Skip to main content
Log in

Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

Chl:

Chlorophyll

DM:

n-Dodecyl-β-d-maltoside

DMAP:

Dimethylallyl pyrophosphate

FAD:

Flavin adenine dinucleotide

FPP:

Farnesyl pyrophosphate

GGP:

Geranyl pyrophosphate

GGPP:

Geranylgeranyl pyrophosphate

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HPLC:

High-performance liquid chromatography

IPP:

Isopentenyl pyrophosphate

LDS:

Lithium dodecylsulfate

OG:

n-Octyl-β-d-glucopyranoside

PAGE:

Polyacrylamide gel electrophoresis

PMSF:

Phenylmethylsulfonylfluoride

PS:

Photosystem

SDS:

Sodium dodecylsulfate

References

  • Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    Article  CAS  PubMed  Google Scholar 

  • Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Balashov SP, Imasheva ES, Boichenko VA et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornemann S (2002) Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep 19:761–772

    Article  CAS  PubMed  Google Scholar 

  • Bradbury LMT, Shumskaya M, Tzfadia O, Wu S-B, Kennelly EJ, Wurtzel ET (2012) Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms. Proc Natl Acad Sci USA 109:E1888–E1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1994) Carotenoids, vol 1A., Isolation and analysisBirkhauser, Basel

    Google Scholar 

  • Bryant DA, Frigaard N-U (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Liu Z (2013) Green bacteria: insights into green bacterial evolution through genomic analyses. In: Beatty JT (ed) Advances in botanical research, vol 66., Genome evolution of photosynthetic bacteriaElsevier, New York, pp 99–150

    Google Scholar 

  • Chen Y, Li F, Wurtzel ET (2010) Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol 153:66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogdell RJ (1978) Carotenoids in photosynthesis. Philos Trans R Soc B 284:569–579

    Article  CAS  Google Scholar 

  • Cramer WA, Yan J, Zhang H, Kurisu G, Smith JL (2005) Structure of the cytochrome b 6 f complex: new prosthetic groups Q-space, and the ‘hor-d’oeuvres hypothesis’ for assembly of the complex. Photosynth Res 85:133–144

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp. strain PCC7942. Plant Cell 6:1107–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domonkos I, Kis M, Gombos Z, Ughy B (2013) Carotenoids, versatile components of oxygenic photosynthesis. Prog Lipid Res 52:539–561

    Article  CAS  PubMed  Google Scholar 

  • Dubbs JM, Bryant DA (1991) Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena sp. PCC 7409. Mol Microbiol 5:3073–3085

    Article  CAS  PubMed  Google Scholar 

  • Eugester C (1995) History: 175 years of carotenoid chemistry. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A., Isolation and analysisBasel, Birkhauser, pp 1–11

    Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Sakuragi Y, Bryant DA (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Methods Mol Biol 274:325–340

    CAS  PubMed  Google Scholar 

  • Graham JE, Bryant DA (2008) The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular cyanobacterium Synechococcus sp. strain PCC Synechococcus sp. PCC 7002. J Bacteriol 190:7966–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JE, Bryant DA (2009) The biosynthetic pathway for the synthesis of the myxol-2′-fucoside in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 191:3292–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotjohann I, Fromme P (2005) Structure of cyanobacterial photosystem I. Photosynth Res 85:51–72

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Ikejiri S, Nakayama T, Nishino T (2003) Fusion-type lycopene β-cyclase from a thermoacidophilic archaeon Sulfolobus solfataricus. Biochem Biophys Res Commun 305:586–591

    Article  CAS  PubMed  Google Scholar 

  • Kandori H (2015) Ion-pumping microbial rhodopsins. Front Mol Biosci 2:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Krubasick P, Sandmann G (2000) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28:806–810

    Article  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Lagarde D, Vermaas W (1999) The zeaxanthin biosynthesis enzyme beta-carotene hydroxylase is involved in myxoxanthophyll synthesis in Synechocystis sp. PCC 6803. FEBS Lett 454:247–251

    Article  CAS  PubMed  Google Scholar 

  • Lambert DH, Stevens SE Jr (1986) Photoheterotrophic growth of Agmenellum quadruplicatum PR-6. J Bacteriol 165:654–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C-W, Zhang X-W, Tian L, Qin S (2008) Functional characterization of sll0659 from Synechocystis sp. PCC 6803. Ind J Biochem Biophys 45:275–277

    CAS  Google Scholar 

  • Ludwig M, Bryant DA (2011) Transcription profiling of the cyanobacterium Synechococcus sp. PCC 7002 using high-throughput cDNA sequencing. Front Microbiol 2:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci USA 105:16561–16565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcia M, Ermler U, Peng G, Michel H (2009) The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification. Proc Natl Acad Sci USA 106:9625–9630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maresca JA, Graham JE, Wu M, Eisen JA, Bryant DA (2007) Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc Natl Acad Sci USA 104:11784–11789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maresca JA, Graham JE, Bryant DA (2008a) Carotenoid biosynthesis in chlorophototrophs: the biochemical and genetic basis for structural diversity. Photosynth Res 97:121–140

    Article  CAS  PubMed  Google Scholar 

  • Maresca JA, Romberger SP, Bryant DA (2008b) Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J Bacteriol 190:6384–6391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sarma AK, Nesbø CL, MacLeod D, Baptest E, Doolittle WF, Charlebois RL, Legauilt B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Peck RF, Johnson EA, Krebs MP (2002) Identification of a lycopene-cyclase required for bacteriorhodopsin biogenesis in the archaeon Halobacterium salinarum. J Bacteriol 184:2889–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rögl H, Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38:16214–16222

    Article  PubMed  Google Scholar 

  • Schnurr G, Misawa N, Sandmann G (1996) Expression, purification and properties of lycopene cyclase from Erwinia uredovora. Biochem J 315:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Bryant DA (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the photosystem I reaction center core complex. Photosynth Res 44:51–53

    Article  Google Scholar 

  • Shen G, Zhao J, Antonkine ML, Reimer SK, Weiland S, van der Est A, Stehlik D, Bittl R, Golbeck JH, Bryant DA (2002) Assembly of the [4Fe–4S] Clusters in Photosystem I. I. The rubA gene product is required for assembly of the [4Fe–4S] cluster FX of photosystem I. J Biol Chem 277:20343–20354

    Article  CAS  PubMed  Google Scholar 

  • Stevens SE Jr, Porter RD (1980) Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci USA 77:6052–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens SE Jr, Patterson CO, Myers J (1973) The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9:427–430

    CAS  Google Scholar 

  • Stickforth P, Steiger S, Hess WR, Sandmann G (2003) A novel type of lycopene epsilon-cyclase in the marine cyanobacterium Prochlorococcus marinus MED5. Arch Microbiol 179:409–415

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosynthesis, and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaichi S, Maoka T, Masamoto K (2001) Myxoxanthophyll in Synechocystis sp. PCC 6803 is myxol 2′-dimethyl-fucoside, (3R, 2′S)-myxol 2′-(2,4-di-O-methyl-alpha-l-fucoside), not rhamnoside. Plant Cell Physiol 42:756–762

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Mochimaru M, Maoka T, Katoh H (2005) Myxol and 4-ketomyxol 2′-fucosides, not rahmnosides from Anabaena sp. PCC 7120 and Nostoc punctiforme PCC 73102, and proposal for the biosynthetic pathway of carotenoids. Plant Cell Physiol 46:497–504

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S, Mochimaru M, Uchida H, Murakami A, Hirose E, Maoka T, Tsuchiya T, Mimuro M (2012) Opposite chirality of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus. Plant Cell Physiol 53:1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW (2001) Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 385:61–69

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Viveiros M, Krubasik P, Sandmann G, Houssaini-Iraqui M (2000) Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187:95–100

    Article  CAS  PubMed  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  Google Scholar 

  • Xu Y, Alvey RM, Byrne PO, Graham JE, Shen G, Bryant DA (2011) Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods Mol Biol 684:273–293

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Shen G, Schluchter WM, Zybailov B, Ganago A, Bryant DA, Golbeck JH (1998) Deletion of the PsaF polypeptide modifies the environment of the redox-active phylloquinone (A1). Evidence for unidirectionality of electron transfer in photosystem I. J Phys Chem 102:8288–8299

    Article  CAS  Google Scholar 

  • Yang C, Kosemund K, Cornet C, Paulsen H (1999) Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry 38:16205–16213

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Schaub P, Shisla S, Al-Babili S, Krieger-Liszkay A, Beyer P (2010) The lycopene cyclase CrtY from Pantoea ananatis (formerly Erwinia uredovora) catalyzes an FADred-dependent non-redox reaction. J Biol Chem 285:12109–12120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Ghisla S, Hirschberg J, Mann V, Beyer P (2011) Plant carotene cistrans isomerase CRTISO: a new member of the FADred-dependent flavoproteins catalyzing non-redox reactions. J Biol Chem 286:8666–8676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial Photosystem II assembly and function. Front Plant Sci 7:295

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yue-hui Zhu for technical advice and assistance in some aspects of this study.

Funding

This research was supported by Grants MCB-1021725 and MCB-1613022 from the National Science Foundation to D. A. B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 6820 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, W., Shen, G. & Bryant, D.A. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity. Photosynth Res 131, 267–280 (2017). https://doi.org/10.1007/s11120-016-0316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0316-0

Keywords

Navigation