Skip to main content

Impact of Ozone on Trees: an Ecophysiological Perspective

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 64))

Abstract

Photooxidants have been recognized since the 1950s as gaseous agents that are potentially harmful to plants (Lefohn 1992). Early observations in the Los Angeles area had established links between vegetation damage and high photooxidant levels which were generated, in the presence of sunlight, from photochemical reactions of nitrogen oxides and organic compounds (as released from industrial and other anthropogenic sources into the atmosphere, Middleton et al. 1950; Haagen-Smit et al. 1952). Studies on tobacco then clarified that the typical spot-like visible symptoms were due to the 03 component of photochemical smog (Heggestad and Middleton 1959). During recent decades, high 03 regimes have spread across most major urban areas around the world, and enhanced 03 concentrations are encountered even in rural regions (Stockwell et al. 1997). Towards the beginning of the twenty-first century, ozone has become a pollutant of great concern, regarding its impact on trees and forests, although the role of this agent in forest decline of the eastern USA and Europe has remained controversial (Matyssek and Innes 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MB, Ewards NT, Taylor GE, Skaggs BL (1990) Whole-plant carbon-14 photosyn-thate allocation in Pinus taeda, seasonal patterns at ambient and elevated ozone levels. Can J For Res 20:152–158

    Article  Google Scholar 

  • Alscher RG, Amundson RG, Cumming JR, Fellows S, Fincher J, Rubin G, Van Leuken P, Weinstein LH (1989) Seasonal changes in pigments, carbohydrates and growth of red spruce as affected by ozone. New Phytol 113:211–223

    Article  CAS  Google Scholar 

  • Andersen CP, Rygiewicz PT (1991) Stress interactions and mycorrhizal plant response: understanding carbon allocation priorities. Environ Pollut 73:217–244

    Article  PubMed  CAS  Google Scholar 

  • Andersen CP, Scagel CF (1997) Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol 17:377–387

    Article  PubMed  CAS  Google Scholar 

  • Andersen CP, Hogsett WE, Wessling R, Piocher M (1991) Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure. Can J For Res 21:1288–1291

    Article  CAS  Google Scholar 

  • Andersen CP, Wilson R, Piocher M, Hogsett WE (1997) Carry-over effects of ozone on root growth and carbohydrate concentrations of ponderosa pine seedlings. Tree Physiol 17:805–811

    Article  PubMed  CAS  Google Scholar 

  • Anttonen S, Kittilä M, Kärenlampi L (1998) Impacts of ozone on Aleppo pine needles: visible symptoms, starch concentrations and stomatal responses. Chemosphere :663–668

    Google Scholar 

  • Arndt U, Seufert G (1990) Introduction to the Hohenheim long-term experiment. Environ Pollut 68:195–204

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi DD (1993) Scaling water vapor and carbon dioxide exchange from leaves to a canopy: rules and tools. In: Ehleringer JR, Field CB (eds) Scaling physiological processes, leaf to globe. Academic Press, San Diego, pp 77–114

    Chapter  Google Scholar 

  • Barbo DN, Chappelka AH, Somers GL, Miller-Goodman MS, Stolte K (1998) Diversity of an early successional plant community as influenced by ozone. New Phytol 138:653–662

    Article  CAS  Google Scholar 

  • Barnes JD, Eamus D, Brown KA (1990a) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst). I. Plant-water relations. New Phytol 114:713–720

    Article  CAS  Google Scholar 

  • Barnes JD, Eamus D, Brown KA (1990b) The influence of ozone, acid mist and soil nutrient status on Norway spruce (Picea abies (L.) Karst). II. Photosynthesis, dark respiration and soluble carbohydrates of trees during late autumn. New Phytol 115:149–156

    Article  CAS  Google Scholar 

  • Barnes JD, Pfirrmann T, Steiner K, Lütz C, Busch U, Küchenhoff H, Payer H-D (1995) Effects of elevated C02, 03, and K deficiency on Norway spruce (Picea abies [L.] Karst.)-IL Seasonal changes in photosynthesis and non-structural carbohydrate content. Plant Cell Environ 18:1345–1357

    Article  CAS  Google Scholar 

  • Baumbach G, Baumanri K (1989) Ozone in forest stands — examinations to its occurrence and degradation. In: Georgii HW (ed) Mechanisms and effects of pollutant-transfer into forests. Kluwer, Dordrecht, pp 37–44

    Chapter  Google Scholar 

  • Baumgarten M, Werner H, Häberle K-H, Emberson LD, Fabian P, Matyssek R (2000) Seasonal ozone response of mature beech trees (Fagus sylvatica) at high altitude in the Bavarian Forest (Germany) in comparison with young beech grown in the field and in phytotrons. Environ Pollut 109:431–442

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz FA (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 1–38

    Chapter  Google Scholar 

  • Bennett JP, Rassat P, Berrang P, Karnosky DF (1992) Relationships between leaf anatomy and ozone sensitivity of Fraxinus pennsylvanica Marsh, and Prunus serotina Ehrh. Environ Exp Bot 32:33–41

    Article  CAS  Google Scholar 

  • Berrang P, Karnosky DF, Bennett JP (1989) Natural selection for ozone tolerance in Populus tremuloides: field verification. Can J For Res 19:519–522

    Article  CAS  Google Scholar 

  • Berrang P, Karnosky DF, Bennett JP (1991) Natural selection for ozone tolerance in Populus tremuloides: an evaluation of nation-wide trends. Can J For Res 21:1091–1097

    Article  Google Scholar 

  • Beyers JL, Riechers GH, Temple PJ (1992) Effects of long-term ozone exposure and drought on the photosynthetic capacity of ponderosa pine (Pinus ponderosa Laws.). New Phytol 122:81–90

    Article  CAS  Google Scholar 

  • Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant response to ozone. New Phytol 151:413–425

    Article  CAS  Google Scholar 

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    Article  CAS  Google Scholar 

  • Bode W (ed) (1997) Naturnahe Waldwirtschaft. Prozeßschutz oder biologische Nachhal-tigkeit? Deukalion, Holm, pp 396

    Google Scholar 

  • Bond JB (2000) Age-related changes in photosynthesis of woody plants. Trends Plant Sci Rev 5:349–353

    Article  CAS  Google Scholar 

  • Bonello P, Heller W, Sandermann H (1993) Ozone effects on root-disease susceptibility and defence responses in mycorrhizal and non-mycorrhizal seedlings of Scots pine (Pinus sylvestris L.). New Phytol 124:653–663

    Article  CAS  Google Scholar 

  • Border K, Ceulemans R, Temmermann de L (2000) Effects of ozone exposure on growth and photosynthesis of beech seedlings (Fagus sylvatica). New Phytol 146:271–280

    Article  Google Scholar 

  • Bortier K, Dekelver G, Temmermann de L, Ceulemans R (2001) Stem injection of Populus nigra with EDU to study ozone effects under field conditions. Environ Pollut 111:199–208

    Article  PubMed  CAS  Google Scholar 

  • Brantley EA, Anderson RL, Smith G (1994) How to identify ozone injury on eastern forest bioindicator plants. Protection Report R8-PR 25, US Department of Agriculture Forest Service, Southern Region and Northeastern Area, Asheville, NC, and Durham, NH, p 2

    Google Scholar 

  • Broadmeadow MSJ, Jackson SB (2000) Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytol 146:437–451

    Article  CAS  Google Scholar 

  • Broadmeadow MSJ, Heath J, Rändle TJ (1999) Environmental limitations to 03 uptake-some key results from young trees growing at elevated C02 concentrations. Water Air Soil Pollut 116:299–310

    Article  CAS  Google Scholar 

  • Cape JN, Fowler D, Eamus D, Murray MB, Sheppard LJ, Leith ID (1990) Effects of acid mist and ozone on frost hardiness of Norway spruce seedlings. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research report 26. CEC DG XII, Brussels, pp 331–335

    Google Scholar 

  • Ceulemans R, Janssens IA, Jach ME (1999) Effects of C02 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann Bot 84:577–590

    Article  CAS  Google Scholar 

  • Chameideis WL, Fehsenfeid F, Rodgers MO, Cardelino C, Martinez J, Parrish D, Lonneman W, Lawson DR, Rasmussen RA, Zimmerman P, Greenber GJ, Middleton P, Wang T (1992) Ozone precursor relationships in the ambient atmosphere. J Geophys Res 97:6037–6055

    Article  Google Scholar 

  • Chappelka AH, Chevone BI (1992) Tree response to ozone. In: Lefohn AS (ed) Surface level ozone exposures and their effects on vegetation. Lewis, Chelsea, MI, pp 271–324

    Google Scholar 

  • Chappelka AH, Samuelson LJ (1998) Ambient ozone effects on forest trees of the eastern United States: a review. New Phytol 139:91–108

    Article  CAS  Google Scholar 

  • Chappelka AH, Kush JS, Meldahl RS, Lockaby BG (1990) An ozone-low temperature interaction in loblolly pine (Pinus taeda L.). New Phytol 114:721–726

    Article  CAS  Google Scholar 

  • Chappelka AH, Renfro J, Somers G, Nash B (1997) Evaluation of ozone injury on foliage of black cherry (Prunus serotina) and tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park. Environ Pollut 95:13–18

    Article  PubMed  CAS  Google Scholar 

  • Chappelka A, Somers G, Renfro J (1999a) Visible ozone injury on forest trees in Great Smokey Mountains National Park, USA. Water Air Soil Pollut 116:255–260

    Article  CAS  Google Scholar 

  • Chappelka A, Skelly J, Somers G, Renfro J, Flildebrand E (1999b) Mature black cheny used as a bioindicator of ozone injury. Water Air Soil Pollut 116:261–266

    Article  CAS  Google Scholar 

  • Chiron H, Drouet A, Claudot A-C, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann H Jr (2000a) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745

    Article  PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, Payer H-D, Ernst D, Sandermann H Jr (2000b) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872

    Article  PubMed  CAS  Google Scholar 

  • Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM (1999) Dissection of the ozone-induced calcium signature. Plant J 17:575–579

    Article  PubMed  CAS  Google Scholar 

  • Coe H, Gallagher MW, Choularton TW, Dore C (1995) Canopy scale measurements of stomatal and cuticular 03 uptake by Sitka spruce. Atmos Environ 29:1413–1423

    Article  CAS  Google Scholar 

  • Coleman MD, Dickson RE, Isebrands JG, Karnosky DF (1995) Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone. Tree Physiol 15:721–726

    Article  Google Scholar 

  • Constable JVH, Taylor GE Jr (1997) Modeling the effects of elevated tropospheric 03 on two varieties of Pinus ponderosa. Can J For Res 27:527–537

    Article  CAS  Google Scholar 

  • Dahlsten DL, Rowney DL, Kickert RN (1997) Effects of oxidant air pollutants on western pine beetle (Coleoptera, Scolytidae) populations in southern California. Environ Pollut 96:415–423

    Article  PubMed  CAS  Google Scholar 

  • Damesin C, Rambal S (1995) Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought. New Phytol 131:159–167

    Article  Google Scholar 

  • Davies TD, Schuepbach E (1994) Episodes of high ozone concentrations at the Earth’s surface resulting from transport down from the upper troposphere/lower stratosphere: a review and case studies. Atmos Environ 28:53–68

    Article  CAS  Google Scholar 

  • Davis DD, Skelly JM (1992) Foliar sensitivity of eight eastern hardwood tree species to ozone. Water Air Soil Pollut 62:269–277

    Article  CAS  Google Scholar 

  • Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139:135–151

    Article  CAS  Google Scholar 

  • Dawson TE, Ehleringer JR (1993) Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo. Ecology 74:798–815

    Article  Google Scholar 

  • Dawson TE (1996) Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: the role of tree size and hydraulic lift. Tree Physiol 16:263–272

    Article  PubMed  Google Scholar 

  • Dickson RE, Isebrands JG (1991) Leaves as regulators of stress response. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 4–34

    Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Article  CAS  Google Scholar 

  • Drogoudi PD, Ashmore MR (2000) Does elevated ozone have differing effects in flowering and deblossomed strawberry? New Phytol 147:561–569

    Article  CAS  Google Scholar 

  • Duckmanton L, Widden P (1994) Effect of ozone on the development of vesicular-arbuscular mycorrhizae in sugar maple saplings. Mycologia 86:181–186

    Article  CAS  Google Scholar 

  • Edwards GS, Pier PA, Kelly JM (1990) Influence of ozone and soil magnesium status on the cold hardiness of loblolly pine (Pinus taeda L.) seedlings. New Phytol 115:157–164

    Article  CAS  Google Scholar 

  • Edwards NT (1991) Root and soil respiration réponses to ozone in Pinus taeda L. seedlings. New Phytol 118:315–322

    Article  CAS  Google Scholar 

  • Einig W, Lauxmann U, Hauch B, Hampp R, Landolt W, Maurer S, Matyssek R (1997) Ozone-induced accumulation of carbohydrates changes enzyme activities of carbohydrate metabolism in birch leaves. New Phytol 137:673–680

    Article  CAS  Google Scholar 

  • Ellsworth DS, Reich PB (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  Google Scholar 

  • Emberson LD, Wieser G, Ashmore MR (2000a) Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environ Pollut 109:393–402

    Article  PubMed  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen J-P (2000b) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  PubMed  CAS  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, Tienhoven van M, Bauer de LI, Domingos M (2001) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    Article  CAS  Google Scholar 

  • Enders G, Teichmann U, Kramm G (1989) Profiles of ozone and surface layer parameters over a mature spruce stand. In: Georgii HW (ed) Mechanisms and effects of pollutanttransfer into forests. Kluwer, Dordrecht, pp 21–35

    Chapter  Google Scholar 

  • Ericsson T, Rytter L, Vapaavuori E (1996) Physiology and allocation in trees. Biomass Bioenergy 11:115–127

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fink S (1989) Pathological anatomy of conifer needles subjected to gaseous air pollutants or mineral deficiencies. Aquilo Ser Bot 27:1–6

    Google Scholar 

  • Flagler RB (1998) Recognition of air pollution injury to vegetation: a pictorial atlas. AandWMA, Pittsburgh

    Google Scholar 

  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstienra J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

    Article  CAS  Google Scholar 

  • Fowler D, Flechard C, Cape JN, Storton-West RL, Coyle M (2001) Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water Air Soil Pollut 130:63–74

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. In: Pell E, Steffen K (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, pp 131–144

    Google Scholar 

  • Fredericksen TS, Joyce BJ, Skelly JM, Steiner KC, Kolb TE, Kouterick KB, Savage JE, Snyder KR (1995) Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees. Environ Pollut 89:273–283

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen TS, Skelly JM, Steiner KC, Kolb TE, Kouterick KB (1996a) Size-mediated foliar response to ozone in black cherry trees. Environ Pollut 91:53–63

    Article  PubMed  CAS  Google Scholar 

  • Fredericksen TS, Skelly JM, Snyder KR, Steiner KC, Kolb TE (1996b) Predicting ozone uptake from meteorological and environmental variables. J Air Waste Manage Assoc 46:464–469

    CAS  Google Scholar 

  • Frey B, Scheidegger C, Günthardt-Goerg MS, Matyssek R (1996) The effects of ozone and nutrient supply on stomatal response in birch (Betula pendula) leaves as determined by digital image-analysis and X-ray microanalysis. New Phytol 132:135–143

    Article  CAS  Google Scholar 

  • Friend AL, Tomlinson PT (1992) Mild ozone exposure alters 14C dynamics in foliage of Pinus taeda L. Tree Physiol 11:214–227

    Article  Google Scholar 

  • Fuhrer J, Achermann B (1994) Critical levels for ozone. UN-ECE Workshop Report, Liebefeld-Bern

    Google Scholar 

  • Fuhrer J, Achermann B (1999) Critical levels for ozone — level II. Environmental documentation 115. Swiss Agency for the Environment, Forests and Landscape, Berne, Switzerland

    Google Scholar 

  • Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106

    Article  PubMed  CAS  Google Scholar 

  • Gehring CA, Cobb NS, Whitman TG (1997) Three way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Am Nat 149:824–841

    Article  PubMed  CAS  Google Scholar 

  • Gérant D, Podor M, Grieu P, Afif D, Cornu S, Morabito D, Banvoy J, Robin C, Dizengremel P (1996) Carbon metabolism, enzyme activities and carbon partitioning in Pinus halepensis Mill, to mild drought and ozone. J Plant Physiol 148:142

    Article  Google Scholar 

  • Gielen B, Calfapietra C, Ceulemans R (2001) Effects of elevated C02 on crown structure, leaf area and growth of poplar genotypes in the POPFACE experiment. Proceedings of the 19th International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems, Houghton, USA

    Google Scholar 

  • Gimeno BS, Velissariou D, Barnes JD, Inclan R, Peña JM, Davison AW (1992) Danos visibles por ozono en acículas de Pinus halepensis Mill, en Grecia y España. Ecología 6:131–134

    Google Scholar 

  • Götz B (1996) Ozon und Trockenstreß, Wirkungen auf den Gaswechsel von Fichte. Libri Botanici Bd. 16. IHW-Verlag, Eching, pp 149

    Google Scholar 

  • Gorissen I, Joosten SS, Smeulders SM, Vanveen JA (1994) Effects of short-term ozone exposure and soil water availability on the carbon partitioning of juvenile Douglas fir. Tree Physiol 14:647–657

    Article  PubMed  CAS  Google Scholar 

  • Grams TEE, Matyssek R (1999) Elevated C02 counteracts the limitation by chronic ozone exposure on photosynthesis in Fagus sylvatica L.: comparison between chorophyll fluorescence and leaf gas exchange. Phyton 39:31–40

    CAS  Google Scholar 

  • Grams TEE, Anegg S, Häberle K-H, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated C02 and 03 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107

    Article  CAS  Google Scholar 

  • Grams TEE, Kozovits AR, Reiter IM, Winkler JB, Sommerkorn M, Blaschke H, Häberle K-H, Matyssek R (2002) Quantifying competitiveness in woody plants. Plant Biol 4:153–158

    Article  Google Scholar 

  • Gravano E, Ferretti M, Bussotti F, Grossoni P (1999) Foliar symptoms and growth reduction of Ailanthus altissima Dest. in an area with high ozone and acidic deposition in Italy. Water Air Soil Pollut 116:267–272

    Article  CAS  Google Scholar 

  • Greitner CS, Winner WE (1989) Nutrient effects on responses of willow and alder to ozone. In: Olson RK, Lefohn AS (eds) Transaction: effects of air pollution on western forests. Air and Waste Management Association, Anaheim, CA, pp 493–511

    Google Scholar 

  • Greitner CS, Pell EJ, Winner WE (1994) Analysis of aspen foliage exposed to multiple stresses: ozone, nitrogen deficiency and drought. New Phytol 127:579–589

    Article  CAS  Google Scholar 

  • Grennfelt P, Beck JP (1994) Ozone concentrations in Europe in relation to different concepts of the critical levels. In: Fuhrer J, Achermann B (eds) Critical levels for ozone: a UN-ECE workshop report. Schriftenreihe der F AC Liebefeld, 184–194. Swiss Federal Research Station for Agricultural Chemistry, Liebefeld-Bern

    Google Scholar 

  • Grünhage L, Krause GHM, Köllner B, Bender J, Weigel H-J, Jäger H-J, Guderian R (2001) A new flux-orientated concept to derive critical levels for ozone to protect vegetation. Environ Pollut 111:355–362

    Article  PubMed  Google Scholar 

  • Grulke NE, Balduman L (1999) Deciduous conifers: high N deposition and 03 exposure effects on growth and biomass allocation in Ponderosa pine. Water Air Soil Pollut 116:235–248

    Article  CAS  Google Scholar 

  • Grulke NE, Miller PR (1994) Changes in gas exchange characteristics during the life span of giant sequoia — implications for response to current and future concentrations of atmospheric ozone. Tree Physiol 14:659–668

    Article  PubMed  CAS  Google Scholar 

  • Grulke NE, Retzlaff WA (2001) Changes in physiological attributes of ponderosa pine from seedlings to mature trees. Tree Physiol 21:275–286

    Article  PubMed  CAS  Google Scholar 

  • Guderian R (1985) Air pollution by photochemical oxidants, formation, transport, control, and effects on plants. Ecological studies 52. Springer, Berlin Heidelberg New York, pp 346

    Google Scholar 

  • Günthardt-Goerg MS, Matyssek R, Scheidegger C, Keller T (1993) Differentiation and structural decline in the leaves and bark of birch (Betula pendula) under low ozone concentration. Trees 7:104–114

    Article  Google Scholar 

  • Günthardt-Goerg MS, McQuattie CJ, Scheidegger C, Rhiner C, Matyssek R (1997) Ozoneinduced cytochemical and ultrastructural changes in leaf mesophyll cell walls. Can J For Res 27:453–463

    Article  Google Scholar 

  • Günthardt-Goerg MS, Maurer S, Frey B, Matyssek R (1998) Birch leaves from trees grown in two fertilization regimes: diurnal and seasonal responses to ozone. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys Publishers, Leiden, Netherlands, pp 315–318

    Google Scholar 

  • Günthardt-Goerg MS, Maurer S, Bolliger J, Clark AJ, Landolt W, Bucher JB (1999) Responses of young trees (five species in a chamber exposure) to near-ambient ozone concentrations. Water Air Soil Pollut 116:323–332

    Article  Google Scholar 

  • Günthardt-Goerg MS, McQuattie CJ, Maurer S, Frey B (2000) Visible and microscopic injury in leaves of five deciduous tree species related to current critical ozone levels. Environ Pollut 109:489–500

    Article  PubMed  Google Scholar 

  • Haagen-Smit AJ, Darley EF, Zaitlin M, Hull H, Nobel WM (1952) Investigation of injury to plants from air pollution in the Los Angeles area. Plant Physiol 27:18–34

    Article  PubMed  CAS  Google Scholar 

  • Häberle K-H, Werner H, Fabian P, Pretzsch H, Reiter I, Matyssek R (1999) “Free-air” ozone fumigation of mature forest trees: a concept for validating AOT40 under stand conditions. In: Fuhrer J, Achermann B (eds) Critical level for ozone — level II. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne, pp 133–137

    Google Scholar 

  • Hättenschwieler S, Schweingruber FH, Körner C (1996) Tree ring responses to elevated C02 and increased N deposition in Picea abies. Plant Cell Environ 19:1369–1378

    Article  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sei USA 98:753–758

    Article  CAS  Google Scholar 

  • Hanisch B, Kilz E (1990) Monitoring of forest damage. Ulmer, Stuttgart, 334 pp

    Google Scholar 

  • Hanson PJ, Samuelson LJ, Wullschleger SD, Tabberer TA, Edwards GS (1994) Seasonal patterns of light-saturated photosynthesis and leaf conductance for mature and seedling Quercus rubra L. foliage: differential sensitivity to ozone exposure. Tree Physiol 14:1351–1366

    Article  PubMed  CAS  Google Scholar 

  • Hartmann G, Nienhaus F, Butin H (1995) Farbatlas Waldschäden, Diagnose von Baumkrankheiten. Ulmer, Stuttgart, pp 288

    Google Scholar 

  • Havranek WM, Wieser G (1994) Design and testing of twig chambers for ozone fumigation and gas exchange measurements in mature trees. Proc R Soc Edinb Sect B 102:541–546

    Google Scholar 

  • Heath RL (1980) Initial events in injury to plants by air pollutants. Annu Rev Plant Physiol 31:395–401

    Article  CAS  Google Scholar 

  • Heath RL, Taylor GE (1997) Physiological processes and plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 317–368

    Google Scholar 

  • Heggestad HE, Middleton JT (1959) Ozone in high concentrations as cause of tobacco leaf injury. Science 129:208–210

    Article  PubMed  CAS  Google Scholar 

  • Heiden AC, Hoffmann T, Kahl J, Kley D, Klockow D, Langebartels C, Mehlhorn H, Sandermann H, Schraudner M, Schuh G, Wildt J (1999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167

    Article  Google Scholar 

  • Hendrey GR, Lewin KF, Kolb ERZ, Evans LS (1992) Controlled enrichment system for experimental fumigation of plants in the field with sulfur dioxide. J Air Waste Manage Assoc 42:1324–1327

    CAS  Google Scholar 

  • Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric C02. Global Change Biol 5:293–309

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Houpis JL, Costella MP, Cowles S (1991) A branch exposure chamber for fumigating ponderosa pine to atmospheric pollution. J Environ Qual 20:467–474

    Article  Google Scholar 

  • Houpis JLJ, Anderson PD, Pushnik JC, Anschel DJ (1999) Among-provenance variability of gas exchange and growth in response to long-term C02 exposure. Water Air Soil Pollut 116:403–412

    Article  CAS  Google Scholar 

  • LIubbard RM, Bond BJ, Ryan MG (1999) Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiol 19:165–172

    Article  Google Scholar 

  • Inclan R, Ribas A, Penuelas J, Gimeno BS (1999) The relative sensitivity of different Mediterranean plant species to ozone exposure. Water Air Soil Pollut 116:273–277

    Article  CAS  Google Scholar 

  • Innes JL, Ghosh S, Dobbertin M, Rebetez M, Zimmermann S (1997) Kritische Belastungen und die Sanasilva-Inventur. Forum für Wissen 1997. Eidg. Forschungsanstalt Wald, Schnee Landschaft, Birmensdorf, pp 73–83

    Google Scholar 

  • Innes JL, Skelly JM, Schaub M (2001) Ozone and broadleaved species — a guide to the identification of ozone-induced foliar injury. Flück-Wirth, Teufen, Switzerland, pp 136

    Google Scholar 

  • Kärenlampi L (1999) Small decrease in assimilation rate can result in considerable loss of yield — tentative long-term model calculations on the impact of ozone on Silver Birch plantation. In: Fuhrer J, Achermann B (eds) Critical level for ozone — level II. Environmental documentation No. 115. SAEFL, Berne, Switzerland, pp 150–156

    Google Scholar 

  • Kärenlampi L, Skärby L (1996) Critical levels for ozone in Europe: testing and finalizing the concepts. University of Kuopio, Kuopio

    Google Scholar 

  • Karlsson PE, Medin E-L, Wickström H, Selldén G, Wallin G, Ottoson S, Skärby L (1995) Ozone and drought stress: interactive effects on the growth and physiology of Norway spruce (Picea abies L. Karst.). Water Air Soil Pollut 85:1325–1330

    Article  CAS  Google Scholar 

  • Karlsson PE, Pleijel H, Karlsson GP, Medin EL, Skärby L (2000) Simulations of stomatal conductance and ozone uptake to Norway spruce saplings in open-top chambers. Environ Pollut 109:443–451

    Article  PubMed  CAS  Google Scholar 

  • Karnosky DF (1981) Changes in eastern white pine stands related to air pollution stress. Mitt Forstl Bundes-Versuchsanst Wien 137:41–45

    CAS  Google Scholar 

  • Karnosky DF, Gagnon ZE, Dickson RE, Coleman MD, Lee EH, Isebrands JG (1996) Changes in growth, leaf abscision, and biomass associated with seasonal tropospheric ozone exposure of Populus tremuloides clones and seedlings. Can J For Res 26:23–37

    Article  CAS  Google Scholar 

  • Karnosky DF, Mankovska B, Percy K, Dickson DE, Podila GK, Sober A, Noormets G, Hendrey MD, Coleman M, Kubiske M, Pregitzer KS, Isebrands JG (1999) Effects of tropospheric 03 on trembling aspen and interaction with C02: results from a 03 gradient and a FACE experiment. Water Air Soil Pollut 116:311–322

    Article  CAS  Google Scholar 

  • Karnosky DE, Oksanen E, Dickson RE, Isebrands JG (2001a) Impacts of interacting greenhouse gases on forest ecosystems. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, Wallingford, UK, pp 253–267

    Chapter  Google Scholar 

  • Karnosky DF, Gielen B, Ceulemans R, Schlesinger WH, Norby RJ, Oksanen E, Matyssek R, Hendrey GR (2001b) FACE systems for studying the impacts of greenhouse gases on forest ecosystems. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, Wallingford, UK, pp 297–324

    Chapter  Google Scholar 

  • Karpinski S, Karpinska B, Meitzer M, Hällgren J-E, Wingsle G (2001) Signalling and antioxidant defence mechanisms in higher plants. In: Huttunen S, Heikkilä H, Bucher J, Sundberg B, Jarvis P, Matyssek R (eds) Trends in European forest tree physiology research. Kluwer, Dordrecht, pp 93–114

    Google Scholar 

  • Keller T, Häsler R (1987) The influence of a fall fumigation with ozone on the stomatal behavior of spruce and fir. Oecologia 64:284–286

    Article  Google Scholar 

  • Kellomäki S, Wang K-Y (1998a) Daily and seasonal C02 changes in Scots pine grown under elevated 03 and C02: experiment and stimulation. Plant Ecol 136:229–248

    Article  Google Scholar 

  • Kellomäki S, Wang K-Y (1998b) Growth, respiration and nitrogen content in needle of Scots pine exposed to elevated ozone and carbon dioxide in the field. Environ Pollut 101:263–274

    Article  PubMed  Google Scholar 

  • Kelly JM, Taylor GE Jr, Edwards NT, Adams MB, Edwards GS, Friend AL (1993) Growth, physiology, and nutrition of loblolly pine seedlings stressed by ozone and acid precipitation: a summary of the ROPIS-south project. Water Air Soil Pollut 69:363–391

    Article  CAS  Google Scholar 

  • Kelly JM, Samuelson L, Edwards G, Hanson P, Kelting D, Mays A, Wullschleger S (1995) Are seedlings reasonable surrogates for trees? An analysis of ozone impacts on Quercus rubra. Water Air Soil Poll 85:1317–1324

    Article  CAS  Google Scholar 

  • Kolb TE (2001) Ageing as an influence on tree response to ozone: theory and observations. In: Huttunen S, Fläkkela H, Bucher JB, Sundberg B, Jarvis P, Matyssek R (eds) Trends in European forest tree physiology research. Kluwer, Dordrecht, pp 127–155

    Google Scholar 

  • Kolb TE, Matyssek R (2001) Limitations and perspectives about scaling ozone impact in trees. Limitations and perspectives. Environ Pollut 115:373–393

    Article  CAS  Google Scholar 

  • Kolb TE, Stone JE (2000) Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest. Tree Physiol 20:1–12

    Article  PubMed  Google Scholar 

  • Kolb TE, Fredericksen TS, Steiner KC, Skelly JM (1997) Issues in scaling tree size and age responses to ozone: a review. Environ Pollut 98:195–208

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants. Academic Press, New York, 411 pp

    Google Scholar 

  • Küppers M (1994) Canopy gaps: competitive light interception and economic space filling — a matter of whole-plant allocation. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants — ecophysiological processes above-and below-ground. Academic Press, San Diego, pp 111–144

    Google Scholar 

  • Kull O, Sober A, Coleman MD, Dickson RE, Isebrands JG, Gagnon Z, Karnosky DF (1996) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and C02. Can J For Res 26:639–648

    Article  CAS  Google Scholar 

  • Kytöviita M-M, Pell Oux J, Fontaine V, Botton B, Dizengremel P (1999) Elevated C02 does not amerliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Planta 106:370–377

    Article  Google Scholar 

  • Laisk A, Kull O, Moldau H (1989) Ozone concentration in leaf intercellular air spaces is close to zero. Plant Physiol 90:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Landolt W, Lüthy-Krause B (1991) Wirkungen umweltrelevanter Ozon-Konzentrationen auf verschiedene Pflanzen. In: Stark L (ed) Luftschadstoffe und Wald — Lufthaushalt, Luftverschmutzung und Waldschäden in der Schweiz, vol 5. Verlag der Fachvereine Zürich, Zürich, pp 127–134

    Google Scholar 

  • Landolt W, Pfenninger I, Lüthy-Krause B (1989) The effect of ozone and season on the pool sizes of cyclitols in Scots pine (Pinus sylvestris). Trees 3:85–88

    Article  Google Scholar 

  • Landolt W, Günthardt-Goerg MS, Pfenninger I, Einig W, Hampp R, Maurer S, Matyssek R (1997) Effect of fertilization on ozone-induced changes in the metabolism of birch leaves (Betula pendula). New Phytol 137:389–397

    Article  CAS  Google Scholar 

  • Lange BM, Trost M, Heller W, Langebartels C, Sandermann H Jr (1994) Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.) Planta 194:143–148

    Article  CAS  Google Scholar 

  • Langebartels C, Heller W, Kerner K, Leonardi S, Rosemann D, Schraudner M, Trost M, Sandermann H (1990) Ozone-induced defense reactions in plants. In: Payer HD, Pfirrmann T, Mathy P (eds) Environmental research with plants in closed chambers. Air pollution research report 26. CEC DG XII, Brussels, pp 358–368

    Google Scholar 

  • Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H Jr (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer, Berlin Heidelberg New York, pp 163–200

    Chapter  Google Scholar 

  • Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann H Jr (1998) Memory effects in the action of ozone on conifers. Ecotox Environ Safety 41:62–72

    Article  CAS  Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2001) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Harwood Acad Publ, Amsterdam, pp 105–135

    Google Scholar 

  • Laurence JA, Amundson RG, Friend AL, Pell EJ, Temple PJ (1994) Allocation of carbon in plants under stress: an analysis of the ROPIS experiment. J Environ Qual 23:412–417

    Article  Google Scholar 

  • Laurence JA, Retzlaff WA, Kern JS, Lee EH, Hogsett WE, Weinstein DA (2001) Predicting the regional impact of ozone and precipitation on the growth of loblolly pine and yellow-poplar using linked TREGRO and ZELIG models. For Ecol Manage 146:247–263

    Article  Google Scholar 

  • Laurila T, Tuovinen J-P (1996) Monitored data in relation to exceedances of AOT40. In: Fuhrer J, Achermann B (eds) Critical levels for ozone: a UN-ECE workshop report. Schriftenreihe der FAC Liebefeld, 115–124. Swiss Federal Research Station for Agricultural Chemistry, Liebefeld-Bern

    Google Scholar 

  • Lefohn AS (1992) Surface level ozone exposure and their effects on vegetation. Lewis Publishers, Chelsea, USA, pp 366

    Google Scholar 

  • Lefohn AS, Jones CK (1986) The characterization of ozone and sulfur dioxide air quality data for assessing possible vegetation effects. J Air Pollut Control Assoc 36:1123–1129

    Article  CAS  Google Scholar 

  • Leipner J, Oxborough K, Baker NR (2001) Primary sites of ozone-induced perturbations of photosynthesis in leaves: identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. J Exp Bot 52:1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Lerdau M, Gershenzon J (1997) Allocation theory and chemical defense. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 265–277

    Chapter  Google Scholar 

  • Lewin KF, Hendrey GR, Nagy J, McMorte RL (1994) Design and application of a free-air carbon dioxide enrichment facility. Agric For Meteorol 70:15–29

    Article  Google Scholar 

  • Lippert M, Steiner K, Payer H-D, Simons S, Langebartels C, Sandermann H Jr (1996) Assessing the impact of ozone on photosynthesis of European beech (Fagus sylvatica L.) in environmental chambers. Trees 10:268–275

    Google Scholar 

  • Lock J, Price AH (1994) Evidence that disruption of cytosolic calcium is critically important in oxidative plant stress. Proc R Soc Edinb Sect B Biol Sci 102:261–264

    Google Scholar 

  • Lu C, Zhang J (1998) Changes in PSII function during senescence of wheat leaves. Physiol Plant 104:239–247

    Article  CAS  Google Scholar 

  • Lucas PW, Wolfenden J (1996) The role of plant hormones as modifiers of sensitivity to air pollutants. Phyton 36:51–56

    Google Scholar 

  • Lüthy-Krause B, Pfenninger I, Landolt W (1990) Effects of ozone on organic acids in needles of Norway spruce and Scots pine. Trees 4:198–204

    Google Scholar 

  • Lütz C, Anegg S, Gérant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Planta 109:252–259

    Article  Google Scholar 

  • Mahoney MJ, Chevone BI, Skelly JM, Moore LD (1985) Influence of mycorrhizae on the growth of loblolly pine Pinus taeda seedlings exposed to ozone and sulphur dioxide. Phytopathology 75:679–682

    Article  CAS  Google Scholar 

  • Maier-Maercker U (1998) Image analysis of the stomatal cell walls of Picea abies (L.) Karst, in pure and ozone-enriched air. Trees 12:181–185

    Google Scholar 

  • Manes F, Vitale M, Donato E, Paoletti E (1998) Holm Oak (Quercus ilex L.). Chemosphere 36:801–806

    Article  CAS  Google Scholar 

  • Manninen S, Le Thiec D, Rose C, Nourrisson G, Radnai F, Garrec JP, Huttunen S (1999) Pigment concentrations and ratios of Aleppo pine seedlings exposed to ozone. Water Air Soil Pollut 116:333–338

    Article  CAS  Google Scholar 

  • Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (C02), ozone (03), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–225

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R (1986) Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol 2:177–187

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R (1998) Ozon — ein Risikofaktor für Bäume und Wälder? BiologieUnserer Zeit 28:348–361

    CAS  Google Scholar 

  • Matyssek R (2001a) How sensitive is birch to ozone? Responses in structure and function. J For Sei 47:8–20

    Google Scholar 

  • Matyssek R (2001b) Trends in forest tree physiological research: biotic and abiotic interactions. In: Huttunen S, Heikkilä H, Bucher J-B, Sundberg B, Jarvis PG, Matyssek R (eds) Trends in European forest tree physiological research. Kluwer, Dordrecht, pp 241–246

    Google Scholar 

  • Matyssek R, Innes JL (1999) Ozone — a risk factor for trees and forests in Europe? Water Air Soil Pollut 116:199–226

    Article  CAS  Google Scholar 

  • Matyssek R, Schulze E-D (1988) Carbon uptake and respiration in above-ground parts of a Larix decidua x leptolepis tree. Trees 2:233–241

    Article  Google Scholar 

  • Matyssek R, Maruyama S, Boyer JS (1988) Rapid wall relaxation in elongating tissues. Plant Physiol 86:1163–1167

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Keller T, Schneidegger C (1991) Impairment of gas exchange and structure in birch leaves (Betula pendula) caused by low ozone concentrations. Trees 5:5–13

    Article  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Saurer M, Keller T (1992) Seasonal growth, 813C in leaves and stem, and phloem structure of birch (Betula pendula) under low ozone concentrations. Trees 6:69–76

    Article  Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Landolt W, Keller T (1993a) Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus x eurarnericana). Environ Pollut 81:207–212

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Keller T, Koike T (1993b) Branch growth and leaf gas exchange of Populus tremula exposed to low ozone concentrations throughout two growing seasons. Environ Pollut 79:1–7

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Reich PB, Oren R, Winner WE (1995a) Response mechanisms of conifers to air pollutants. In: Smith WK, Hinckley TH (eds) Physiological ecology of coniferous forests. Physiological ecology series. Academic Press, New York, pp 255–308

    Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Maurer S, Keller T (1995b) Nighttime exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiol 15:159–165

    Article  PubMed  CAS  Google Scholar 

  • Matyssek R, Havranek WM, Wieser G, Innes JL (1997a) Ozone and the forests in Austria and Switzerland. In: Sandermarin H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 95–134

    Google Scholar 

  • Matyssek R, Maurer S, Günthardt-Goerg MS, Landolt W, Saurer M, Polie A (1997b) Nutrition determines the’ strategy’ of Betula pendula for coping with ozone stress. Phyton 37:157–167

    CAS  Google Scholar 

  • Matyssek R, Maurer S, Fabian P, Pretzsch H (1997c) ’scaling’ von Ozonwirkungen in Holzpflanzen bis zur Bestandsebene: Ausgangsbasis, Erfordernisse und Perspektiven. EcoSys Kiel 20:49–58

    Google Scholar 

  • Matyssek R, Günthardt-Goerg MS, Schmutz P, Saurer M, Landolt W, Bucher JB (1998) Response mechanisms of birch and poplar to air pollutants. J Sustainable For 6:3–22

    Google Scholar 

  • Maurer S (1995) Einfluß der Nährstoffversorgung auf die Ozon-Empfindlichkeit der Birke (Betula pendula). Doctoral Thesis, University of Basel, Basel, Switzerland

    Google Scholar 

  • Maurer S, Matyssek R (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). II. Carbon balance, water-use efficiency and nutritional status of the whole plant. Trees 12:11–20

    Google Scholar 

  • Maurer S, Matyssek R, Günthardt-Goerg MS, Landolt W, Einig W (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). I. Responses at the leaf level. Trees 12:1–10

    Google Scholar 

  • McBride JR, Miller PR (1999) Implications of chronic air pollution in the San Bernadino Mountains for forest management and future research. In: Miller PR, McBride JM (eds) Oxidant air pollution impacts in the montane forest of southern California. Ecological studies 134. Springer, Berlin Heidelberg New York, pp 405–415

    Chapter  Google Scholar 

  • McLeod AR, Shaw PJA, Holland MR (1992) The Liphook forest fumigation project: studies of sulphur dioxide and ozone effects on coniferous trees. For Ecol Manage 51:121–127

    Article  Google Scholar 

  • Menser HA (1964) Response of plants to air pollutants. III. A relation between ascorbic acid levels and ozone susceptibility of light-preconditioned tobacco plants. Plant Physiol 39:564–567

    Article  PubMed  CAS  Google Scholar 

  • Middleton JT, Kendrick JB Jr, Schwalm HW (1950) Injury to herbaceous plants by smog or air pollution. Plant Dis Rep 34:245–252

    CAS  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H (1995) Exposure of Norway spruce to ozone increases the sensitivity of current-year needles to photoinhibitions and desiccation. New Phytol 128:153–163

    Article  Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H, Hovmand MF, Hummelshoj P, Jensen NO (1996) Carbon and water balance for a mixed forest stand in relation to ozone uptake. In: Kärenlampi L, Skärby L (eds) Critical levels for ozone in Europe: testing and finalizing the concept. UN-ECE Workshop Report, Kuopio, Finland, pp 269–274

    Google Scholar 

  • Mikkelsen TN, Ro-Poulsen H, Pilegaard K, Hovmand MF, Jensen NO, Christensen CS, Hummelshoej P (2000) Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms. Environ Pollut 109:423–429

    Article  PubMed  CAS  Google Scholar 

  • Millán MM, Salvador R, Mantilla E, Artíñano B (1996) Meteorology and photochemical air pollution in southern Europe: experimental results from EC research projects. Atmos Environ 30:1909–1924

    Article  Google Scholar 

  • Millân MM, Salvador R, Mantilla E (1997) Photooxidant dynamics in the Mediterranean basin in summer: results from European research projects. J Geophys Res 102:8811–8823

    Article  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozoneinduced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Miller PR, McBride JM (1999) Oxidant air pollution impacts in the montane forest of southern California. Ecological studies 134. Springer, Berlin Heidelberg New York, pp 317–336

    Google Scholar 

  • Miller PR, Millecan AA (1971) Extent of air pollution damage to some pines and other conifers in California. Plant Dis Rep 55:555–559

    Google Scholar 

  • Miller PR, Parmeter JR, Taylor OC, Cardiff EA (1963) Ozone injury to the foliage of Pinus ponderosa. Phytopathology 53:1072–1076

    CAS  Google Scholar 

  • Miller PR, Grulke NE, Stolte KW (1994) Effects of air pollution on giant sequoia ecosystems. In: Aune PS (Technical Coordinator) Proceedings of the Symposium on Giant Sequoias: their place in the ecosystem and society. General Technical Report PSW-151. USD A Forest Service, Pacific Southwest Research Station, Albany, CA, pp 90–98

    Google Scholar 

  • Miller PR, Arbaugh MJ, Temple PJ (1997) Ozone and its known effects on forests in western United States. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone. Springer, Berlin Heidelberg New York, pp 39–67

    Chapter  Google Scholar 

  • Momen B, Helms JA, Criddle RS (1996) Foliar metabolic heat rate of seedlings and mature trees of Pinus ponderosa exposed to simulated acid rain and elevated ozone. Plant Cell Environ 19:747–753

    Article  CAS  Google Scholar 

  • Mooney HA, Winner WE (1991) Partitioning response of plants to stress. In: Mooney HA, Winner WE, Pell EJ (eds) (1991) Response of plants to multiple stresses. Academic Press, San Diego, pp 129–141

    Chapter  Google Scholar 

  • Mooney HA, Winner WE, Pell EJ (eds) (1991) Response of plants to multiple stresses. Academic Press, San Diego, pp 422

    Google Scholar 

  • Musselman RC, Hale BA (1997) Methods for controlled and field ozone exposures of forest tree species in North America. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 277–315

    Google Scholar 

  • Musselman RC, McCool PM, Lefohn AS (1994) Ozone descriptors for an air quality standard to protect vegetation. J Air Waste Manage Assoc 44:1383–1290

    CAS  Google Scholar 

  • Neals TF, McLeod AL (1992) Do leaves contribute to the abscisic acid present in the xylem of ‘droughted’ sunflower plants? Plant Cell Environ 14:979–986

    Article  Google Scholar 

  • Nebel B, Fuhrer J (1995) Inter-and intraspecific differences in ozone sensitivity in seminatural plant communities. Angew Bot 68:116–121

    Google Scholar 

  • Neufeld HS, Renfro JR, Hacker WD, Silsbee D (1992) Ozone in Great Smoky Mountains National Park: dynamics and effects on plants. In: Berglund RL (ed) Transactions: tropospheric ozone and the environment II. Air and Waste Management Assoc, Pittsburgh, PA, USA, pp 594–617

    Google Scholar 

  • Niewiadomska E, Gaucher-Veilleux C, Chevrier N, Maufette Y, Dizengremel P (1999) Elevated CO2 does not provide protection against ozone considering the activity of several antioxidant enzymes in the leaves of sugar maple. J Plant Physiol 155:70–77

    Article  CAS  Google Scholar 

  • Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree response to rising C02 in experiments field: implications for the future forests. Plant Cell Environ 22:683–714

    Article  CAS  Google Scholar 

  • Nowak DJ, Civerolo KL, Trivikrama R, Sistla G, Luley CJ, Crane DE (2000) A modelling study of the impact of urban trees on ozone. Atmos Environ 34:1601–1613

    Article  CAS  Google Scholar 

  • Oksanen EJ (2001) Increasing tropospheric ozone level reduced birch (Betula pendula) dry mass within a five year period. Water Air Soil Pollut 130:947–952

    Article  Google Scholar 

  • Oksanen E, Saleem A (1999) Ozone exposure results in various carry-over effects and prolonged reduction in biomass in birch (Betula pendula Roth). Plant Cell Environ 22:1401–1411

    Article  CAS  Google Scholar 

  • Oksanen EJ, Wustman BA, Podiila GK, Isebrands JG, Karnosky DF (2000) C02/ozone interactions in trees. Proceedings of the 19th meeting for specialists in air pollution effects on forest ecosystems. Houghton, Michigan, p 61 (abstract)

    Google Scholar 

  • Ollinger SV, Aber JD, Reich PB (1997) Simulating ozone effects on forest productivity: interactions among leaf, canopy and stand level processes. Ecol Applic 7:1237–1251

    Article  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    PubMed  CAS  Google Scholar 

  • Pääkkönen E, Holopainen T (1995) Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol 129:595–603

    Article  Google Scholar 

  • Pääkkönen E, Paasisalo S, Holopainen T, Kärenlampi L (1993) Growth and stomatal responses of birch (Betula pendula Roth.) clones to ozone in open-air and chamber fumigations. New Phytol 125:615–623

    Article  Google Scholar 

  • Pääkkönen E, Holopainen T, Kärenlampi L (1996) Relationships between open-field ozone exposures and growth and senescence of birch (Betula pendula and Betula pubescens). In: Skärby L, Pleijel H (eds) Critical levels for ozone — experiments with crops, wild plants and forest tree species in the Nordic countries. TemaNord, vol 582. Nordic Council and Council of Ministers, Copenhagen, Denmark, pp 39–48

    Google Scholar 

  • Pääkkönen E, Holopainen T, Kärenlampi L (1997) Variation of ozone sensitivity among clones of Betula pendula and Betula pubescens. Environ Pollut 95:37–44

    Article  PubMed  Google Scholar 

  • Pääkkönen E, Vahala J, Pohjolai M, Holopainen T, Kärenlampi L (1998a) Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21:671–684

    Article  Google Scholar 

  • Pääkkönen E, Seppänen S, Holopainen T, Kokko H, Kärenlampi S, Kärenlampi L, Kangasjärvi J (1998b) Induction of genes for the stress proteins PR-10 and PAL in relation to growth, visible injuries and stomatal conductance in birch (Betula pendula) clones exposed to ozone and/or drought. New Phytol 138:295–305

    Article  Google Scholar 

  • Pääkkönen E, Holopainen T, Kärenlampi L (1999) Ozone impact remains in birch (Betula pendula Roth) one and two seasons after exposure. In: Fuhrer J, Achermann B (eds) Critical level for ozone — level II. Environmental documentation No. 115. SAEFL, Berne, Switzerland, pp 139–143

    Google Scholar 

  • Panek JA, Goldstein AH (2001) Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake. Tree Physiol 21:337–344

    Article  PubMed  CAS  Google Scholar 

  • Pearson M, Mansfield TA (1993) Interacting effects of ozone and water stress on the stomatal resistance of beech (Fagus sylvatica L.) New Phytol 123:351–358

    Article  CAS  Google Scholar 

  • Pearson M, Mansfield TA (1994) Effects of exposure to ozone and water stress on the following season’s growth of beech (Fagus sylvatica L.). New Phytol 126:511–515

    Article  CAS  Google Scholar 

  • Pell EJ, Dann MS (1991) Multiple stress-induced foliar senescence and implications for whole-plant longevity. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 189–204

    Chapter  Google Scholar 

  • Pell EJ, Temple PJ, Friend AL, Mooney HA, Winner WE (1994) Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments. J Environ Qual 23:429–436

    Article  CAS  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273

    Article  CAS  Google Scholar 

  • Pell EJ, Sinn JP, Brendley BW, Samuelson L, Vinten-Johansen C, Tien M, Skillmann J (1999) Differential response of four tree species to ozone-induced acceleration of foliar senescence. Plant Cell Environ 22:779–790

    Article  CAS  Google Scholar 

  • Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356

    Article  PubMed  CAS  Google Scholar 

  • Pleijel H, Wallin G, Karlsson PE, Skärby L (1996) Ozone gradients in a spruce forest stand in relation to wind speed and time of the day. Atmos Environ 30:4077–4084

    Article  CAS  Google Scholar 

  • Polie A (1998) Photochemical oxidants: uptake and detoxification mechanisms. In: De-Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution. Backhuys Publishers, Leiden, pp 95–116

    Google Scholar 

  • Polie A, Pfiirrman NT, Chakrabarti S, Rennenberg H (1993) The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments, and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environ 16:311–316

    Article  Google Scholar 

  • Polle A, Wieser G, Havranek WM (1995) Karst.) at high altitude. Plant Cell Environ 18:681

    Article  CAS  Google Scholar 

  • Polle A, Baumbach LO, Oschinski C, Eiblmeier M, Kuhlenkamp V, Vollrath B, Schol F, Rennenberg H (1999) Growth and protection against oxidative stress in young clones and mature trees (Picea abies L.) at high altitudes. Oecologia 121:149–156

    Article  Google Scholar 

  • Polle A, Matyssek R, Günthardt-Goerg MS, Maurer S (2000) Defense strategies against ozone in trees: the role of nutrition. In: Agrawal SB, Agrawal M (eds) Environmental pollution and plant responses. Lewis Publishers, New York, pp 223–245

    Google Scholar 

  • Pronos J, Merril L, Dahsten D (1999) Insects and pathogens in a pollution-stressed forest. In: Miller PR, McBride JM (eds) Oxidant air pollution impacts in the montane forest of southern California. Ecological studies 134. Springer, Berlin Heidelberg New York, pp 317–336

    Chapter  Google Scholar 

  • Proyou AG, Toupance G, Perros PE (1991) A 2-year study of ozone behavior at rural and forested sites in eastern France. Atmos Environ 25A:2145–2153

    CAS  Google Scholar 

  • Pye JM (1988) Impact of ozone on the growth and yield of trees: a review. J Environ Qual 17:347–360

    Article  CAS  Google Scholar 

  • Quirino BF, Noh Y-S, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sei 5:278–282

    Article  CAS  Google Scholar 

  • Radoglou K (1996) Environmental control of C02 assimilation rates and stomatal conductance in five oak species growing under field conditions in Greece. Ann Sei For 53:269–278

    Article  Google Scholar 

  • Rao MV, Davis KR (2001) The physiology of ozone induced cell death. Planta 213:682–690

    Article  PubMed  CAS  Google Scholar 

  • Rebbeck J, Jensen KF (1993) Ozone effects on grafted mature and juvenile red spruce: photosynthesis, stomatal conductance, and chlorophyll concentration. Can J For Res 23:450–456

    Article  CAS  Google Scholar 

  • Reekie EG, Bazzaz FA (1989) Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated C02. Oecologia 79:212–222

    Article  Google Scholar 

  • Reich PB (1983) Effects of low concentrations of 03 on net photosynthesis, dark respiration, and chlorophyll contents in aging hybrid poplar leaves. Plant Physiol 73:291–296

    Article  PubMed  CAS  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3:63–91

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Ellsworth DS, Kloeppel BD, Fownes JH, Gower ST (1990) Vertical variation in canopy structure and C02 exchange of oak-maple forests: influences of ozone, nitrogen, and other factors on simulated canopy carbon gain. Tree Physiol 7:329–345

    Article  PubMed  Google Scholar 

  • Rennenberg H, Herschbach C, Polie A (1996) Consequences of air pollution on shootroot interaction. J Plant Physiol 148:296–301

    Article  CAS  Google Scholar 

  • Retzlaff WA, Weinstein DA, Laurence JA, Gollands B (1997) Simulating the growth of a 160-year-old sugar maple (Acer saccharum) tree with and without ozone exposure using the TREGROW model. Can J For Res 27:783–789

    Article  Google Scholar 

  • Retzlaff WA, Arthur MA, Grulke NE, Weinstein DA, Gollands B (2000) Use of a singletree simulation model to predict effects of ozone and drought on growth of a white fir tree. Tree Physiol 20:195–202

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JF, Hilbert DW, Kemp PR (1993) Scaling ecophysiology from the plant to the ecosystem: a conceptual framework. In: Ehleringer JR, Field CB (eds) Scaling physiological processes, leaf to globe. Academic Press, San Diego, pp 127–140

    Chapter  Google Scholar 

  • Riehl Koch J, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252

    Article  PubMed  Google Scholar 

  • Riehl Koch J, Creelman RA, Eshita SM, Seskar M, Mullet JE, Davis KR (2000) Ozone sensivity in hybrid poplar correlates with insensivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiol 123:487–496

    Article  Google Scholar 

  • Roloff A (2001) Baumkronen — Verständnis und praktische Bedeutung eines komplexen Naturphänomens. Ulmer, Stuttgart, pp 162

    Google Scholar 

  • Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in scots pine (Pinus sylvestris L.). Plant Physiol 97:1280–1286

    Article  PubMed  CAS  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:213–262

    Article  Google Scholar 

  • Ryan MG, Bond BJ, Law BE, Hubbard RM, Woodruff D, Cienciala E, Kucera J (2000) Transpiration and whole-tree conductance in ponderosa pines trees of different heights. Oecologia 124:553–560

    Article  Google Scholar 

  • Samuel MA, Miles GP, Ellis BE (2000) Ozone treatment rapidly activates MAP kinase signalling in plants. Plant J 22:367–376

    Article  PubMed  CAS  Google Scholar 

  • Samuelson LJ (1994) The role of micro-climate in determining the sensitivity of Quercus rubra L. to ozone. New Phytol 128:235–241

    Article  CAS  Google Scholar 

  • Samuelson LJ, Kelly JM (1997) Ozone uptake in Prunus serotina, Acer rubrum and Quercus rubra forest trees of different sizes. New Phytol 136:255–264

    Article  CAS  Google Scholar 

  • Samuelson L, Kelly JM (2001) Scaling ozone from seedlings to forest trees. New Phytol 149:21–41

    Article  CAS  Google Scholar 

  • Samuelson LJ, Kelly JM, Mays PA, Edwards GS (1996) Growth and nutrition of Quercus rubra seedlings and mature trees after three seasons of ozone exposure. Environ Pollut 91:317–320

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (2000a) Active oxygen species as mediators of plant immunity: three case studies. Biol Chem 381:649–653

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr (2000b) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108:327–332

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H Jr, Langebartels C, Heller W (1990) Ozonstreß bei Pflanzen. Frühe und “Memory”-Effekte von Ozon bei Nadelbäumen. UWSF-Z Umweltchem Ökotox 2:14–15

    Article  Google Scholar 

  • Sandermann H Jr, Wellburn AR, Heath RL (1997) Forest decline and ozone: synopsis. In: Sandermann H Jr, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 369–377

    Google Scholar 

  • Sandermann H Jr, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sei 3:47–50

    Article  Google Scholar 

  • Sandroni S, Bacci P, Botta G, Pellegrini U, Ventura A (1994) Tropospheric ozone in the pre-alpine and alpine regions. Sei Total Environ 156:169–182

    Article  CAS  Google Scholar 

  • Sanz MJ, Millán MM (1998) The dynamics of aged airmasses and ozone in the western Mediterranean: relevance to forest ecosystems. Chemosphere 36:1089–1094

    Article  CAS  Google Scholar 

  • Sasek TW, Richardson CJ (1989) Effects of chronic doses of ozone on loblolly pine: photosynthetic characteristics in the third growing season. For Sei 35:745–755

    Google Scholar 

  • Saurer M, Maurer S, Matyssek R, Landolt W, Günthardt-Georg MS, Siegenthaler U (1995) The influence of ozone and nutrition on δ13 in Betula pendula. Oecologia 103:397–406

    Article  Google Scholar 

  • Saxe H, Ellsworth DS, Heath J (1998) Tree and forest functioning in an enriched C02 atmosphere. New Phytol 139:395–436

    Article  Google Scholar 

  • Scarascia-Mugnozza GE, Karnosky DF, Ceulemans R, Innes JL (2001) The impact of C02 and other greenhouse gases on forest ecosystems: an introduction. In: Karnosky DF, Scarascia-Mugnozza G, Ceulemans R, Innes JL (eds) The impacts of carbon dioxide and other greenhouse gases on forest ecosystems. CABI Press, Wallingford, UK, pp 1–16

    Chapter  Google Scholar 

  • Scherzer AJ, McClenahen JR (1989) Effects of ozone or sulphur dioxide on pitch pine seedlings. J Environ Qual 18:57–61

    Article  CAS  Google Scholar 

  • Schier GA, McQuattie CJ, Jensen KF (1990) Effects of ozone and aluminum on pitch pine (Pinus rigida) seedlings growth and nutrient relations. Can J For Res 20:1714–1719

    Article  CAS  Google Scholar 

  • Schraudner M, Moder W, Wiese C, van Camp W, Inze D, Langebartels C, Sandermann H (1998) Ozone-induced oxidative burst in the ozone biomonitor plant. Tobacco Bel W3. Plant J 16:235–245

    CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H Jr (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426

    Article  PubMed  CAS  Google Scholar 

  • Schulze E-D (1994) The regulation of plant transpiration: interactions of feedforward, feedback, and futile cycles. In: Schulze E-D (ed) Flux control in biological systems. Academic Press, New York, pp 203–235

    Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss, and nutrient relations in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant ecology 12B, physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 182–230

    Google Scholar 

  • Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sei 57:113–117

    Article  CAS  Google Scholar 

  • Schwanz P, Häberle K-H, Polle A (1996) Interactive effects of elevated C02, ozone and drought stress on the activities of antioxidative enzymes in needles of Norway spruce trees (Picea abies L.) grown with luxurious N supply. J Plant Physiol 148:351–355

    Article  CAS  Google Scholar 

  • Schweizer B, Arndt U (1990) CO2/H2O gas exchange parameters of one-and two-year-old needles of spruce and fir. Environ Pollut 68:275–292

    Article  PubMed  CAS  Google Scholar 

  • Shao M, Zhao M, Zhang Y, Peng L, LI J (2000) Biogenic VOCs emissions and its impacts on ozone formation in major cities of China. J Environ Sei Health A35:1941–1950

    CAS  Google Scholar 

  • Shavnin S, Maurer S, Matyssek R, Bilger W, Scheidegger C (1999) The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula). Trees 14:10–16

    Article  Google Scholar 

  • Sheppard LJ (1994) Causal mechanisms by which sulphate, nitrate and acidity influence frost hardiness in red spruce. Review and hypothesis. New Phytol 127:69–82

    Article  CAS  Google Scholar 

  • Simini M, Skelly JM, Davis DD, Savage JE (1992) Sensitivity of four hardwood species to ambient ozone in north central Pennsylvania. Can J For Res 22:1789–1799

    Article  CAS  Google Scholar 

  • Skärby L (1994) Critical levels for ozone to protect forest trees. In: Fuhrer J, Achermann B (eds) Critical levels for ozone: a UN-ECE workshop report. Schriftenreihe der FAC Liebefeld, 74-87. Swiss Federal Research Station for Agricultural Chemistry, Liebe-feld-Bern

    Google Scholar 

  • Skärby L, Karlsson PE (1996) Critical levels for ozone to protect forest trees — best available knowledge from the Nordic countries and the rest of Europe. In: Fuhrer J, Achermann B (eds) Critical levels for ozone: a UN-ECE workshop report. Schriftenreihe der FAC Liebefeld, Swiss Federal Research Station for Agricultural Chemistry, Liebefeld-Bern, pp 72–85

    Google Scholar 

  • Skärby L, Troeng E, Boström C (1987) Ozone uptake and effects on transpiration, net photosynthesis and dark respiration in Scots pine. For Sei 33:801–808

    Google Scholar 

  • Skärby L, Ro-Poulsen H, Wellburn FAM, Sheppard LJ (1998) Impacts of ozone on forests: a European perspective. New Phytol 139:109–122

    Article  Google Scholar 

  • Skelly JM, Davis DD, Merrill W, Cameron EA, Brown, HD, Drummond DB, Dochinger LS (eds) (1987) Diagnosing injury to eastern forest trees: a manual for identifying damage caused by air pollution, pathogens, insects, and abiotic stresses. National Acidic Precipitation Program, Forest Response Program, Vegetation Survey Research Cooperative. University Park, PA, Agricultural Information Services, College of Agriculture, Department of Plant Pathology, Pennsylvania State University, 122 pp

    Google Scholar 

  • Skelly JM, Fredericksen TS, Savage JE, Snyder KR (1996) Vertical gradients of ozone and carbon dioxide within a deciduous forest in central Pennsylvania. Environ Pollut 94:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Skelly JM, Chappelka AH, Laurence JA, Fredericksen TS (1997) Ozone and its known and potential effects on forests in eastern United States. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 400

    Google Scholar 

  • Skelly JM, Innes JL, Savage JE, Snyder KR, Vanderheyden D, Zhang J, Sanz MJ (1999) Observation and conservation of foliar ozone symptoms of native plant species of Switzerland and southern Spain. Water Air Soil Pollut 116:227–234

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol 51:49–81

    Article  CAS  Google Scholar 

  • Smeulders SM, Gorissen A, Joosten NN, Vanveen JA (1995) Effects of short-term ozone exposure on the carbon economy of mature and juvenile Douglas firs [Pseudotsuga menziesii (Mirb) Franco]. New Phytol 129:45–53

    Article  CAS  Google Scholar 

  • Soda C, Busotti F, Grossoni P, Barnes J, Mori B, Tani C (2000) Impacts of urban levels of ozone on Pinus halepensis foliage. Environ Exp Bot 44:69–82

    Article  PubMed  CAS  Google Scholar 

  • Somers GL, Chappelka AFI, Rosseau P, Renfro JR (1998) Empirical evidence of growth decline related to visible ozone injury. For Ecol Manage 104:129–137

    Article  Google Scholar 

  • Spence DR, Rykiel EJ, Sharpe PJH (1990) Ozone alters carbon allocation in loblolly pine assessment with carbon-11 labeling. Environ Pollut 64:93–106

    Article  PubMed  CAS  Google Scholar 

  • Sperry JS, Alder NN, Eastlack SE (1993) The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J Exp Bot 44:1075–1082

    Article  Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovegaard J (1996) Growth trends in European forests. Springer, Berlin Heidelberg New York, pp 372

    Book  Google Scholar 

  • Staehelin J, Schmid W (1991) Trend analysis of tropospheric ozone concentrations utilizing the 20-year data set of balloon soundings over Payerne (Switzerland). Atmos Environ 25A:1739–1749

    CAS  Google Scholar 

  • Staehelin J, Thudium J, Buehler R, Volz-Thomas A, Graber W (1994) Trends in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28:75–88

    Article  CAS  Google Scholar 

  • Staffelbach T, Neftel A, Blattner A, Gut A, Fahrni M, Stähelin J, Prévôt A, Hering A, Lehning M, Neininger B, Baumle M, Kok GL, Dommen J, Hutterli M, Anklin M (1997) Photochemical oxidant formation over southern Switzerland. 1. Results from summer 1994. J Geophys Res 102:23345–23362

    Article  CAS  Google Scholar 

  • Stitt M, Schulze ED (1994) Plant growth, storage and resource allocation: from flux control in metabolic chain to the whole-plant level. In: Schultze ED (ed) Flux control in biological systems: from enzymes to populations and ecosystems. Academic Press, San Diego, pp 57–118

    Google Scholar 

  • Stockwell WR, Kramm G, Scheel H-E, Mohnen VA, Seiler W (1997) Ozone formation, destruction and exposure in Europe and the United States. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone, a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 400

    Google Scholar 

  • Takemoto BK, Bytnerowicz A, Fenn ME (2001) Current and future effects of ozone and atmospheric nitrogen deposition on California’s mixed conifer forests. For Ecol Manage 144:159–173

    Article  Google Scholar 

  • Taylor GE Jr, Hanson PJ (1992) Forest trees and tropospheric ozone: role of canopy deposition and leaf uptake in developing exposure-response relationships. Agric Ecosyst Environ 42:255–273

    Article  CAS  Google Scholar 

  • Taylor GE Jr, Johnson DW, Andersen CP (1994) Air pollution and forest ecosystems: a regional to global perspective. Ecol Appl 4:662–689

    Article  Google Scholar 

  • Temple PJ, Riechers GH (1995) Nitrogen allocation in ponderosa pine seedlings exposed to interacting ozone and drought stresses. New Phytol 130:97–104

    Article  CAS  Google Scholar 

  • Thomas HT, Stoddart JT (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    Article  CAS  Google Scholar 

  • Tingey DT, Wilhour RG, Standley C (1976) The effect of chronic ozone exposures on the metabolite content of Ponderosa pine seedlings. For Sei 22:234–241

    CAS  Google Scholar 

  • Tjoelker MG, Luxmoore RJ (1991) Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings. New Phytol 119:69–81

    Article  CAS  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in seedlings of Acer saccharum Marsh, and hybrid Populus L. I. In situ net photosynthesis, dark respiration and growth. New Phytol 124:627–636

    Article  CAS  Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18:895–905

    Article  CAS  Google Scholar 

  • Tobiessen P (1982) Dark opening of stomata in successional trees. Oecologia (Berl) 52:356–359

    Article  Google Scholar 

  • Tremmel DC, Bazzaz FA (1995) Plant architecture and allocation in different neighborhoods — implications for competitive success. Ecology 76:262–271

    Article  Google Scholar 

  • Urbach W, Schmidt W, Kolbowski J, Rummele S, Reisber GE, Steigner W, Schreiber U (1989) Wirkungen von Umweltschadstoffen auf Photosynthese und Zellmembranen von Pflanzen. In: Reuther M, Kirchner M (eds) 1. Statusseminar der PBWU zum Forschungsschwerpunkt Waldschäden. GSF, München, pp 195–206

    Google Scholar 

  • Utriainen M, Kokko H, Auriola S, Sarrazin 0, Kärenlampi S (1998) PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch, Betula pendula. Plant Cell Environ 21:821–828

    Article  CAS  Google Scholar 

  • Vanderheyden D, Skelly J, Innes J, Hug C, Zhang J, Landolt W, Bleuler P (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331

    Article  PubMed  CAS  Google Scholar 

  • Velissariou D, Davison AW, Barnes JD, Pfirrmann T, MaClean DC, Holevas CD (1992) Greece. Atmos Environ 26:363–380

    Google Scholar 

  • Velissariou D, Gimeno BS, Badiani M, Fumagalli I, Davison AW (1996) Records of O3 visible injury in the ECE Mediterranean region. In: Kärenlampi L, Skärby L (eds) Critical levels for ozone in Europe: testing and finalizing the concepts. University of Kuopio, Kuopio, pp 343–350

    Google Scholar 

  • Volin JC, Tjoelker MG, Oleksyn J, Reich PB (1993) Light environment alters response to ozone stress in Acer saccharum Marsh, and hybrid Populus L. seedlings. II. Diagnostic gas exchange and leaf chemistry. New Phytol 124:637–646

    Article  CAS  Google Scholar 

  • Volin JC, Reich PB, Givnish T (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325

    Article  CAS  Google Scholar 

  • Walters MB, Kruger EL, Reich PB (1993) Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: species, light environment and ontogenetic considerations. Oecologia 96:219–231

    Article  Google Scholar 

  • Waring RH (1993) How ecophysiologists can help scale from leaves to landscapes. In: Ehleringer JR, Field CB (eds) Scaling physiological processes, leaf to globe. Academic Press, San Diego, pp 159–166

    Chapter  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems, concepts and management. Academic Press, Orlando, pp 340

    Google Scholar 

  • Waring RH, Silvester WB (1993) Variation in foliar 813C values within the crowns of Pinus radiata trees. Tree Physiol 14:1203–1213

    Article  Google Scholar 

  • Weinstein DA, Beloin RM, Yanai RD (1991) Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses. Tree Physiol 9:127–146

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DA, Samuelson LJ, Arthur MA (1998) Comparison of the response of red oak (Quercus rubra) seedlings and mature trees to ozone exposure using simulation modeling. Environ Pollut 102:307–320

    Article  CAS  Google Scholar 

  • Wellburn FAM, Lau K-K, Milling MK, Wellburn AR (1996) Drought and air pollution affect nitrogen cycling and free-radical scavenging in Pinus halepensis Mill. J Exp Bot 47:1361–1367

    Article  CAS  Google Scholar 

  • Wellburn AR, Barnes JD, Lucas PW, McLeod AR, Mansfield TA (1997) Controlled 03 exposures and field observations of O3 effects in the UK. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Ecological studies 127. Springer, Berlin Heidelberg New York, pp 201–236

    Google Scholar 

  • Werner H (1992) Das Indigopapier, sensitives Element zum Aufbau von Passivsammlern zur Messung von Ozonimmissionen. Forstl Forschungsberichte München, vol 122, pp 1–147

    Google Scholar 

  • Werner H, Fabian P (2001) Free-air fumigation on mature trees: a novel system for controlled ozone enrichment in grown-up beech and spruce canopies. Environ Sei Pollut Res 9:117–121

    Article  Google Scholar 

  • Wieser G, Havranek WM (1993) Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure. Trees 7:227–232

    Article  Google Scholar 

  • Wieser G, Havranek WM (1994) Exposure of mature Norway spruce to ozone in twigchambers: effects on gas exchange. Proc R Soc Edinb Sect B 102:119–125

    Google Scholar 

  • Wieser G, Havranek WM (1995) Environmental control of ozone uptake in Larix decidua Mill.: a comparison between different altitudes. Tree Physiol 15:253–258

    Article  PubMed  CAS  Google Scholar 

  • Wieser G, Havranek WM (1996) Evaluation of ozone impact on mature spruce and larch in the field. J Plant Physiol 148:189–194

    Article  CAS  Google Scholar 

  • Wieser G, Havranek MW (2001) Effects of ozone on conifers in the timberline ecotone. In: Huttunen S, Bucher JB, Sundberg B, Jarvis P, Matyssek R (eds) Trends in European forest tree physiology research. Kluwer, Dordrecht, pp 115–125

    Google Scholar 

  • Wieser G, Tegischer K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2002) Approach for comparing susceptibility to ozone uptake in Norway spruce [(Picea abies (L.) Karst.] across tree age: linking stress avoidance with defense. Tree Physiol (in press)

    Google Scholar 

  • Wiskich JT, Dry IB (1985) The tricarboxylic acid cycle in plant mitochondria: its operation and regulation. In: Douce R, Day DA (eds) Higher plant cell respiration, encyclopaedia of plant physiology. New series, vol 18. Springer, Berlin Heidelberg New York, pp 281–313

    Chapter  Google Scholar 

  • Wolfenden J, Mansfield TA (1991) Physiological disturbances in plants caused by air pollutants. Proc R Soc Edinb 97B:117–138

    Google Scholar 

  • Wulff A, Hänninen O, Tuomainen A, Kärenlampi L (1992) A method for open-air exposure of plants to ozone. Ann Bot Fennici 29:253–262

    CAS  Google Scholar 

  • Wunderli S, Gehrig R (1990) Surface ozone in rural, urban and alpine regions of Switzerland. Atmos Environ 24A:2641–2646

    CAS  Google Scholar 

  • Zangerl AB, Bazzaz FA (1992) Theory and pattern in plant defense allocation. In: Fritz RS, Simms EL (eds) Plant resistance to herbicides and pathogens. The University of Chicago Press, Chicago, pp 363–391

    Google Scholar 

  • Zinser C, Ernst D, Sandermann H Jr (1998) Induction of stilbene synthase and cinnamyl alcohol dehydrogenase mRNAs in Scots pine (Pinus sylvestris L.) seedlings. Planta 204:169–176

    Article  CAS  Google Scholar 

  • Zinser C, Jungblut T, Fleller W, Seidlitz HK, Schnitzler J-P, Ernst D, Sandermann H Jr (2000) The effect of ozone in Scots pine (Pinus sylvestris L.): gene expression, biochemical changes and interactions with UV-B radiation. Plant Cell Environ 23:975–982

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matyssek, R., Sandermann, H. (2003). Impact of Ozone on Trees: an Ecophysiological Perspective. In: Esser, K., Lüttge, U., Beyschlag, W., Hellwig, F. (eds) Progress in Botany. Progress in Botany, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55819-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55819-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62838-2

  • Online ISBN: 978-3-642-55819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics