Skip to main content
Log in

Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BKT, CRTO:

4,4′-Ketolase

Car:

Carotenoid

Chl:

Chlorophyll

CHX:

Cycloheximide

CHY-b, CRTR-b, CRTZ:

3,3′-Hydroxylase

CPTA:

2-(4-Chlorophenylthio)-triethylamine

CRTL-b:

Lycopene β-cyclase

DMAPP:

Dimethylallyl pyrophosphate

DPA:

Diphenylamine

GGPP:

Geranylgeranyl pyrophosphate

HL:

High-light

IPP:

Isopentenylpyrophosphate

IPI:

Isopentenylpyrophosphate isomerase

LHC:

Light-harvesting complexes

MGDG:

Monogalactosyldiacylglycerol

NF:

Norflurazon

PAGE:

Polyacrylamide gel electrophoresis

PDS:

Phytoene desaturase

PQ:

Plastoquinone

PS:

Photosystem

PSY:

Phytoene synthase

PTOX:

Plastid terminal oxidase of chlororespiration

ROS:

Reactive oxygen species

SC:

Secondary carotenoid

SOD:

Superoxide dismutase

TAG:

Triacylglycerol

ZDS:

ζ-Carotene desaturase

References

  • Abe K, Takizawa H, Kimura S, Hirano M (2004) Characteristics of chlorophyll formation of the aerial microalga Coelastrella striolata var. multistriata and its application for environmental biomonitoring. J Biosci Bioeng 98:34–39

    PubMed  CAS  Google Scholar 

  • Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 100:656–661

    Article  CAS  Google Scholar 

  • Allen JF (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 165:609–631

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90:109–116

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 77–104

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Bar E, Rise M, Vishkautsan M, Arad SM (1995) Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534

    CAS  Google Scholar 

  • Barr J, White WS, Chen L, Bae S, Rodermel S (2004) The GHOST terminal oxidase regulates developmental programming in tomato fruit. Plant Cell Environ 27:840–852

    Article  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Shaish A, Avron M (1989) Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91:1040–1043

    Article  PubMed  CAS  Google Scholar 

  • Bidigare RR, Ondrusek ME, Kennicutt MC, Iturriaga R, Harvey HR, Haham RW, Macko SA (1993) Evidence for a photo-protective function for secondary carotenoids of snow algae. J Phycol 29:427–434

    Article  CAS  Google Scholar 

  • Bjerkeng B (1997) Chromatographic analysis of synthesized astaxanthin—a handy tool for the ecologist and the forensic chemist? Prog Fish Cult 59:129–140

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Boussiba S, Fan L, Vonshak A (1992) Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol 213:386–391

    Article  CAS  Google Scholar 

  • Boussiba S, Bing W, Yuan JP, Zarka A, Chen F (1999) Changes in pigment profiles of Haematococcus pluvialis during response to environmental stress. Biotechnol Lett 21:601–604

    Article  CAS  Google Scholar 

  • Breitenbach J, Misawa N, Kajiwara S, Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140:241–246

    Article  PubMed  CAS  Google Scholar 

  • Breitenbach J, Zhu CF, Sandmann G (2001) Bleaching norflurazon inhibits phytoene desaturase by competition with the cofactors. J Agric Food Chem 49:5270–5272

    Article  PubMed  CAS  Google Scholar 

  • Brinda BR, Sarada R, Kamath BS, Ravishankar GA (2004) Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis—cultural and regulatory aspects. Curr Sci 87:1290–1295

    CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2008) Carotenoids. Handbook. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  • Brown TE, Richardson FL, Vaughn ML (1967) Development of red pigmentation in Chlorococcum wimmeri (Chlorophyta: Chlorococcales). Phycologia 6:167–184

    CAS  Google Scholar 

  • Burzyk J (1987) Cell wall carotenoids in green algae which form sporopollenins. Phytochem 26:121–128

    Article  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68

    Article  PubMed  CAS  Google Scholar 

  • Ceron MC, García-Malea MC, Rivas J, Acien FG, Fernandez JM, Del Río E, Guerrero MG, Molina E (2007) Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74:1112–1119

    Article  PubMed  CAS  Google Scholar 

  • Chamovitz D, Pecker I, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate limiting step in carotenoids biosynthesis. J Biol Chem 268:17348–17353

    PubMed  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  PubMed  CAS  Google Scholar 

  • Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JCS (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for psy and pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:602–611

    Article  PubMed  CAS  Google Scholar 

  • Cui B, Zhong F (2008) Effects of plant growth regulators on growth and astaxanthin content in green alga Haematoccus pluvialis. Fisheries Sci 27:478–482

    CAS  Google Scholar 

  • Cunningham F, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Cunningham F, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492

    Article  PubMed  CAS  Google Scholar 

  • Czerpak R, Piotrowska A, Szulecka K (2006) Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiol Plant 28:195–203

    Article  CAS  Google Scholar 

  • Del Campo JAD, Moreno J, Rodrıguez H, Angeles Vergas M, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  PubMed  CAS  Google Scholar 

  • Del Río E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815

    Article  PubMed  CAS  Google Scholar 

  • Diversé-Pierluissi M, Krogmann DW (1988) A zeaxanthin protein from Anacystis nidulans. Biochim Biophys Acta 933:372–377

    Article  Google Scholar 

  • Dong QL, Zao XM, Xing XY, Hu JZ, Gong JX (2007) Mechanism of salt stress inducing astaxanthin synthesis in Haematococcus pluvialis. Huaxue Gong Cheng 35:45–47

    CAS  Google Scholar 

  • Droop MR (1955a) Carotenogenesis in Haematococcus pluvialis. Nature 175:42–43

    Article  CAS  Google Scholar 

  • Droop MR (1955b) Some factors governing encystment in Haematocccus pluvialis. Arch Mikrobiol 21:267–272

    Article  PubMed  CAS  Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J Phycol 30:829–833

    Article  Google Scholar 

  • Fan L, Vonshak A, Zarka A, Boussiba S (1998) Does astaxanthin protect Haematococcus against light damage? Z Naturforsch 53c:93–100

    Google Scholar 

  • Fassett RG, Coombes JS (2009) Astaxanthin, oxidative stress, inflammation and cardiovascular disease. Future Cardiol 5:333–342

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Mullineaux PM (1994) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton

    Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Miura Y, Misawa N (1997) In vitro characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272:6128–6135

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Shimada H, Misawa N (1998) Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur J Biochem 252:229–236

    Article  PubMed  CAS  Google Scholar 

  • Green J (1963) The occurrence of astaxanthin in the euglenoid Trachelomonas volvocina. Comp Biochem Physiol 9:313–316

    Article  CAS  Google Scholar 

  • Grünewald K, Hagen C (2000) Extrusion of secondary carotenoid containing vesicles from flagellates of Haematococcus pluvialis (Volvocales; Chlorophyceae). J Appl Bot 74:141–144

    Google Scholar 

  • Grünewald K, Hagen C (2001) β-carotene is the intermediate exported from the chloroplast during accumulation of secondary carotenoid in Haematococcus pluvialis. J Appl Phycol 13:89–93

    Article  Google Scholar 

  • Grünewald K, Hagen C, Braune K (1997) Secondary carotenoid accumulation in flagellates of the green alga Haematococcus lacustris. Eur J Phycol 32:387–392

    Google Scholar 

  • Grünewald K, Eckert M, Hirschberg J, Hagen C (2000) Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol 122:1261–1268

    Article  PubMed  Google Scholar 

  • Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029

    Article  PubMed  Google Scholar 

  • Grung M, Metzger P, Liaaen-jensen S (1989) Algal carotenoids 42. Secondary carotenoids of algae. 1. Primary and secondary carotenoids in two races of the green alga Botryococcus braunii. Biochem Syst Ecol 17:263–269

    Article  CAS  Google Scholar 

  • Grung M, D’Souza FML, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids. 51. Secondary carotenoids. 2. Haematococcus pluvialis aplanospores as a source of (3S, 3′S)-astaxanthin esters. J Appl Phycol 4:165–171

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biochem Sci 21:210–216

    CAS  Google Scholar 

  • Hagen C, Braune W, Birckner E, Nüske J (1993a) Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales). I. The accumulation period as an active metabolic process. New Phytol 125:625–633

    Article  CAS  Google Scholar 

  • Hagen C, Braune W, Greulich F (1993b) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol B 20:153–160

    Article  CAS  Google Scholar 

  • Hagen C, Grünewald K, Schmidt S, Muller J (2000) Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur J Phycol 35:75–82

    Article  Google Scholar 

  • Hanagata N, Dubinsky Z (1999) Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceae, Chlorophyta). J Phycol 35:960–966

    Article  CAS  Google Scholar 

  • Hanagata N, Karube I, Chihara M (1996) Bark-inhabiting green algae in Japan (1). Scenedesmus komarekii and Coelastrella multistriata var. multistriata (Scotiellocysteideae, Chlorellaceae, Chlorophyceae). J Jpn Bot 71:87–97

    Google Scholar 

  • Harker M, Hirschberg J (1997) Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing algal gene for β-C-4-oxygenase, crtO. FEBS Lett 404:129–134

    Article  PubMed  CAS  Google Scholar 

  • Harker M, Young AJ (1995) Inhibition of astaxanthin synthesis in the green alga Haematococcus. Eur J Phycol 30:179–187

    Article  Google Scholar 

  • Hasunuma T, Miyasawa S-I, Yoshimura S, Shinzaki Y, Tomizawa K-I, Shindo K, Choi S-K, Misawa N, Miyake C (2008) Hyperproduction of astaxanthin in plant leaves by transplastomic engineering. Plant J 55:857–868

    Article  PubMed  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (1998) Molecular biology of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids vol 3: biosynthesis and metabolism. Birkäuser, Basel, pp 149–194

    Google Scholar 

  • Hoham RW, Mullet (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. Nov. (Chlorophyta, Volvocales). Phycologia 16:53–68

    Google Scholar 

  • Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008a) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008b) Microalgal triacylglycerols as feedstocks for biofuel production : perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006a) Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  PubMed  CAS  Google Scholar 

  • Huang JC, Wang Y, Sandmann G, Chen F (2006b) Isolation and characterization of a carotenoid oxygenase gene for Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    Article  PubMed  CAS  Google Scholar 

  • Hui B, Pei L (2005) An overview of carotenoid production and consumption in China. Carotenoid Sci 9:48

    Google Scholar 

  • Hui Z, Gongshi X, Xuli D (2005) Advance of natural lutein and astaxanthin in China. Carotenoid Sci 9:49

    Google Scholar 

  • Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser J, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatase by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  PubMed  CAS  Google Scholar 

  • Imamoglu E, Dalay MC, Sukan FV (2009) Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnol 26:199–204

    Article  CAS  Google Scholar 

  • Inoue K (2004) Carotenoid hydroxylation—P450 finally! Trends Plant Sci 9:515–517

    Article  PubMed  CAS  Google Scholar 

  • Ip PF, Chen F (2005a) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Ip PF, Chen F (2005b) Production of astaxanthin by the green alga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  • Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766

    Article  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  PubMed  CAS  Google Scholar 

  • Jin E, Lee CG, Polle JEW (2006) Secondary carotenoid accumulation in Haematococcus (Chlorophyceae): biosynthesis, regulation, and biotechnology. J Microbiol Biotechnol 16:821–831

    CAS  Google Scholar 

  • Johnson EA, An GH (1991) Astaxanthin from microbial sources. Crit Rev Biotechnol 11:297–326

    Article  CAS  Google Scholar 

  • Josse EM, Simkin AJ, Gaffé J, Labouré A-M, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Jyonouchi H, Sun S, Tomita Y, Gross MD (1995) Astaxanthin, a carotenoid without vitamin A activity, augments antibody responses in cultures including T-helper cell clones and suboptimal doses of antigen. J Nutr 125:2483–2492

    PubMed  CAS  Google Scholar 

  • Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Misawa N (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 29:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara S, Fraser PD, Kondo K, Misawa N (1997) Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J 324:421–426

    PubMed  CAS  Google Scholar 

  • Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:403–405

    Article  CAS  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45:642–649

    Article  CAS  Google Scholar 

  • Klotz LO (2002) Oxidant-induced signaling: effects of peroxynitrite and singlet oxygen. Biol Chem 383:443–456

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioprocess Eng 8:322–330

    Article  CAS  Google Scholar 

  • Kobayashi M, Sakamoto Y (1999) Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol Lett 21:265–269

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J Ferment Bioeng 74:61–63

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nishio N, Nagai S, Kurimura Y, Tsuji Y (1997a) Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl Microbiol Biotechnol 48:351–356

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y (1997b) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97

    Article  CAS  Google Scholar 

  • Kobayashi M, Todoroki Y, Hirai N, Kurimura Y, Ohigashi H, Tsuji Y (1998) Biological activities of abscisic acid analogs in the morphological change of the green alga Haematococcus pluvialis. J Ferment Bioeng 85:529–531

    Article  CAS  Google Scholar 

  • Komor E, Tanner W (1974) The hexose-proton symport system of Chlorella vulgaris. Specificity, stoichiometry and energetics of sugar-induced proton uptake. Eur J Biochem 44:219–223

    Article  PubMed  CAS  Google Scholar 

  • Kopecky J, Schoefs B, Stys D, Loest K, Pulz O (2000) Microalgae as a source for secondary carotenoid production. A screening study. Arch Hydrobiol 98:153–167

    Google Scholar 

  • Ladygin VG (2000) Biosynthesis of carotenoids in the chloroplasts of the green alga Haematococcus pluvialis. Russ J Plant Physiol 47:796–814

    Article  CAS  Google Scholar 

  • Lemaire P, Livingstone DR (1995) Effects of the inhibitor ellipticine on cytochrome P450 reductase and cytochrome P450 (1A1) function in hepatic microsomes of flounder (Platichtys flesus). Mar Environ Res 39:73–77

    Article  CAS  Google Scholar 

  • Lemoine Y, Rmiki N-E, Créach A, Rachidi J, Schoefs B (2008) Cytoplasmic accumulation of astaxanthin by the green alga Haematococcus pluvialis (Flotow). In: Schoefs B (ed) Plant cell compartments—selected topics. Research Signpost, Trivandrum, pp 251–284

    Google Scholar 

  • Lers A, Levy H, Zamir A (1991) Co-regulation of a gene homologous to early light-induced genes in higher plants and beta-carotene biosynthesis in the alga Dunaliella bardawil. J Biol Chem 266:13698–13705

    PubMed  CAS  Google Scholar 

  • Levy H, Gokhman I, Zamir A (1992) Regulation and light-harvesting complex II association of a Dunaliella protein homologous to early light-induced proteins in higher plants. J Biol Chem 267:18831–18836

    PubMed  CAS  Google Scholar 

  • Levy H, Tal T, Shaish A, Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin binding protein. J Biol Chem 268:20892–20896

    PubMed  CAS  Google Scholar 

  • Leya T, Rahn A, Lütz C, Remias D (2009) Response of artic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol Ecol 67:432–443

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2008a) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Huang JL, Sandmann G, Chen F (2008b) Glucose sensing and the mitochondria alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735–743

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Huang J, Sandmann G, Chen F (2009) High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J Phycol 45:635–641

    Article  CAS  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  PubMed  CAS  Google Scholar 

  • Linden H (1999) Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim Biophys Acta 1446:203–212

    PubMed  CAS  Google Scholar 

  • Liu BH, Lee YK (2000) Secondary carotenoids formation by the green alga Chlorococcum sp. J Appl Phycol 12:301–307

    Article  CAS  Google Scholar 

  • Liu JG, Liu W, Yin MY, Sun YN, Zhang Z, Li YY, Wang ZF, Lin W, Zhang JP, Shi PJ, Zhang XL, Sun YH, Xue YB, Cui XJ (2005) Some scientific and technical approaches to culture Haematococcus pluvialis from laboratory to pilot scale for natural astaxanthin. Carotenoid Sci 9:50

    CAS  Google Scholar 

  • Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67

    Article  PubMed  CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  PubMed  CAS  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding β-C-4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474

    Article  PubMed  CAS  Google Scholar 

  • Ma RY-N, Chen F (2001) Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga. Chlorococcum sp. Process Biochem 36:1175–1179

    Article  CAS  Google Scholar 

  • Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  PubMed  CAS  Google Scholar 

  • Margalith PZ (1999) Production of ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51:431–438

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Gudina E, Barredo JL (2008) Conversion of β-carotene into astaxanthin: two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact 7:3

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Nickels R, McIntosh L (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J 29:269–279

    Article  PubMed  CAS  Google Scholar 

  • Meng CX, Teng CY, Jiang P, Qin S, Tseng C (2005) Cloning and characterization of β-carotene ketolase gene promoter in Haematococcus pluvialis. Acta Biochim Biophys Sinica 37:270–275

    Article  CAS  Google Scholar 

  • Miao F, Dayan L, Li Y, Zeng M (2006) Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 352:176–181

    Article  PubMed  CAS  Google Scholar 

  • Misawa N (2009) Pathway engineering of plants toward astaxanthin production. Plant Biotechnol 26:93–99

    CAS  Google Scholar 

  • Misawa N, Satomi Y, Kondo K, Yokoyama Y, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    PubMed  CAS  Google Scholar 

  • Moller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (1986) Engineering of ketocarotenoids in potato tubers. Metab Eng 8:253–263

    Article  CAS  Google Scholar 

  • Moulin P, Lemoine Y, Schoefs B (2010) Modifications of the carotenoid metabolism in plastids: a response to stress conditions. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York; 3rd edn, Taylor and Francis, New York, pp 407–433

  • Müller T, Bluβ W, Martin CD, Rogaschewski S, Fuhr G (1998) Snow from Northwest Svalbard: their identification, distribution, pigment and nutrient content? Polar Biol 20:14–32

    Article  Google Scholar 

  • Nebdalova L, Kocianova M, Lukavsky J (2008) Ecology of snow algae in the Giant Mts. Opera Corcon 45:59–68

    Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  PubMed  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Olaizola M, Huntley ME (2003) Recent advances in commercial production of astaxanthin from microalgae. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Vol. 9: biomaterials and bioprocessing. Science Publishers, Enfield, NH, pp 143–164

    Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556

    Article  CAS  Google Scholar 

  • Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085

    Article  CAS  Google Scholar 

  • Palozza P, Krinsky NI (1992) Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch Biochem Biophys 297:291–295

    Article  PubMed  CAS  Google Scholar 

  • Park EK, Lee CG (2001) Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J Microbiol Biotechnol 11:1024–1030

    CAS  Google Scholar 

  • Park J-K, Tran PN, Kim J-D, Hong S-J, Lee CG (2009) Carotenogenesis in Haematococcus lacustris: role of protein tyrosine phosphatases. J Microbiol Biotechnol 19:918–921

    Article  PubMed  CAS  Google Scholar 

  • Pelah D, Sintov A, Cohen E (2004) The effect of salt stress on the production of canthaxanthin and astaxanthin by Chlorella zofingiensis grown under limited light intensity. World J Microbiol Biotechnol 20:483–486

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    Article  CAS  Google Scholar 

  • Phillips LG, Cowan AK, Rose PD, Logie MRR (1995) Operation of the xanthophyll cycle of non-stressed and stressed cells of Dunaliella salina Teod. in response to diurnal changes in incident irradiation: a correlation with intracellular beta-carotene content. J Plant Physiol 146:547–553

    CAS  Google Scholar 

  • Qin S, Liu G-X, Hu Z-Y (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43:795–802

    Article  CAS  Google Scholar 

  • Qiu B, Li Y (2006) Photosynthetic acclimation and photoprotective mechanism in Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117–126

    Article  Google Scholar 

  • Rabbani S, Beyer P, Lintig JV, Hugheney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    Article  CAS  Google Scholar 

  • Remias D, Holzinger A, Lütz C (2009) Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302–312

    Article  Google Scholar 

  • Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. doi:10:1007/s00709-010-0123-y

  • Renstrom B, Liaaen-Jensen S (1981) Fatty acid composition of some esterified carotenols. Comp Biochem Physiol 69(Part B):625–627

    Google Scholar 

  • Renstrom B, Berger H, Liaaen-Jensen S (1981a) Esterified, optical pure (3S, 3′S)-astaxanthin from flowers of Adonis annua. Biochem Syst Ecol 9:249–250

    Article  Google Scholar 

  • Renstrom B, Borch G, Skulberg OM, Liaaen-Jensen S (1981b) Optical purity of (3S, 3′S)-astaxanthin from Haematococcus pluvialis. Phytochemistry 20:2561–2564

    Article  Google Scholar 

  • Rezenka T, Nedbalova L, Sigler K, Cepak V (2008) Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical mass spectrometry. Phytochemistry 69:479–490

    Article  CAS  Google Scholar 

  • Rise M, Cohen E, Vishkautsan M, Cojocaru M, Gottlieb HE, Arad SM (1994) Accumulation of secondary carotenoids in Chlorella zofingiensis. J Plant Physiol 144:287–292

    CAS  Google Scholar 

  • Rmiki NE, Schoefs B, Juricik B, Lemoine Y (1996) Astaxanthin biosynthesis and encystment induced by light stress in a green unicellular alga. In: Schoefs B, Franck F, Aghion J (eds) Biology, biochemistry and molecular biology of photosynthesis. Bull Soc Roy Sci Liège 35:367–368

  • Rmiki NE, Schoefs B, Lemoine Y (1999) Carotenoids and stress in higher plants and algae. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 465–482

    Chapter  Google Scholar 

  • Rohmer M (2010) Methylerythritol phosphate pathway. In: Mander L, Lui H-W (eds) Comprehensive natural products II chemistry and biology, vol 1. Elsevier, Oxford, pp 517–555

    Chapter  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002a) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002b) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317

    Article  Google Scholar 

  • Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi SB, Pogson BJ, Park YI (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279:25320–25325

    Article  PubMed  CAS  Google Scholar 

  • Salgado APF, Pereira C, Seica RM, Fernandes AP, Flatt PR, Santos RM, Rosario LM, Ramasamy R (1999) Modulation of glucose-induced insulin secretion by cytosolic redox state in clonal beta-cells. Mol Cell Endocrinol 154:79–88

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G (1994) Carotenoid biosynthesis in microorganisms and plants. Eur J Biochem 223:7–24

    Article  PubMed  CAS  Google Scholar 

  • Sandmann G, Kuhn M, Böger P (1993) Carotenoids in photosynthesis: protection of D1 degradation in the light. Photosynth Res 35:185–190

    Article  CAS  Google Scholar 

  • Santos MF, Mesquita JF (1984) Ultrastructural study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales): some aspects of carotenogenesis. Cytologia 49:215–228

    Google Scholar 

  • Sauer N, Tanner W (1989) The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett 259:43–46

    Article  PubMed  CAS  Google Scholar 

  • Sayed OH, Hegazy AK (1992) Inhibition of secondary carotenoid biosynthesis during degreening of Chlorella fusca (Chlorococcales, Chlorophyta) and implications for growth and survival. Cryptogam Algol 13:181–186

    Google Scholar 

  • Schoefs B (2003) Chlorophyll and carotenoid analysis in food products. A practical case-by-case view. Trends Analyt Chem 22:335–339

    Article  CAS  Google Scholar 

  • Schoefs B, Rmiki NE, Rachidi J, Lemoine Y (2001) Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett 500:125–128

    Article  PubMed  CAS  Google Scholar 

  • Schroeder WA, Johnson EA (1995) Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. J Biol Chem 270:18374–18379

    Article  PubMed  CAS  Google Scholar 

  • Seddas P, Gianinazzi-Pearson P, Schoefs B, Küster H, Wipf D (2009) Communication and signaling in the plant-fungus symbiosis: the mycorrhiza. In: Baluska F (ed) Plant-environment interactions from behavioral perspective. Springer Verlag, Berlin, pp 45–71

    Google Scholar 

  • Semenza GL (1999) Perspectives on oxygen sensing. Cell 98:281–284

    Article  PubMed  CAS  Google Scholar 

  • Sestak Z, Baslerova M (1963) Changes in chlorophylls and carotenoids in ageing culture of green algae as studied by paper chromatography. In: Studies of microalgae and photosynthetic bacteria, Japan. Soc. Plant Physiol. (ed), University of Tokyo, pp 423–429

  • Seybold A, Goodwin TW (1959) Occurence of astaxanthin in the flower petals of Adonis annua L. Nature 184:1714–1715

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    PubMed  CAS  Google Scholar 

  • Somanchi A, Mayfield SP (1999) Nuclear-chloroplast signalling. Curr Opin Plant Biol 2:404–409

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Wolf K, Hilgarth C, Tanner W, Sauer N (1995) Subcellular localization of the inducible Chlorella HUP1 monosaccharide-H+ symporter and cloning of a coinduced galactose-H+ symporter. Plant Physiol 107:33–41

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Arntzen CJ (1983) Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97:1327–1337

    Article  PubMed  CAS  Google Scholar 

  • Stalberg K, Lindgren O, Ek B, Höglund AS (2003) Synthesis of ketocarotenoids in the seeds of Arabidopsis thaliana. Plant J 36:771–779

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthetic genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Article  PubMed  CAS  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular Chlorophyte. Proc Natl Acad Sci USA 95:11482–11488

    Article  PubMed  CAS  Google Scholar 

  • Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenesis transcription of heterotrophic Chlorella zofingiensis (Chlorophyceae). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Susek RE, Chory J (1992) A tale of two genomes: role of a chloroplast signal coordinating nuclear and plastid genome expression. Aust J Plant Physiol 19:387–401

    Article  CAS  Google Scholar 

  • Tan S, Cunningham FX, Youmans M, Grabowski B, Sun Z, Gantt E (1995) Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. J Phycol 31:897–905

    Article  CAS  Google Scholar 

  • Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H (1994) Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15:15–19

    Article  PubMed  CAS  Google Scholar 

  • Tanner W (1969) Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun 36:278–283

    Article  PubMed  CAS  Google Scholar 

  • Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24:659–661

    Article  PubMed  CAS  Google Scholar 

  • Tian L, DellaPenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29

    Article  PubMed  CAS  Google Scholar 

  • Tischer J (1936) Uber das Euglenarhodon und andere Carotinoide einer roten Euglene. (Carotinoide der Süβwasseralgen, I.Teil). Hoppe-Seylers Z Physiol Chem 239:257–269

    CAS  Google Scholar 

  • Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138

    Article  CAS  Google Scholar 

  • Tracey AS, Gresser MJ (1986) Interaction of vanadate with phenol and tyrosine: implications for the effects of vanadate on systems regulated by tyrosine phosphorylation. Proc Natl Acad Sci USA 83:609–613

    Article  PubMed  CAS  Google Scholar 

  • Tran N-P, Park J-K, Lee C-G (2009) Proteomic analysis of proteins in green alga Haematococcus pluvialis (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb Technol 45:241–246

    Article  CAS  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  PubMed  CAS  Google Scholar 

  • Vechtel B, Eichenberger W, Ruppel G (1992a) Lipid bodies in Eremosphaera viridis De Bary (Chlorophyceae). Plant Cell Physiol 33:41–48

    CAS  Google Scholar 

  • Vechtel B, Pistorius EK, Ruppel HG (1992b) Occurence of secondary carotenoids in PS I complexes isolated from Eremosphaera viridis De Bary (Chlorophyceae). Z Naturforsch 47c:51–56

    Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Vidhyavathi R, Sarada R, Rhavishankar GA (2009) Expression of carotenogenic genes and carotenoid production in Haematococcus pluvialis under the influence of carotenoid and fatty acid synthesis inhibitors. Enzyme Microb Technol 45:88–93

    Article  CAS  Google Scholar 

  • von Flotow J (1844) Uber Haematococcus pluvialis. Verh Kais Leopold-Carol Akad Naturf. Nova Acta Acad Caes Leopold-Carolin Nat Curios 20:411–606

    Google Scholar 

  • Wang Y, Peng J (2008) Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J Microbiol Biotechnol 24:1915–1922

    Article  CAS  Google Scholar 

  • Wang X, Willen R, Wadström T, Andersen LP (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44:2452–2457

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process during high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Wang SB, Chen F, Sommerfeld M, Hu Q (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17–29

    Article  PubMed  CAS  Google Scholar 

  • Wang JX, Sommerfeld M, Hu Q (2009) Occurence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203

    Article  PubMed  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:1–9

    Article  Google Scholar 

  • Wu DY, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55

    Article  PubMed  CAS  Google Scholar 

  • Xiong F, Komenda J, Kopecky J, Nedbal LV (1997) Strategies of ultraviolet-B protection in microscopic algae. Physiol Plant 100:378–388

    Article  CAS  Google Scholar 

  • Yong YYR, Lee YK (1991) Do carotenoids play a photoprotective role in the cytoplasm of Haematococcus lacustris (Chlorophyta)? Phycologia 30:257–261

    Google Scholar 

  • Young AJ, Britton G (1990) Carotenoids and Stress. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 87–112

    Google Scholar 

  • Zhang DH, Lee YK (2001) Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. Strain MA-1. Appl Microbiol Biotechnol 55:537–540

    Article  PubMed  CAS  Google Scholar 

  • Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331

    Article  CAS  Google Scholar 

  • Zhekisheva M, Zarka A, Khozin-Goldberg I, Cohen Z, Boussiba S (2005) Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae). J Phycol 41:819–826

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant cell tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Schoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoine, Y., Schoefs, B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106, 155–177 (2010). https://doi.org/10.1007/s11120-010-9583-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9583-3

Keywords

Navigation