1 Ci

C a :

Ambient or external CO2 concentration

C i :

Sub-stomatal CO2 concentration

C c :

Chloroplastic CO2 concentration

D L :

Diffusional limitation (i.e., Ls + Lm)

\({F^{\prime}_{\text{v}}}/{F^{\prime}_{\text{m}}}\) :

Quantum efficiency by oxidized (open) PSII reaction center in light

g s :

Stomatal conductance

g m :

Mesophyll conductance

J :

Potential rate of electron transport to support NADP + reduction for RuBP regeneration

J Alt :

The alternative electron flux as the proportion of total electron fluxes (i.e., [(JFJG)/JF] × 100)

J F :

Fluorescence-based electron transport rate or total electron flux (i.e., s × PAR × ΦPSII)

J G :

Gas exchange-based electron transport rate (i.e., AG × 4 under NPR)

K:

Potassium

KUE:

Potassium utilization efficiency

I comp :

Light compensation point

I max :

Light saturation point

L s, L m, L b :

Stomatal, mesophyll, and biochemical limitations, respectively

NPR:

Non-photorespiratory conditions (i.e., photosynthetic measurement using 2% O2)

PAR:

Photosynthetically active radiation

PCR:

Photosynthetic carbon reduction

PCO:

Photorespiratory carbon oxidation

PSII:

Photosystem II

q P :

Photochemical quenching

R d :

Dark respiration in the light

R dYin:

Day respiration (i.e., respiratory CO2 release other than by photorespiration) as estimated under NPR condition using Yin et al. (2009, 2011) method

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

Ribulose-1,5-bisphosphate

s :

The parameter referring to the leaf absorptance of incident PAR by photosynthetic pigments and excitation partitioning to PSII

TChl:

Total chlorophyll concentration

TPU :

Triose phosphate utilization

\({V_{{{\text{C}}_{{\text{max}}}}}}\) :

Maximal rate of carboxylation

\({\Phi _{{\text{C}}{{\text{O}}_{\text{2}}}}}\) :

Quantum yield of CO2 fixation (i.e., A + RdYin/PAR)

ΦI200 :

Quantum yield of CO2 fixation at PAR 200 µmol m−2 s−1 (i.e., form the initial slope of the A/PAR curve)

ΦPSII :

Photochemical yield of PSII electron transport rate

References

  • Ahmed FE, Hall AE, Madore MA (1993) Interactive effects of high temperature and elevated carbon dioxide concentration on cowpea (Vigna unguiculata (L.) Walp.). Plant Cell Environ 16:835–842

    Article  CAS  Google Scholar 

  • Andrews AK, Svec LV (1976) Pod and leaf photosynthesis and disease incidence in soybean (Glycine max (L.) Merr.) with potassium fertilization. Commun Soil Sci Plant Anal 7:345–363

    Article  CAS  Google Scholar 

  • Battie-Laclau P, Laclau J-P, Beri C, Mietton L, Muniz MRA, Arenque BC, De Cassia Piccolo M, Jordan-Meille L, Bouillet J-P, Nouvellon Y (2014) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81

    Article  PubMed  CAS  Google Scholar 

  • Bednarz CW, Oosterhuis DM (1999) Physiological changes associated with potassium deficiency in cotton. J Plant Nutr 22:303–313

    Article  Google Scholar 

  • Bednarz CW, Oosterhuis DM, Evans RD (1998) Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot 39:131–139

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220:434–446

    Article  PubMed  CAS  Google Scholar 

  • Bunce J (2002) Sensitivity of infrared water vapor analyzers to oxygen concentration and errors in stomatal conductance. Photosynth Res 71:273–276

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Ciha AJ, Brun WA (1975) Stomatal size and frequency in soybeans. Crop Sci 15:309–313

    Article  Google Scholar 

  • Cooper RB, Blaser RE, Brown RH (1967) Potassium nutrition effects on net photosynthesis and morphology of alfalfa. Soil Sci Soc Am J 31:231–235

    Article  CAS  Google Scholar 

  • Durchan M, Vácha F, Krieger-Liszkay A (2001) Effects of severe CO2 starvation on the photosynthetic electron transport chain in tobacco plants. Photosynth Res 68:203

    Article  PubMed  CAS  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Article  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martínez-Cañellas S, Medrano H (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gerardeaux E, Saur E, Constantin J, Porté A, Jordan-Meille L (2009) Effect of carbon assimilation on dry weight production and partitioning during vegetative growth. Plant Soil 324:329–343

    Article  CAS  Google Scholar 

  • Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanway JJ, Weber CR (1971) N, P, and K percentages in soybean (Glycine max (L.) Merrill) plant parts. Agron J 63:286–290

    Article  CAS  Google Scholar 

  • Hewitt EJ (1952) Sand and Water Culture. Methods used in the study of plant nutrition. Technical Communication No. 22. Commonwealth Bureau of Horticulture and Plantation, East Malling, Maidstone, Kent. Commonwealth Agricultural Bureaux Farmham Royal, Bucks, pp 187–190

  • Huber SC (1984) Biochemical basis for effects of K-deficiency on assimilate export rate and accumulation of soluble sugars in soybean leaves. Plant Physiol 76:424–430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humble GD, Raschke K (1971) Stomatal opening quantitatively related to potassium transport: evidence from electron probe analysis. Plant Physiol 48:447–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge

    Google Scholar 

  • Ivanov A, Hurry V, Sane P, Öquist G, Huner NA (2008) Reaction centre quenching of excess light energy and photoprotection of photosystem II. J Plant Biol 51:85–96

    Article  CAS  Google Scholar 

  • Jákli B, Tavakol E, Tränkner M, Senbayram M, Dittert K (2017) Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. J Plant Physiol 209:20–30

    Article  PubMed  CAS  Google Scholar 

  • Jin SH, Huang JQ, Li XQ, Zheng BS, Wu JS, Wang ZJ, Liu GH, Chen M (2011) Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol 31:1142–1151

    Article  PubMed  CAS  Google Scholar 

  • Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence (ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance). Plant Physiol 110:903–912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larbi A, Abadía A, Abadía J, Morales F (2006) Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth Res 89:113–126

    Article  PubMed  CAS  Google Scholar 

  • Lenka NK, Lal R (2012) Soil-related constraints to the carbon dioxide fertilization effect. Crit Rev Plant Sci 31:342–357

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthesis. Methods Enzymol 148:350–352

    Article  CAS  Google Scholar 

  • Lobo FdA, de Barros MP, Dalmagro HJ, Dalmolin ÂC, Pereira WE, de Souza ÉC, Vourlitis GL, Rodríguez Ortíz CE (2013) Fitting net photosynthetic light-response curves with Microsoft Excel—a critical look at the models. Photosynthetica 51:445–456

    Article  CAS  Google Scholar 

  • Loreto F, Di Marco G, Tricoli D, Sharkey T (1994) Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves. Photosynth Res 41:397–403

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Lu J, Pan Y, Lu P, Li X, Cong R, Ren T (2016a) Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ 39:2428–2439

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Ren T, Pan Y, Li X, Cong R, Lu J (2016b) Differences on photosynthetic limitations between leaf margins and leaf centers under potassium deficiency for Brassica napus L. Sci Rep 6:21725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Q, Scanlan C, Bell R, Brennan R (2013) The dynamics of potassium uptake and use, leaf gas exchange and root growth throughout plant phenological development and its effects on seed yield in wheat (Triticum aestivum) on a low-K sandy soil. Plant Soil 373:373–384

    Article  CAS  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around psi) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Ozbun JL, Volk RJ, Jackson WA (1965) Effect of potassium deficiency on photosynthesis, respiration and the utilization of photosynthetic reductant by immature bean leaves. Crop Sci 5:69–75

    Article  CAS  Google Scholar 

  • Peoples TR, Koch DW (1979) Role of potassium in carbon dioxide assimilation in Medicago sativa L. Plant Physiol 63:878–881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:269–283

    Article  PubMed  CAS  Google Scholar 

  • Prioul JL, Chartier P (1977) Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: a critical analysis of the methods used. Ann Bot 41:789–800

    Article  Google Scholar 

  • Reddy KR, Zhao DL (2005) Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Res 94:201–213

    Article  Google Scholar 

  • Römheld V, Kirkby E (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    Article  PubMed  CAS  Google Scholar 

  • Saxton AM (1998) A macro for converting mean separation output to letter groupings in Proc Mixed. In: Proceedings of the 23rd SAS users group international. SAS Institute, Cary

  • Shabala S (2003) Regulation of potassium transport in leaves: from molecular to tissue level. Ann Bot 92:627–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302

    Article  Google Scholar 

  • Singh SK, Reddy VR (2014) Combined effects of phosphorus nutrition and elevated carbon dioxide concentration on chlorophyll fluorescence, photosynthesis and nutrient efficiency of cotton. J Plant Nutr Soil Sci 177:892–902

    Article  CAS  Google Scholar 

  • Singh SK, Reddy VR (2015) Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: alternative electron sink, nutrient efficiency and critical concentration. J Photochem Photobiol B 151:276–284

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Reddy VR (2016) Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus stressed soybean across CO2. Physiol Plant 157:234–254

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Reddy VR (2017) Potassium starvation limits soybean growth more than the photosynthetic processes across CO2 levels. Front Plant Sci 8:991

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Badgujar G, Reddy VR, Fleisher DH, Bunce JA (2013) Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J Plant Physiol 170:801–813

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Reddy VR, Fleisher HD, Timlin JD (2014) Growth, nutrient dynamics, and efficiency responses to carbon dioxide and phosphorus nutrition in soybean. J Plant Int 9:838–849

    CAS  Google Scholar 

  • Singh SK, Reddy VR, Sharma MP, Agnihotri R (2015) Dynamics of plant nutrients, utilization and uptake, and soil microbial community in crops under ambient and elevated carbon dioxide. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 381–399

    Chapter  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2014) Plant physiology and development. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Van Kooten O, Snel FHJ (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA (2003) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ 26:1215–1227

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894:198–208

    Article  CAS  Google Scholar 

  • Weng X-Y, Zheng C-J, Xu H-X, Sun J-Y (2007) Characteristics of photosynthesis and functions of the water–water cycle in rice (Oryza sativa) leaves in response to potassium deficiency. Physiol Plant 131:614–621

    Article  PubMed  CAS  Google Scholar 

  • Yi X-P, Zhang Y-L, Yao H-S, Zhang X-J, Luo H-H, Gou L, Zhang W-F (2014) Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages. Funct Plant Biol 41:737–747

    Article  CAS  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PEL, Vos JAN (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM, Bednarz CW (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Darryl Baxam (Engineering Technician) and Jackson Fisher (Biological Science) for the help in maintaining the growth chambers and measurements, and Ms. Mariam Manzoor and Shruti Bhatt (undergraduate students) for providing assistance during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shardendu K. Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 121 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Reddy, V.R. Co-regulation of photosynthetic processes under potassium deficiency across CO2 levels in soybean: mechanisms of limitations and adaptations. Photosynth Res 137, 183–200 (2018). https://doi.org/10.1007/s11120-018-0490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0490-3

Keywords

Navigation