Skip to main content

Yeast Cell Factories

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 1115 Accesses

Abstract

Yeasts, as unicellular fungi, have been employed for the production of food and beverages since millennia. Modern biotechnology has emerged from these traditional processes. Different yeasts are used for the production of alcohols, organic acids, secondary metabolites, lipids, and recombinant proteins. Here we provide an overview of major products and processes using yeasts, including also the different species spanning the wide phylogenetic diversity of biotechnologically applied yeasts. We highlight the ever-increasing importance of nature’s resource of different yeast species as well as the emerging role of synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi E, Torigoe M, Sugiyama M, Nikawa J-I, Shimizu K (1998) Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value. J Ferment Bioeng 86(3):284–289

    Article  CAS  Google Scholar 

  • Ahmad M, Hirz M, Pichler H, Schwab H (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol 98(12):5301–5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JH, Jang YS, Lee SY (2016) Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol 42:54–66

    Article  CAS  PubMed  Google Scholar 

  • Almeida JR, Fávaro LC, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anyaogu DC, Mortensen UH (2015) Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins. Curr Opin Biotechnol 36:122–128

    Article  CAS  PubMed  Google Scholar 

  • Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100(6):2737–2748

    Article  CAS  PubMed  Google Scholar 

  • Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MM, Ramadan HA, Saini KS, Redwan EM (2014) Cell factories for insulin production. Microb Cell Factories 13:141

    Article  CAS  Google Scholar 

  • Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M (2019) Yeast expression systems: overview and recent advances. Mol Biotechnol 61(5):365–384

    Article  CAS  PubMed  Google Scholar 

  • Barredo JL, García-Estrada C, Kosalkova K, Barreiro C (2017) Biosynthesis of astaxanthin as a main carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. J Fungi (Basel) 3(3):44

    Article  CAS  Google Scholar 

  • Besada-Lombana PB, McTaggart TL, Da Silva NA (2018) Molecular tools for pathway engineering in Saccharomyces cerevisiae. Curr Opin Biotechnol 53:39–49

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Pollmann H, Sandmann G (2019) Genetic modification of the carotenoid pathway in the red yeast Xanthophyllomyces dendrorhous: engineering of a high-yield zeaxanthin strain. J Biotechnol 289:112–117

    Article  CAS  PubMed  Google Scholar 

  • Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17(3):480–488

    Article  CAS  PubMed  Google Scholar 

  • Cavallo E, Charreau H, Cerrutti P, Foresti ML (2017) Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res 17(8):fox084

    Article  CAS  Google Scholar 

  • Celińska E, Nicaud JM (2019) Filamentous fungi-like secretory pathway strayed in a yeast system: peculiarities of Yarrowia lipolytica secretory pathway underlying its extraordinary performance. Appl Microbiol Biotechnol 103(1):39–52

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Hagel JM, Chang L, Tucker JE, Shiigi SA, Yelpaala Y, Chen HY, Estrada R, Colbeck J, Enquist-Newman M, Ibáñez AB, Cottarel G, Vidanes GM, Facchini PJ (2018) A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis. Nat Chem Biol 14(7):738–743

    Article  CAS  PubMed  Google Scholar 

  • Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie JN (1917) The citric acid fermentation of Aspergillus niger. J Biol Chem 31(1):15–37

    Article  CAS  Google Scholar 

  • De Wachter C, Van Landuyt L, Callewaert N (2018) Engineering of yeast glycoprotein expression. Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2018_69

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359

    Article  CAS  PubMed  Google Scholar 

  • Dewan SS (2014) Global markets for enzymes in industrial applications. BIO0300J. BBC Research, Wellesley, MA

    Google Scholar 

  • Diers IV, Rasmussen E, Larsen PH, Kjaersig IL (1991) Yeast fermentation processes for insulin production. Bioprocess Technol 13:166–176

    CAS  PubMed  Google Scholar 

  • Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197(1):33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Egermeier M, Russmayer H, Sauer M, Marx H (2017) Metabolic flexibility of Yarrowia lipolytica growing on glycerol. Front Microbiol 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyder S, De Craene JO, Bär S, Bertazzi DL, Friant S (2015) Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int J Mol Sci 16(1):1509–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426(2):227–237

    Article  CAS  PubMed  Google Scholar 

  • Generoso WC, Schadeweg V, Oreb M, Boles E (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Global Industry Analysts, Inc. (2017) The global market for lactic acid is projected to reach 1.6 million metric tons by 2024. https://strategyr.blogspot.com/2017/06/the-global-market-for-lactic-acid-is.html. Cited 20 Mar 2019

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274 (5287):546, 563–547

    Google Scholar 

  • Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206

    Article  CAS  PubMed  Google Scholar 

  • Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P (2019) Established and upcoming yeast expression systems. Methods Mol Biol 1923:1–74

    Article  PubMed  CAS  Google Scholar 

  • Hale V, Keasling JD, Renninger N, Diagana TT (2007) Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am J Trop Med Hyg 77(6 Suppl):198–202

    Article  PubMed  Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443

    Article  CAS  PubMed  Google Scholar 

  • Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerer G, Hall BD (1981) Expression of a human gene for interferon in yeast. Nature 293(5835):717–722

    Article  CAS  PubMed  Google Scholar 

  • Höhne M, Kabisch J (2016) Brewing painkillers: a yeast cell factory for the production of opioids from sugar. Angew Chem Int Ed Engl 55(4):1248–1250

    Article  PubMed  CAS  Google Scholar 

  • Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Li WJ, Yang HQ, Chen JH (2019) Current strategies and future prospects for enhancing microbial production of citric acid. Appl Microbiol Biotechnol 103(1):201–209

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Damasceno LM, Anderson KA, Zhang S, Old LJ, Batt CA (2011) A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol 90(1):235–247

    Article  CAS  PubMed  Google Scholar 

  • IHS Markit (2015) Citric acid-chemical economics handbook. IHS Markit, London

    Google Scholar 

  • International Yeast Co. Ltd. (1933) Verfahren zur Herstellung von Hefe nach dem Zulaufverfahren. German patent DE583760 C

    Google Scholar 

  • Ito Y, Hirasawa T, Shimizu H (2014) Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotechnol Biochem 78(1):151–159

    Article  CAS  PubMed  Google Scholar 

  • Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, van Maris AJA, Klaassen P, Pronk JT (2017) Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res 17(5):fox044

    Article  PubMed Central  CAS  Google Scholar 

  • Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32(3):235–262

    Article  CAS  PubMed  Google Scholar 

  • Kim MW, Rhee SK, Kim JY, Shimma Y, Chiba Y, Jigami Y, Kang HA (2004) Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha. Glycobiology 14(3):243–251

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T (2011) Identification of genes that enhance cellulase protein production in yeast. J Biotechnol 151(2):194–203

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Kjeldsen T, Pettersson AF, Hach M, Diers I, Havelund S, Hansen PH, Andersen AS (1997) Synthetic leaders with potential BiP binding mediate high-yield secretion of correctly folded insulin precursors from Saccharomyces cerevisiae. Protein Expr Purif 9(3):331–336

    Article  CAS  PubMed  Google Scholar 

  • Klein M, Swinnen S, Thevelein JM, Nevoigt E (2017) Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ Microbiol 19(3):878–893

    Article  CAS  PubMed  Google Scholar 

  • Kung SH, Lund S, Murarka A, McPhee D, Paddon CJ (2018) Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front Plant Sci 9:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer ES, Rader RA, Gillespie DE (eds) (2018) Fifteenth annual report and survey of biopharmaceutical manufacturing capacity and production. BioPlan Associates, Rockville, MD. isbn:978-1-934106-33-4

    Google Scholar 

  • Li M, Schneider K, Kristensen M, Borodina I, Nielsen J (2016) Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep 6:36827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Li S, Thodey K, Trenchard I, Cravens A, Smolke CD (2018) Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc Natl Acad Sci U S A 115(17):E3922–E3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Huang H (2018) Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 102(2):539–551

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Tyo KE, Martínez JL, Petranovic D, Nielsen J (2012) Different expression systems for production of recombinant proteins in Saccharomyces cerevisiae. Biotechnol Bioeng 109(5):1259–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccani A, Landes N, Stadlmayr G, Maresch D, Leitner C, Maurer M, Gasser B, Ernst W, Kunert R (2014) Mattanovich D (2014) Pichia pastoris secretes recombinant proteins less efficiently than Chinese hamster ovary cells but allows higher space-time yields for less complex proteins. Biotechnol J 9(4):526–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99(11):4559–4577

    Article  CAS  PubMed  Google Scholar 

  • Madzak C (2018) Engineering Yarrowia lipolytica for use in biotechnological applications: a review of major achievements and recent innovations. Mol Biotechnol 60(8):621–635

    Article  CAS  PubMed  Google Scholar 

  • Manfrão-Netto JHC, Gomes AMV, Parachin NS (2019) Advances in using Hansenula polymorpha as chassis for recombinant protein production. Front Bioeng Biotechnol 7:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Market Research Engine (2019) Specialty enzymes market expected to be worth US$ 6.50 billion by 2024. https://www.marketwatch.com/press-release/specialty-enzymes-market-expected-to-be-worth-us-55-billion-by-2022-2018-08-28. Cited 20 Mar 2019

  • Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Factories 13:12

    Article  CAS  Google Scholar 

  • Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Vega O, Sabatié J, Brown SW (1994) Industrial production of heterologous proteins by fed-batch cultures of the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 15(4):369–410

    Article  CAS  PubMed  Google Scholar 

  • Miller C, Fosmer A, Rush B, McMullin T, Beacom D, Suominen P (2011) Industrial production of lactic acid. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 179–188

    Chapter  Google Scholar 

  • Mori K (2015) The unfolded protein response: the dawn of a new field. Proc Jpn Acad Ser B Phys Biol Sci 91(9):469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima T, Ballou CE (1975) Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases. Proc Natl Acad Sci U S A 72(10):3912–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Larsson C, van Maris A, Pronk J (2013) Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24(3):398–404

    Article  CAS  PubMed  Google Scholar 

  • Ornelas AP, Silveira WB, Sampaio FC, Passos FML (2007) The activity of β-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. J Appl Microbiol 104:1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J (2013) Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8(1):e54144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinazo JM, Domine ME, Parvulescu V, Petru F (2015) Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catal Today 239:17–24

    Article  CAS  Google Scholar 

  • Porro D, Bianchi MM, Brambilla L, Menghini R, Bolzani D, Carrera V, Lievense J, Liu CL, Ranzi BM, Frontali L, Alberghina L (1999) Replacement of a metabolic pathway for large-scale production of lactic acid from engineered yeasts. Appl Environ Microbiol 65(9):4211–4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius IS, Boeke JD (2018) Yeast 2.0-connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res 18(4):foy032

    Article  PubMed Central  CAS  Google Scholar 

  • Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C (2010) Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab Eng 12(6):518–525

    Article  CAS  PubMed  Google Scholar 

  • Rajgarhia V, Asleson Dundon C, Olson S, Suominen P, Hause B (2007) Methods and materials for the production of D-lactic acid in yeast. EP Patent 1513923 B1

    Google Scholar 

  • Renewable Fuels Association (2017) World fuel ethanol production. https://ethanolrfaorg/resources/industry/statistics/#1537559649968-e206480c-7160. Cited 20 Mar 2019

  • Romero PA, Lussier M, Véronneau S, Sdicu AM, Herscovics A, Bussey H (1999) Mnt2p and Mnt3p of Saccharomyces cerevisiae are members of the Mnn1p family of alpha-1,3-mannosyltransferases responsible for adding the terminal mannose residues of O-linked oligosaccharides. Glycobiology 9(10):1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Roohvand F, Shokri M, Abdollahpour-Alitappeh M, Ehsani P (2017) Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin Ther Pat 27(8):929–951

    Article  CAS  PubMed  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274–281

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid production with yeast—ready for the market? Biotechnol Genet Eng Rev 27:229–256

    Article  CAS  PubMed  Google Scholar 

  • Schindler D, Dai J, Cai Y (2018) Synthetic genomics: a new venture to dissect genome fundamentals and engineer new functions. Curr Opin Chem Biol 46:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89(3):555–571

    Article  CAS  PubMed  Google Scholar 

  • Schotte P, Dewerte I, De Groeve M, De Keyser S, De Brabandere V, Stanssens P (2016) Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source. Microb Cell Factories 15:98

    Article  CAS  Google Scholar 

  • Shay LK, Hunt HR, Wegner GH (1987) High-productivity fermentation process for cultivating industrial microorganisms. J Ind Microbiol 2(2):79–85

    Article  CAS  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A (2018) Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175(6):1533–1545.e1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26(3):277–284

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Choi MH, Park JN, Kim MW, Kim EJ, Kang HA, Kim JY (2007) Engineering of the yeast Yarrowia lipolytica for the production of glycoproteins lacking the outer-chain mannose residues of N-glycans. Appl Environ Microbiol 73(14):4446–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spadiut O, Capone S, Krainer F, Glieder A, Herwig C (2014) Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 32(1):54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spohner SC, Schaum V, Quitmann H, Czermak P (2016) Kluyveromyces lactis: an emerging tool in biotechnology. J Biotechnol 222:104–116

    Article  CAS  PubMed  Google Scholar 

  • Stepién PP, Brousseau R, Wu R, Narang S, Thomas DY (1983) Synthesis of a human insulin gene. VI Expression of the synthetic proinsulin gene in yeast. Gene 24(2–3):289–297

    Article  PubMed  Google Scholar 

  • Suástegui M, Shao Z (2016) Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biotechnol 43(11):1611–1624

    Article  PubMed  CAS  Google Scholar 

  • Swinkels BW, van Ooyen AJJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187–201

    Article  PubMed  Google Scholar 

  • Tang H, Song M, He Y, Wang J, Wang S, Shen Y, Hou J, Bao X (2017) Engineering vesicle trafficking improves the extracellular activity and surface display efficiency of cellulases in. Biotechnol Biofuels 10:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang W, Wang Y, Zhang J, Cai Y, He Z (2019) Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechnol 29:507–517

    Article  CAS  PubMed  Google Scholar 

  • Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Gorret N (2018) Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica. Appl Microbiol Biotechnol 102(9):3831–3848

    Article  CAS  PubMed  Google Scholar 

  • van de Graaf MJ, Valianpoer F, Fiey G, Delattre L, Schulten EAM (2015) Process for the crystallization of succinic acid. US patent US20150057425A1

    Google Scholar 

  • van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Res 6:381–392

    Article  PubMed  CAS  Google Scholar 

  • van Zyl JH, Den Haan R, Van Zyl WH (2016) Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl Microbiol Biotechnol 100(1):505–518

    Article  PubMed  CAS  Google Scholar 

  • Vandermies M, Fickers P (2019) Bioreactor-scale strategies for the production of recombinant protein in the yeast Yarrowia lipolytica. Microorganisms 7(2):E40

    Article  PubMed  CAS  Google Scholar 

  • Vasavada A (1995) Improving productivity of heterologous proteins in recombinant Saccharomyces cerevisiae fermentations. Adv Appl Microbiol 41:25–54

    Article  CAS  PubMed  Google Scholar 

  • Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):E38

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2014) Biopharmaceutical benchmarks 2014. Nat Biotechnol 32(10):992–1000

    Article  CAS  PubMed  Google Scholar 

  • Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36(12):1136–1145

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Huang M, Nielsen J (2017) Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotechnol 48:77–84

    Article  PubMed  CAS  Google Scholar 

  • Wegner GH (1990) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev 7(3-4):279–283

    Article  CAS  PubMed  Google Scholar 

  • Wijeyaratne SC, Ohta K, Chavanich S, Mahamontri V, Nilubol N, Hayashida S (1986) Lipid composition of a thermotolerant yeast, Hansenula polymorpha. Agric Biol Chem 50(4):827–832

    CAS  Google Scholar 

  • Wirtz VJ (2016) Insulin market profile. Health Action International, Amsterdam

    Google Scholar 

  • Xie D, Miller E, Sharpe P, Jackson E, Zhu Q (2017) Omega-3 production by fermentation of Yarrowia lipolytica: from fed-batch to continuous. Biotechnol Bioeng 114(4):798–812

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X (2014) Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31(8):734–740

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36(1):182–195

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d'Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27(6):1744–1750

    Article  CAS  PubMed  Google Scholar 

  • Yoo SJ, Moon HY, Kang HA (2019) Screening and selection of production strains: secretory protein expression and analysis in Hansenula polymorpha. Methods Mol Biol 1923:133–151

    Article  CAS  PubMed  Google Scholar 

  • Zahrl RJ, Gasser B, Mattanovich D, Ferrer P (2019) Detection and elimination of cellular bottlenecks in protein-producing yeasts. Methods Mol Biol 1923:75–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on yeast biotechnology in our labs is supported by the Federal Ministry for Digital and Economic Affairs (BMDW); the Federal Ministry for Transport, Innovation and Technology (BMVIT); the Styrian Business Promotion Agency SFG; the Standortagentur Tirol; Government of Lower Austria; and ZIT—Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG. Further support by the BMDW and the National Foundation for Research, Technology and Development through the Christian Doppler Research Association is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Mattanovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmelzer, B., Altvater, M., Gasser, B., Sauer, M., Mattanovich, D. (2020). Yeast Cell Factories. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_13

Download citation

Publish with us

Policies and ethics