Skip to main content

Advertisement

Log in

Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Present study describes the responses of short rotation coppice (SRC) mulberry, a potential bio-energy tree, grown under interactive environment of elevated CO2 (E) and water stress (WS). Growth in E stimulated photosynthetic performance in well-watered (WW) as well as during WS with significant increases in light-saturated photosynthetic rates (A Sat), water use efficiency (WUEi), intercellular [CO2], and photosystem–II efficiency (F V/F M and ∆F/F M′) with concomitant reduction in stomatal conductance (g s) and transpiration (E) compared to ambient CO2 (A) grown plants. Reduced levels of proline, H2O2, and malondialdehyde (MDA) and higher contents of antioxidants including ascorbic acid and total phenolics in WW and WS in E plants clearly demonstrated lesser oxidative damage. Further, A plants showed higher transcript abundance and antioxidant enzyme activities under WW as well as during initial stages of WS (15 days). However, with increasing drought imposition (30 days), A plants showed down regulation of antioxidant systems compared to their respective E plants. These results clearly demonstrated that future increased atmospheric CO2 enhances the photosynthetic potential and also mitigate the drought-induced oxidative stress in SRC mulberry. In conclusion, mulberry is a potential bio-energy tree crop which is best suitable for short rotation coppice forestry-based mitigation of increased [CO2] levels even under intermittent drought conditions, projected to prevail in the fast-changing global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbdElgawad H, Farfan-ignolo ER, De Vos D, Asard H (2015) Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci 231:1–10

    Article  CAS  PubMed  Google Scholar 

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napusL.). Czech J Genet Plant Breed 46: 27–34

    CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long S (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H, Van der Linden L (2011a) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1550–1561

    Article  CAS  PubMed  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011b) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–4266

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates LS, Walderen RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Calfapietra C, Gielen B, Karnosky D, Ceulemans R, ScarasciaMugnozza G (2010) Response and potential of agroforestry crops under global change. Environ Pollut 158:1095–1104

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya KV, Jutur PP, Sundar D, Reddy AR (2003) Water stress effects on photosynthesis in different mulberry cultivars. Plant Growth Regul 40:75–80

    Article  CAS  Google Scholar 

  • Darbah JN, Sharkey TD, Calfapietra C, Karnosky DF (2010) Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environ Pollut 158:1008–1014

    Article  CAS  PubMed  Google Scholar 

  • Dermody O (2006) Mucking through multifactor experiments: design and analysis of multifactor studies in global change research. New Phytol 172:589–591

    Article  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD (2004) Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. Glob Change Biol 10:2121–2138

    Article  Google Scholar 

  • Farfan-Vignolo ER, Asard H (2012) Effect of elevated CO2 and temperature on the oxidative stress response to drought in Lolium perenne L. and Medicago sativa L. Plant Physiol Biochem 59:55–62

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Galmes J, Medrano H, Ribas-Carbo M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plantarum 127:343–352

    Article  CAS  Google Scholar 

  • Fu J, Huang B (2001) Involvement of anti-oxidant and lipid peroxidation in the adaptation of two cool season grasses to localized drought stress. Environ Exp Bot 45:105–114

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Jaafar HZE, Rahmat A (2010) Elevated carbon dioxide increases contents of flavonoids and phenolic compounds and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties. Molecules 15:7907–7922

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KM, Rogers A, Ainsworth EA (2011) Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J Exp Bot 62:2667–2678

    Article  CAS  PubMed  Google Scholar 

  • Gillespie KM, Xu F, Richter KT, McGrath JM, Markelz RC, Ort DR, Leakey, Ainsworth EA (2012) Greater antioxidant and respiratory metabolism in field grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ 35:169–184

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (s-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    CAS  PubMed  Google Scholar 

  • Guha A, Reddy AR (2012) Leaf functional traits and stem wood characteristics influencing biomass productivity of mulberry (Morus spp. L) genotypes grown in short-rotation coppice system. Bioenerg Res 6:547–563

    Article  Google Scholar 

  • Guha A, Rasineni GK, Reddy AR (2010a) Drought tolerance in mulberry (Morus spp.): A physiological approach with insights to growth dynamics and leaf yield production. Exp Agric 46: 471–488

    Article  Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2010b) Physiological optimality, allocation trade-offs and antioxidant protection liked to better leaf yield performance in drought exposed mulberry. J Sci Food Agric 90:2649–2659

    Article  CAS  PubMed  Google Scholar 

  • Hamilton EW, Heckathorn SA, Joshi P, Wang D, Barua D (2008) Interactive effects of elevated CO2 and growth temperature on the tolerance of photosynthesis to acute heat stress in C3 and C4 species. J Integr Plant Biol 50:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G et al (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 4:2445

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiscox JD, Isrealstam GF (1979) A method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hodges DM, Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51:645–655

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Tezara W (2009) Causes of decreased photosynthetic rate and metabolic capacity in water deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann Bot 103:561–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QM, Liu BB, Wu Y, Zou ZR (2008) Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol 10:1307–1317

    Article  Google Scholar 

  • Li X, Ahammed G, Zhang Y, Zhang G, Sun Z, Zhou J, Zhou Y, Xia X, Yu J, Shi K (2014) Carbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plants. Plant Biol 17:81–89

    Article  PubMed  Google Scholar 

  • Liberloo M, Calfapietra C, Lukac M, Godbold DL, Luo ZB, Polle A, Hoosbeek MR, Ceulemans R (2006) Woody biomass production during the second rotation of a bio-energy Populus plantations increases in a future high CO2 world. Glob Change Biol 12: 1094–1106

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2– ∆∆C T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Tang Y, Xie J, Yuan Y (2009) The role of marginal agricultural land-based mulberry planting in biomass energy production. Renew Energ 34: 1789–1794

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical mung bean (VignaradiataL.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci 20:273–289

    Article  Google Scholar 

  • Murshed R, Lopez-Lauri F, Sallanon H (2008) Micro plate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal Biochem 383:320–322

    Article  CAS  PubMed  Google Scholar 

  • Naudts K, Van Den Berge J, Farfan E, Rose P, AbdElgawad H, Ceulemans, Janssens IA, Asard H, Nijs I (2014) Future climate alleviates stress impact on grassland productivity through altered antioxidant capacity. Environ Exp Bot 99:150–158

    Article  CAS  Google Scholar 

  • Norby RJ, Lou Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162: 281–293

    Article  Google Scholar 

  • Omaye ST, Turnbull JD, Sauberilich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. Method Enzymol 62: 3–11

    Article  CAS  Google Scholar 

  • Papanastasis VP, Yiakoulaki MD, Decandia M, Dini-Papanastasi O (2008) Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Anim Feed Sci Tech 140: 1–17

    Article  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reddy AR, Rasineni GK, Ragavendra AS (2010) The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr Sci 99: 46–57

    CAS  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sánchez-Díaz M, JoséIrigoyen J, Morales F (2012) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plantarum 144: 99–110

    Article  CAS  Google Scholar 

  • Sekhar KM, Rachapudi VS, Mudulkar S, Reddy AR (2014) Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere. J Photochem Photobiol B 137:21–30

    Article  Google Scholar 

  • Sekhar KM, Rachapudi VS, Reddy AR (2015) Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO2 atmosphere. J Photochem Photobiol B 151:172–179

    Article  CAS  PubMed  Google Scholar 

  • Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002) Grassland responses to global environmental changes suppressed by elevated CO2. Science 298:1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Cr Rev Plant Sci 19:267–290

    Article  CAS  Google Scholar 

  • Sreeharsha RV, Sekhar KM, Reddy AR (2015) Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2. Plant Sci 231:82–93

    Article  CAS  PubMed  Google Scholar 

  • Stankovic MS (2011) Total phenolic content, flavonoid concentration and Antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J Sci 33: 63–72

    Google Scholar 

  • Tezara W, Mitchell V, Driscoll SP, Lawlor DW (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791

    Article  CAS  PubMed  Google Scholar 

  • Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou GS, Zheng YR (2014) Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta 239:421–435

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang Y, Zhou G (2015) Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front Plant Sci 6:701

    PubMed  PubMed Central  Google Scholar 

  • Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GT, Asard H (2014) Physiological, biochemical, and genome wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Change Biol 20:3670–3685

    Article  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta analysis. Glob Change Biol 12: 27–41

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (BT/PR-11980/BCE/08/746/2009) from the Department of Biotechnology, Government of India to Attipalli R. Reddy. Plant material was provided by Regional Sericultural Research Station (Salem, India). KMS thanks to DBT, New Delhi, for giving fellowship and KSR is grateful to DST for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attipalli Ramachandra Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, K.M., Reddy, K.S. & Reddy, A.R. Amelioration of drought-induced negative responses by elevated CO2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. Photosynth Res 132, 151–164 (2017). https://doi.org/10.1007/s11120-017-0351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0351-5

Keywords

Navigation