Skip to main content

Carotenoids in Phototrophic Microalgae: Distributions and Biosynthesis

  • Chapter
  • First Online:
Pigments from Microalgae Handbook

Abstract

Phototrophic organisms necessarily synthesize not only carotenoids but also chlorophylls for photosynthesis. Phototrophic microalgae are usually single-cell organisms; however, as the pigment compositions of both single-cell and macrophytic types are almost identical, both are included in this chapter. Further, many kinds of carotenoids have been identified and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distributions of carotenoids and the phylogeny of oxygenic phototrophs, including cyanobacteria, red algae, brown algae, and green algae, in sea and fresh water is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin, diadinoxanthin, and siphonaxanthin. Carotenogenic pathways are discussed in terms of the chemical structures of carotenoids and known characteristics of the enzymes involved with carotenogenesis in other organisms, as the algal genes and enzymes associated with carotenogenesis have not yet been identified. Additionally, some procedures for the general identification of carotenoids are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Institutional subscriptions

References

  • Armstrong, G. A. (1997). Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annual Review of Microbiology, 51, 629–659.

    Article  CAS  PubMed  Google Scholar 

  • Baroli, I., Do, A. D., Yamane, T., & Niyogi, K. K. (2003). Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlomydomonas reinhardtii from photooxidative stress. Plant Cell, 15, 992–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand, M. (2010). Carotenoid biosynthesis in diatoms. Photosynthesis Research, 106, 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Bjørnland, T., & Liaaen-Jensen, S. (1989). Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. In J. C. Green, B. S. C. Leadbeater, & W. I. Diver (Eds.), The chromophyte algae: problems and perspectives (pp. 37–60). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Bradbury, L. M. T., Shumskaya, M., Tzfadia, O., Wu, S. B., Kennkelly, E. J., & Wurtzel, E. T. (2012). Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proceedings of the National Academy of Sciences of the United States of America, E1888–E1897.

    Google Scholar 

  • Breitenbach, J., Fernández-González, B., Vioque, A., & Sandmann, G. (1998). A higher-plant type ζ-carotene desaturase in the cyanobacterium Synechocystis PCC6803. Plant Molecular Biology, 36, 725–732.

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach, J., Vioque, A., & Sandmann, G. (2001). Gene sll0033 from Synechocystis 6803 encodes a carotene isomerase involved in the biosynthesis of all-E lycopene. Zeitschrift für Naturforschung C. 56, 915–917.

    Google Scholar 

  • Britton, G. (1998). Overview of carotenoid biosynthesis. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: biosynthesis and metabolism (Vol. 3, pp. 13–147). Birkhäuser: Basel, Switzerland.

    Google Scholar 

  • Britton, G., Liaaen-Jensen, S., & Pfander, H. (2004). Carotenoids Handbook. Birkhäuser: Basel, Switzerland.

    Book  Google Scholar 

  • Buchecker, R., & Noack, K. (1995). Circular dichroism. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: spectroscopy (Vol. 1B, pp. 63–116). Birkhäuser: Basel, Switzerland.

    Google Scholar 

  • Chamovitz, D., Misawa, N., Sandmann, G., & Hirschberg, J. (1992). Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Letters, 296, 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Cordero, B. F., Couso, I., Leon, R., Rodriguez, H., & Vargas, M. A. (2012). Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light. Marine Drugs, 10, 269–2088.

    Article  CAS  Google Scholar 

  • Cunningham, F. X., Jr., & Gantt, E. (2001). One ring or two? Determination of ring number in carotenoids by lycopene ε-cyclases. Proceedings of the National Academy of Sciences of the United States of America, 98, 2905–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham, F. X., Jr., Lee, H., & Gantt, E. (2007). Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryotic Cell, 6, 533–545.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, F. X., Jr., Sun, Z., Chamovitz, D., Hirschberg, J., & Gantt, E. (1994). Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell, 6, 1107–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dambek, M., Eilers, U., Breitenbach, J., Steiger, S., Buchel, C., & Sandmann, G. (2012). Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. Journal of Experimental Botany, 63, 5607–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dautermann, O., & Lohr, M. (2017). A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant Journal, 92, 897–891.

    Article  CAS  Google Scholar 

  • Dembitsky, V. M., & Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46, 328–375.

    Article  CAS  PubMed  Google Scholar 

  • Eilers, U., Dietzel, L., Breitenbach, J., Buchel, C., & Sandmann, G. (2016). Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum. Journal of Plant Physiology, 192, 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich, W., Bacher, A., Arigoni, D., & Rohdich, F. (2004). Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences, 61, 1401–1426.

    Article  CAS  PubMed  Google Scholar 

  • Englert, G. (1995). NMR spectroscopy. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: spectroscopy (Vol. 1B, pp. 174–260). Birkhäuser: Basel, Switzerland.

    Google Scholar 

  • Fernández-González, B., Sandmann, G., & Vioque, A. (1997). A new type of asymmetrically acting β-carotene ketolase is required for the synthesis of echinenone in the cyanobacterium Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 272, 9728–9733.

    Article  Google Scholar 

  • Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., et al. (2008). Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Molecular Biology and Evolution, 25, 2653–2667.

    Article  CAS  PubMed  Google Scholar 

  • Goss, R. (2003). Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta, 217, 801–812.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J. E., & Bryant, D. A. (2009). The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. Journal of Bacteriology, 191, 3292–3300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, J. E., Lecomte, J. T. J., & Bryant, D. A. (2008). Synechoxanthin, an aromatic C40 xanthophyll that is a major carotenoid in the cyanobacterium Synechococcus sp. PCC 7002. Journal of Natural Products, 71, 1647–1650.

    Article  CAS  PubMed  Google Scholar 

  • Harker, M., & Hirschberg, J. (1998). Molecular biology of carotenoid biosynthesis in photosynthetic organisms. Methods in Enzymology, 297, 244–263.

    Article  CAS  Google Scholar 

  • Hemmi, H., Ikejiri, S., Nakayama, T., & Nishino, T. (2003). Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochemical and Biophysical Research Communications, 305, 586–591.

    Google Scholar 

  • Huang, J.-C., Chen, F., & Sandmann, G. (2006a). Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. Journal of Biotechnology, 122, 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J.-C., Wang, Y., Sandmann, G., & Chen, F. (2006b). Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 71, 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Liu, J., Li, Y., & Chen, F. (2008). Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). Journal of Phycology, 44, 684–690.

    Article  CAS  PubMed  Google Scholar 

  • Iniesta, A. A., Cervantes, M., & Murillo, F. J. (2008). Conversion of the lycopene monocyclase of Myxococcux xanthus into a bicyclase. Applied Microbiology and Biotechnology, 79, 793–802.

    Article  CAS  PubMed  Google Scholar 

  • Iwai, M., Maoka, T., Ikeuchi, M., & Takaichi, S. (2008). 2,2′-β-Hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in Thermosynechococcus elongatus strain BP-1. Plant and Cell Physiology, 49, 1678–1687.

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey, S. W., & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In S. W. Jeffrey, R. F. C. Mantoura, & S. W. Wright (Eds.), Phytoplankton pigments in oceanography: guidelines to modern methods (pp. 37–84). Paris, France: UNESCO Publishing.

    Google Scholar 

  • Kajiwara, S., Kakizono, T., Saito, T., Kondo, K., Ohtani, T., Nishio, N., et al. (1995). Isolation and functional identification of a novel cDNA from astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Molecular Biology, 29, 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Kato, S., Takaichi, S., Ishikawa, T., Asahina, M., Takahashi, S., & Shinomura, T. (2016). Identification and functional analysis of the geranylgeranyl phyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis. BMC Plant Biology, 67, e4.

    Article  CAS  Google Scholar 

  • Kato, S., Tanno, Y., Takaichi, S., & Shinomura, T. (2019). Low temperature stress alters the expression of phytoene desaturase genes (crtP1 and crtP2) and the ζ-carotene desaturase gene (crtQ) together with the cellular carotenoid content of Euglena gracilis. Plant and Cell Physiology, 60, 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Smith, J. J., Tian, L., & DellaPenna, D. (2009). The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant and Cell Physiology, 50, 463–479.

    Article  CAS  PubMed  Google Scholar 

  • Krubasik, P., & Sandmann, G. (2000). Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochemical Society Transactions, 28, 806–810.

    Article  CAS  PubMed  Google Scholar 

  • Lagarde, D., & Vermaas, W. (1999). The zeaxanthin biosynthesis enzyme β-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis sp. PCC 6803. FEBS Letters, 454, 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Lagarde, D., Beuf, L., & Vermaas, W. (2000). Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Applied and Environment Microbiology, 66, 64–72.

    Article  CAS  Google Scholar 

  • Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis Research, 106, 155–177.

    Article  CAS  PubMed  Google Scholar 

  • Liaaen-Jensen, S. (1990). Marine carotenoids. New Journal of Chemistry, 14, 747–759.

    CAS  Google Scholar 

  • Liaaen-Jensen, S. (1995). Combined approach: identification and structure elucidation of carotenoids. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: spectroscopy (Vol. 1B, pp. 343–354). Birkhäuser: Basel, Switzerland.

    Google Scholar 

  • Lichtenthaler, H. K. (1999). The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 47–65.

    Article  CAS  PubMed  Google Scholar 

  • Linden, H. (1999). Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochimica et Biophysica Acta, 1446, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Linden, H., Vioque, A., & Sandmann, G. (1993). Isolation of a carotenoid biosynthesis gene coding for ζ-carotene desaturase from Anabaena PCC 7120 by heterologous complementation. FEMS Microbiology Letters, 106, 99–104.

    CAS  Google Scholar 

  • Liu, J., Zhong, Y., Sun, Z., Huang, J., Sandmann, G., & Chen, F. (2010). One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta, 232, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Lotan, T., & Hirschberg, J. (1995). Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Letters, 364, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Mackey, M. D., Mackey, D. J., Higgins, H. W., & Wright, S. W. (1996). CHEMTAX-a program for estimating class abundances from chemical markers: Application to HPLC measurements of phytoplankton. Marine Ecology Progress Series, 144, 265–283.

    Article  CAS  Google Scholar 

  • Makino, T., Harada, H., Ikenaga, H., Matsuda, S., Takaichi, S., Shindo, K., et al. (2008). Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli. Plant and Cell Physiology, 49, 1867–1878.

    Article  CAS  PubMed  Google Scholar 

  • Maresca, J. A., Frigaard, N.-U., Bryant, D. A. (2005). Identification of a novel class of lycopene cyclases in photosynthetic organisms. In A. van der Est, D. Bruce (Eds.), Photosynthesis: fundamental aspects to global perspectives (pp. 884–886). Lawrence, KS, USA: Allen Press.

    Google Scholar 

  • Maresca, J. A., Graham, J. E., Wu, M., Eisen, J. A., & Bryant, D. A. (2007). Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 104, 11784–11789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Férez, I. M., & Vioque, A. (1992). Nucleotide sequence of the phytoene desaturase gene from Synechocystis sp. PCC 6803 and characterization of a new mutation which confers resistance to the herbicide norflurazon. Plant Molecular Biology, 18, 981–983.

    Article  PubMed  Google Scholar 

  • Martínez-Férez, I., Fernández-González, B., Sandmann, G., & Vioque, A. (1994). Cloning and expression in Escherichia coli of the gene coding for phytoene synthase from the cyanobacterium Synechocystis sp. PCC6803. Biochimica et Biophysica Acta, 1218, 145–152.

    Article  PubMed  Google Scholar 

  • Masamoto, K., Misawa, N., Kaneko, T., Kikuno, R., & Toh, H. (1998). β-Carotene hydroxylase gene from the cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiology, 39, 560–564.

    Article  CAS  PubMed  Google Scholar 

  • Masamoto, K., Wada, H., Kaneko, T., & Takaichi, S. (2001). Identification of a gene required for cis-to-trans carotene isomerization in carotenogenesis of the cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology, 42, 1398–1402.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, S. S., Kobayashi, M. C., & Niyogi, K. K. (2004). White mutants of Chlamydomonas reinhardtii are defective in phytoene synthase. Genetics, 168, 1249–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K., et al. (1990). Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. Journal of Bacteriology, 172, 6704–6712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miziorko, H. M. (2011). Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of Biochemistry and Biophysics, 505, 131–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochimaru, M., Msukawa, H., & Takaichi, S. (2005). The cyanobacterium Anabaena sp. PCC 7120 has two distinct β-carotene ketolase: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS Letters, 579, 6111–6114.

    Article  CAS  PubMed  Google Scholar 

  • Mochimaru, M., Masukawa, H., Maoka, T., Mohamed, H. E., Vermaas, W. F. J., & Takaichi, S. (2008). Substrate specificities and availability of fucosyltransferase and β-carotene hydroxylase for myxol 2′-fucoside synthesis in Anabaena sp. strain PCC 7120 compared with Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 190, 6726–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohto, C., Ishida, C., Nakane, H., Muramatsu, M., Nishino, T., & Obata, S. (1999). A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes. Plant Molecular Biology, 40, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, J., Brinkmann, H., Bunk, B., Michael, V., Päuker, O., & Pradella, S. (2012). Think pink: photosynthesis, plasmids and the Roseobacter clade. Environmental Microbiology, 14, 2661–2627.

    Article  CAS  PubMed  Google Scholar 

  • Ramos, A., Coesel, S., Marques, A., Rodrigues, M., Baumgartner, A., Noronha, J., et al. (2008). Isolation and characterization of a stress-inducible Dunaliella salina Lyc-β gene encoding a functional lycopene β-cyclase. Applied Microbiology and Biotechnology, 79, 819–828.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, K. S. (1989). Photosynthetic pigments of algae. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sandmann, G. (1994). Carotenoid biosynthesis in microorganisms and plants. European Journal of Biochemistry, 223, 7–24.

    Article  CAS  PubMed  Google Scholar 

  • Sandmann, G. (2002). Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiologia Plantarum, 116, 431–440.

    Article  CAS  Google Scholar 

  • Schneider, C., Böger, P., & Sandmann, G. (1997). Phytoene desaturase: heterologous expression in an active state, purification, and biochemical properties. Protein Expression and Purification, 10, 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Steiger, S., & Sandmann, G. (2004). Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin. Biotechnology Letters, 26, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Steiger, S., Jackisch, Y., & Sandmann, G. (2005). Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Archives of Microbiology, 184, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner, J., & Linden, H. (2001). Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiology, 125, 810–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner, J., & Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Molecular Biology, 52, 343–356.

    Article  CAS  PubMed  Google Scholar 

  • Stickforth, P., Steiger, S., Hess, W. R., & Sandmann, G. (2003). A novel type of lycopene ε-cyclase in the marine cyanobacterium Prochlorococcus marinus MED4. Archives of Microbiology, 179, 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, K., & Takaichi, S. (2020). Carotenogenesis in cyanobacteria: CruA/CruP-type and CrtL-type lycopene cyclases. The Journal of General and Applied Microbiology, 66, 53–58.

    Google Scholar 

  • Sugiyama, K., Ebisawa, M., Yamada, M., Nagashima, Y., Suzuki, H., Maoka, T., et al. (2017). Functional lycopene cyclase (CruA) in cyanobacterium, Arthrospira platensis NIES-39, and its role in carotenoid synthesis. Plant and Cell Physiology, 58, 831–838.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, K., Takahashi, K., Nakazwa, K., Yamada, M., Kato, S., Shinomura, T., Nagashima, Y., Suzuki, H., Ara, T., Harada, J., & Takaichi, S. (2020). Oxygenic phototrophs need ζ-carotene isomerase (Z-ISO) for carotene synthesis: functional analysis in Arthrospira and Euglena. Plant and Cell Physiology, 61, 276–282.

    Google Scholar 

  • Swift, I. E., & Milborrow, B. V. (1981). Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoid diadinoxanthin and peridinin (C37) from neoxanthin. Biochemical Journal, 199, 69–74.

    Article  CAS  PubMed Central  Google Scholar 

  • Swift, I. E., Milborrow, B. V., & Jeffrey, S. W. (1982). Formation of neoxanthin, diadinoxanthin and peridinin from [14C]zeaxanthin by a cell-free system from Amphidinium carterae. Phytochemistry, 21, 2859–2864.

    Article  CAS  Google Scholar 

  • Takaichi, S. (2000). Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with a photodiode-array detector. Photosynthesis Research, 65, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S. (2009). Distribution and biosynthesis of carotenoids. In C. N. Hunter, F. Daldal, M. C. Thurnauer, & J. T. Beatty (Eds.), The purple phototrophic bacteria (pp. 97–117). Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Takaichi, S. (2011). Carotenoids in algae: distributions, biosynthesis and functions. Marine Drugs, 9, 1101–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaichi, S. (2014). General methods for identification of carotenoids. Biotechnology Letters, 36, 1127–1128.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S., & Maoka, T. (2015). Identification and spectroscopic characterization of neurosporene. Biotechnology Letters, 37, 2027–2031.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S., & Mimuro, M. (1998). Distribution and geometric isomerism of neoxanthin in oxygenic phototrophs: 9′-cis, a sole molecular form. Plant and Cell Physiology, 39, 968–977.

    Article  CAS  Google Scholar 

  • Takaichi, S., & Mochimaru, M. (2007). Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cellular and Molecular Life Sciences, 64, 2607–2619.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S., & Shimada, K. (1992). Characterization of carotenoids in photosynthetic bacteria. Methods in Enzymology, 213, 374–385.

    Article  CAS  Google Scholar 

  • Takaichi, S., Shimada, K., & Ishidsu, J. (1990). Carotenoids from the aerobic photosynthetic bacterium, Erythrobactor longus: β-carotene and its hydroxyl derivatives. Archives of Miclobiology, 153, 118–122.

    CAS  Google Scholar 

  • Takaichi, S., Maoka, T., & Masamoto, K. (2001). Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R,2′S)-myxol 2′-(2,4-di-O-methyl-α-l-fucoside), not rhamnoside. Plant and Cell Physiology, 42, 756–762.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S., Mochimaru, M., Uchida, H., Murakami, A., Hirose, E., Maoka, T., et al. (2012). Opposite chilarity of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus. Plant and Cell Physiology, 53, 1881–1888.

    Article  CAS  PubMed  Google Scholar 

  • Takaichi, S., Yokoyama, A., Mochimaru, M., Uchida, H., & Murakami, A. (2016). Carotenogenesis diversification in pholygenetic lineages of Rhodophyta. Journal of Phycology, 52, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya, T., Takaichi, S., Misawa, N., Maoka, T., Miyashita, H., & Mimuro, M. (2005). The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Letters, 579, 2125–2129.

    Article  CAS  PubMed  Google Scholar 

  • Vila, M., Couso, I., & León, R. (2008). Carotenoid content in mutants of the chlorophyte Chlamydomonas reinhardtii with low expression levels of phytoene desaturase. Process Biochemistry, 43, 1147–1152.

    Article  CAS  Google Scholar 

  • Xiong, W., Shen, G., & Bryant, D. A. (2017). Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. Photosynthesis Research, 131, 276–280.

    Article  CAS  Google Scholar 

  • Yang, L., Huang, X., Hang, Y., Deng, Y., Lu, Q., & Lu, S. (2014). The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. Journal of Integrative Plant Biology, 56, 902–915.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Huang, X., Lu, Q., Zhu, J., & Lu, S. (2016). Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. Journal of Applied Phycology, 28, 671–678.

    Article  CAS  Google Scholar 

  • Yoshii, Y., Takaichi, S., Maoka, T., Suda, S., Sekiguchi, H., Nakayama, T., et al. (2005). Variation of siphonaxanthin series among the genus Nephroselmis (Prasinophyceae, Chlorophyta), including a novel primary methoxy carotenoid. Journal of Phycology, 41, 827–834.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Takaichi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takaichi, S. (2020). Carotenoids in Phototrophic Microalgae: Distributions and Biosynthesis. In: Jacob-Lopes, E., Queiroz, M., Zepka, L. (eds) Pigments from Microalgae Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-50971-2_2

Download citation

Publish with us

Policies and ethics