Skip to main content

Trichoderma, a Factory of Multipurpose Enzymes: Cloning of Enzymatic Genes

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The versatile fungal genus Trichoderma is the most culturable fungus and is industrially exploited at a large scale for the production of several multipurpose enzymes such as pectinase, cellulase, xylanase, chitinase, lipase, protease, amylase, manganese peroxidase, and laccase. This excellent characteristic of synthesizing such a multitude of enzymes ranks this fungus as a magnificent industrial cell factory of enzymes. The present chapter covers the up-to-date information regarding the experimental production of multiple multitask enzymes under different fermentation conditions. The chapter presents a detailed account of potential application of the aforementioned enzymes for different human uses as Trichoderma possesses a highly versatile synthetic machinery producing enzymes for numerous applications. As is well known, these enzymes are widely used in different areas such as production of biofuels, textiles, pulp and paper, food, animal feed, biorefineries, biocontrol, medicine, leather, growth promoters, detergents, fruit juice clarification, antimicrobial purposes, and detoxification of pollutants as well as in waste management. This chapter also explains the biotechnological strategy of gene cloning. In this reference, the important studies have been compiled wherein cloning of the genes responsible for the synthesis of several enzymes has been achieved in bacterial and yeast cells as potent hosts for their successful expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Aziz S, Fernandez CC, Salleh MM, Illias RM, Hassan MA (2008) Effect of agitation and aeration rates on chitinase production using Trichoderma virens UKM1 in 2-l stirred tank reactor. Appl Biochem Biotechnol 150:193–204

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghany TM, Ganash M, Bakri MM, Al-Rajhi AMH (2018) Molecular characterization of Trichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. BioRes 13:1729–1744

    CAS  Google Scholar 

  • Abdulaal WH (2018) Purification and characterization of α-amylase from Trichoderma pseudokoningii. BMC Biochem 19(4):1–6

    Google Scholar 

  • Acharya PB, Shah AJ, Acharya DK, Chabhadiya S, Modi HA (2013) Manganese peroxidase production by Trichoderma pseudokoningii under SSF. Int J Microbiol 1:18–29

    Google Scholar 

  • Ahamed SKF, Kumar ABV, Gowda LR, Tharanathan RN (2003) Chitosanolysis by a pectinase isozyme of Aspergillus niger – a non-specific activity. Carbohydr Polym 53:191–196

    Article  CAS  Google Scholar 

  • Ahmad S, Aslam N, Latif F, Rajok MI, Jamil A (2005) Molecular cloning of cellulase gene from Trichoderma harzianum. Front Nat Prod Chem 1:73–75

    Article  Google Scholar 

  • Ahmed S, Jabeen A, Jamil A (2007) Xylanase from Trichoderma harzianum: enzyme characterization and gene isolation. J Chem Soc Pak 29:176–182

    CAS  Google Scholar 

  • Alexander M (1961) Introduction to soil microbiology. Wiley, New York

    Google Scholar 

  • Alexopoulos CJ, Mims CW (eds) (1979) Introductory mycology, 3rd edn. Wiley, New York

    Google Scholar 

  • Al-Rashed SAA, Bakar FDA, Said M, Hassan O, Rabu A, Illias RM, Murad AMA (2010) Expression and characterization of the recombinant Trichoderma virens endochitinase Cht2. Afr J Microbiol Res 4:1758–1767

    CAS  Google Scholar 

  • Andrade JP, Bispo ASR, Marbach PAS, Nascimento RP (2011) Production and partial characterization of cellulases from Trichoderma sp. IS-05 isolated from sandy coastal plains of Northeast Brazil. Enzyme Res:1–7 https://doi.org/10.4061/2011/167248

  • Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Heraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    Article  PubMed  Google Scholar 

  • Anitha TS, Palanivelu P (2013) Purification and characterization of an extracellular keratinolytic protease from a new isolate of Aspergillus parasiticus. Protein Expr Purif 88:214–220

    Article  CAS  PubMed  Google Scholar 

  • Assavanig A, Amornikitticharoen B, Ekpaisal N, Meevootisom V, Flegel TW (1992) Isolation, characterization and function of laccase from Trichoderma. Appl Microbiol Biotechnol 38:198–202

    Article  CAS  Google Scholar 

  • Atanasova L, Crom SL, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek JM, Charles R, Kenerley HCM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  CAS  PubMed  Google Scholar 

  • Bagewadi ZK, Mulla SI, Ninnekar HZ (2016) Purification and characterization of endo β-1,4-d-glucanase from Trichoderma harzianum strain HZN11 and its application in production of bioethanol from sweet sorghum bagasse. 3 Biotech 6:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Z, Jin B, Li Y, Chen J, Li Z (2008) Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J Environ Sci 20:353–358

    Article  CAS  Google Scholar 

  • Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Bayer EA, Morag F, Lamed R (1994) The cellulosome—a treasure-trove for biotechnology. Trends Biotechnol 12:379–386

    Article  CAS  PubMed  Google Scholar 

  • Bech L, Busk PK, Lange L (2014) Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genome Biol 4(1):1–10

    Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18:13–22

    Article  CAS  PubMed  Google Scholar 

  • Bhale UN, Rajkonda JN (2012) Enzymatic activity of Trichoderma species. Novus Nat Sci Res 1:1–8

    Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Boonmahome P, Mongkolthanaruk W (2013) Lipase-producing bacterium and its enzyme characterization. J Life Sci Technol 1:196–200

    Google Scholar 

  • Cazares-Garcıa SV, Vazquez-Garciduen MS, Vazquez-Marrufo G (2013) Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One 8:1–13

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Sathiyabama M (2014) Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer. J Basic Microbiol 54:763–774

    Article  CAS  PubMed  Google Scholar 

  • Claydon N, Hanson JR, Truneh A, Avent AG (1991) Harzianolide, a butenolide metabolite from cultures of Trichoderma harzianum. Phytochemistry 30:3802–3803

    Article  CAS  Google Scholar 

  • Colina A, De-Ferrer BS, Aiello C, Ferrer A (2003) Xylanase production by Trichoderma reesei Rut C-30 on rice straw. Appl Biochem Biotechnol 105–108:715–724

    Article  PubMed  Google Scholar 

  • Coradi GV, Visitacao VL, Lima EA, Saito LYT, Palmieri DA, Takita MA, Neto PO, Lima VMG (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63:533–540

    Article  CAS  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2012) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microb Technol 38:504–511

    Article  CAS  Google Scholar 

  • Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  PubMed Central  CAS  Google Scholar 

  • de Azevedo AMC, De Marco JL, Felix CR (2000) Characterization of an amylase produced by a Trichoderma harzianum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. FEMS Microbiol Lett 188:171–175

    PubMed  Google Scholar 

  • De la Cruz J, Pintor-Toro JA, Benitez T, Liobell A (1995) Purification and characterization of an endo-β-1,6 glucanase from Trichoderma harzianum that is related to its mycoparasitism. J Bacteriol 177:1864–1871

    Article  PubMed  PubMed Central  Google Scholar 

  • De Marco JL, Felix CR (2002) Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ broom disease. BMC Biochem 3(1):1–7

    Article  Google Scholar 

  • De Marco JL, Lima LC, Felix CR (2000) A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. World J Microbiol Biotechnol 16:383–386

    Article  Google Scholar 

  • de Oliveira da Silva LA, Carmona EC (2008) Production and characterization of cellulase-free xylanase from Trichoderma inhamatum. Appl Biochem Biotechnol 150:117–125

    Article  PubMed  CAS  Google Scholar 

  • de Souza PM, Bittencourt MLA, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Filho EXF, Junior AP, Magalhaes PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Delabona PS, Lima DJ, Robl D, Rabelo SC, Farinas CS, Pradella JGC (2016) Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 43(5):617–626

    Article  CAS  Google Scholar 

  • Delgado-Jarana J, Rincon AM, Benıtez T (2002) Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305–1315

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JM, Hanson JR, Truneh A (1995) Metabolites of some biological control agents. Pestic Sci 44:389–393

    Article  CAS  Google Scholar 

  • Divya LM, Prasanth GK, Sadasivan C (2014) Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments. J Basic Microbiol 54:542–547

    Article  CAS  PubMed  Google Scholar 

  • Djordjevic S, Batley M, Redmond J (1986) Preparative gel chromatography of acidic oligosaccharides using a volatile buffer. J Chromatogr 354:507–510

    Article  CAS  Google Scholar 

  • Donzelli BGG, Lorito M, Scala F, Harman GE (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-β-glucosidase from Trichoderma atroviride (T. harzianum). Gene (Amst) 277:199–208

    Article  CAS  Google Scholar 

  • Dou K, Wang Z, Zhang R, Wang N, Fana H, Diaoa G, Liua Z (2014) Cloning and characteristic analysis of a novel aspartic protease gene Asp55 from Trichoderma asperellum ACCC30536. Microbiol Res 169:915–923

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • El-Katatny MH, Gudelj M, Robra KH, Elnaghy MA, Gubitz GM (2001) Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl Microbiol Biotechnol 56:137–143

    Article  CAS  PubMed  Google Scholar 

  • El-Shora HM, Ibrahim ME, El-Sharkawy RM, Elmekabaty MR (2017) Manganese peroxidase from Trichoderma harzianum and increasing its efficiency for phenol removal from wastewater. J Adv Microbiol 5:1–12

    Article  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. Microbiol Open 6:1–14

    Article  CAS  Google Scholar 

  • Fan H, Liu Z, Zhang R, Wang N, Dou K, Mijiti G, Diao G, Wang Z (2014) Functional analysis of a subtilisin-like serine protease gene from biocontrol fungus Trichoderma harzianum. J Microbiol 52:129–138

    Article  CAS  PubMed  Google Scholar 

  • Fernandes SC, Oliveira IRWZ, Fatibello-Filho O, Spinelli A, Vieira IC (2008) Biosensor based on laccase immobilized on microspheres of chitosan cross linked with tripolyphosphate. Sens Actuators B Chem 133:202–207

    Article  CAS  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr Genet 31:30–37

    Article  CAS  PubMed  Google Scholar 

  • Gamerith G, Groicher R, Zeilinger S, Herzog P, Kubicek CP (1992) Cellulase-poor xylanases produced by Trichoderma reesei Rut C-30 on hemicellulose substrates. Appl Microbiol Biotechnol 38:315–322

    Article  CAS  Google Scholar 

  • Gao H, Chu X, Wang Y, Zhou F, Zhao K, Mu Z, Liu Q (2013) Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology. J Microbiol Biotechnol 23(12):1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Gashe BA (1988) Initial observations on the cellulolytic activities of some fungal isolates. Mircen J 4:491–494

    Article  Google Scholar 

  • Geremia RA, Goldman GH, Jacobs D, Ardrtes W, Vila SB, Van Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    CAS  PubMed  Google Scholar 

  • Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010) Laccases: a never-ending story. Cell Mol Life Sci 67:369–385

    Article  CAS  PubMed  Google Scholar 

  • Gietz D, Jean SA, Wood RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nuclei Acids Res 20(6):1425

    Article  CAS  Google Scholar 

  • Gooday GW (1991) Chitinases. In: Leatham GF, Himme ME (eds) Enzymes in biomass conversion. American Chemical Society, Washington, DC, pp 478–485

    Chapter  Google Scholar 

  • Goudopoulou A, Krimitzas A, Typas MA (2010) Differential gene expression of ligninolytic enzymes in Pleurotus ostreatus grown on olive oil mill wastewater. Appl Microbiol Biotechnol 88:541–551

    Article  CAS  PubMed  Google Scholar 

  • Haltmeier T, Leisola M, Ulmer D, Waldner R, Fiechter A (1983) Pectinase from Trichoderma reesei QM 9414. Biotechnol Bioeng 25(6):1685–1690

    Article  CAS  PubMed  Google Scholar 

  • Haq IU, Mukhtar H, Umber H (2006) Production of protease by Penicillium chrysogenum through optimization of environmental conditions. J Agric Soc Sci 2:23–25

    Google Scholar 

  • Harman G, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species: opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Gupta G, Anand S, Kaur H (2014) Lytic enzymes of Trichoderma: their role in plant defense. Int J Appl Res Stud 3:1–5

    Google Scholar 

  • Hatakka AI (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEBS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • He J, Yu B, Zhang K, Ding X, Chen D (2009) Expression of endo-1,4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme. BMC Biotechnol 9:1–10

    Article  CAS  Google Scholar 

  • He J, Tang F, Chen D, Yu B, Luo Y, Zheng P (2019) Design, expression and functional characterization of a thermostable xylanase from Trichoderma reesei. PLoS One 14(1):1–13

    Google Scholar 

  • Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B, Teeri TT, Warren RAJ (1998) A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett 425:352–354

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa H, Shioya K, Furukawa T, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W (2018) Engineering of the Trichoderma reesei xylanase 3 promoter for efficient enzyme expression. Appl Microbiol Biotechnol 102:2737–2752

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. Biochem Mol Biol 38:82–88

    CAS  Google Scholar 

  • Ike M, Nagamatsu K, Shioya A, Nogawa M, Ogasawara W, Okada H, Morikawa Y (2006) Purification, characterization, and gene cloning of 46 kDa chitinase (Chi46) from Trichoderma reesei PC-3-7 and its expression in Escherichia coli. Appl Microbiol Biotechnol 71:294–303

    Article  CAS  PubMed  Google Scholar 

  • Ilmen M, Saloheimo A, Onnela M, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63:1298–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irene G, Jose ML, De la Cruz J, Tahia B, Antonio L, Jose A, Pintor T (1994) Cloning and characterization of chitinase (CHIT 42) cDNA from mycoparasitic fungus Trichoderma harzianum. Curr Genet 27:83–89

    Article  Google Scholar 

  • Irshad M, Anwar Z, Mahmood Z, Aqil T, Mehmmod S, Nawaz H (2014) Bioprocessing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viride; its purification and characterization. Turk J Biochem 39:9–18

    Article  CAS  Google Scholar 

  • Ismail AMS, Abo-Elmagd HI, Housseiny MM (2016) A safe potential juice clarifying pectinase from Trichoderma viride EF-8 utilizing Egyptian onion skins. J Genet Eng Biotechnol 14:153–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaber SM, Shah UKM, Asaari AZM, Ariff AB (2017) Optimization of laccase production by locally isolated Trichoderma muroiana IS1037 using rubber wood dust as substrate. Bioresources 12:3834–3849

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalyst: molecular biology, three dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2015) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol 55:961–972

    Article  CAS  PubMed  Google Scholar 

  • Jampala P, Tadikamalla S, Preethi M, Ramanujam S, Uppuluri KB (2017) Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method. 3 Biotech 7:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffries T (1996) Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 7:337–342

    Article  CAS  PubMed  Google Scholar 

  • Jorenek M, Zajoncova L (2003) Biotechnologicky význam lakasy a její charakteristika. Chem List 107:921–928

    Google Scholar 

  • Jun H, Bing Y, Zhang K, Ding X, Daiwen C (2008) Expression of a Trichoderma reesei β-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates. Protein Expr Purif 67:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kalsoom R, Ahmed S, Nadeem M, Chohan S, Abid M (2019) Biosynthesis and extraction of cellulase produced by Trichoderma on agro-wastes. Int J Environ Sci Technol 16:921–928

    Article  CAS  Google Scholar 

  • Kar S, Gauri SS, Das A, Jana A, Maity C, Mandal A, Mondal KC (2013) Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioprocess Biosyst Eng 36:57–68

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan P, Kanimozhi K, Senthilkumar G, Panneerselvam A, Ashok G (2014) Optimization of enzyme production in Trichoderma viride using carbon and nitrogen source. Int J Curr Microbiol Appl Sci 3:88–95

    CAS  Google Scholar 

  • Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77:215–227

    Article  CAS  PubMed  Google Scholar 

  • Kim GJ, Choi GS, Kim JY, Lee JB, Jo DH (2002) Screening, production and properties of a stereo specific esterase from Pseudomonas sp. S34 with high selectivity to (S)-ketoprofen ethyl ester. J Mol Catal B-Enzym 17:19–38

    Article  Google Scholar 

  • Klemsdal SS, Clarke JL, Hoell IA, Vincent GH, Eijsink VG, Brurberg MB (2006) Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett 256:282–289

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Penttila ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications, vol 2. Taylor & Francis, London, pp 49–71

    Google Scholar 

  • Kumar DS, Ray S (2014) Fungal lipase production by solid state fermentation-an overview. J Anal Bioanal Tech 6:1–10

    Google Scholar 

  • Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta (Berl) 230:277–291

    Article  CAS  Google Scholar 

  • Kumar DP, Singh RK, Anupama PD, Solanki MK, Kumar S, Srivastava AK, Singhal PK, Arora DK (2012) Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization. Indian J Microbiol 52:388–395

    Article  CAS  PubMed  Google Scholar 

  • Kumar MR, Kumaran MDB, Balashanmugam P, Rebecca AIN, Kumar DJM, Kalaichelvan PT (2014) Production of cellulase enzyme by Trichoderma reesei Cef19 and its application in the production of bio-ethanol. Pak J Biol Sci 17:735–739

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Brar A, Yadav M, Chawade A, Vivekanand V, Pareek N (2018) Chitinases—potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 8(7):88

    Article  CAS  Google Scholar 

  • Kunamneni A, Plou FJ, Alcalde M, Ballesteros A (2014) Trichoderma enzymes for food industries. Biotechnol Biol Trichoderma 24:339–344

    Article  CAS  Google Scholar 

  • la-Grange DC, Pretorius IS, van Zyl WH (1996) Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • la-Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan TQ, Wei D, Yang ST, Liu X (2013) Enhanced cellulase production by Trichoderma viride in a rotating fibrous bed bioreactor. Bioresour Technol 133:175–182

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC, Lee JW (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99:378–386

    Article  CAS  PubMed  Google Scholar 

  • Leelavathi MS, Vani L, Reena P (2014) Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microb Appl Sci 3:96–103

    Google Scholar 

  • Limon MC, Lora JM, Garcia I, de la Cruz J, Llobell A, Benftez T, Jose A, Toro P (1995) Primary structure and expression pattern of the 33-kDa chitinase gene from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 28:478–483

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yang Q, Song J (2009) A new serine protease gene from Trichoderma harzianum is expressed in Saccharomyces cerevisiae. Appl Biochem Microbiol 45:22–26

    Article  CAS  Google Scholar 

  • Loc NH, Quang HT, Hung NB, Huy ND, Phuong TTB, Ha TTT (2011) Trichoderma asperellum Chi42 genes encode chitinase. Mycobiology 39:182–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopez G, Hidalgo AB, Estrada P (2011) Xylanase II from Trichoderma reesei QM 9414: conformational and catalytic stability to chaotropes, trifluoroethanol, and pH changes. J Ind Microbiol Biotechnol 38:113–125

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorito M, Woo S, Fernandez IG, Coluccii G, Harman GE, Pintortoro JA, Filipponei E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860–7865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60:515–522

    Article  CAS  PubMed  Google Scholar 

  • Mach RL, Strauss J, Zeilinger S, Schindler M, Kubicek CP (1996) Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Mol Microbiol 21:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Madan M, Dhillon S, Singh R (2002) Production of alkaline protease by a UV mutant of Bacillus polymyxa. Ind J Microbiol 42:155–159

    Google Scholar 

  • Marcello CM, Steindorff AS, Silva SP, Silva RN, Bataus LAM (2010) Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol Res 165:75–81

    Article  CAS  PubMed  Google Scholar 

  • Marques SFF, Minafra CS, Café MB, Stringhini JH, Ulhoa CJ (2018) Production and characterization of a Trichoderma harzianum multienzyme complex and its application in broiler chicks’ diets. Curr Biotechnol 7:26–33

    Article  CAS  Google Scholar 

  • Mata G, Hernandez DMM, Andreu LGI (2005) Changes in lignocellulolytic enzyme activities in six Pleurotus spp. strains cultivated on coffee pulp in confrontation with Trichoderma spp. World J Microbiol Biotechnol 21:143–150

    Article  CAS  Google Scholar 

  • Matroudi S, Zamani MR, Motallebi M (2008) Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Braz J Microbiol 39:433–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  PubMed  Google Scholar 

  • Min YS, Kim BG, Lee C, Hur HG, Ahn JH (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J Microbiol Biotechnol 12:890–894

    CAS  Google Scholar 

  • Mohamed SA, Azhar EI, Ba-Akdah MM, Tashkandy NR, Kumosani TA (2011) Production, purification and characterization of α-amylase from Trichoderma harzianum grown on mandarin peel. Afr J Microbiol Res 5:930–940

    Article  CAS  Google Scholar 

  • Mohamed SA, Al-Malki AL, Khan JA, Kabli SA, Al-Garni SM (2013) Solid state production of polygalacturonase and xylanase by Trichoderma species using cantaloupe and watermelon rinds. J Microbiol 51:605–611

    Article  CAS  PubMed  Google Scholar 

  • Mohamed SA, Khan JA, Al-Bar OAM, El-Shishtawy RM (2014) Immobilization of Trichoderma harzianum α-amylase on treated wool: optimization and characterization. Molecules 19:8027–8038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moldes D, Dıaz M, Tzanov T, Vidal T (2008) Comparative study of the efficiency of synthetic and natural mediators in laccase assisted bleaching of eucalyptus Kraft pulp. Bioresour Technol 99:7959–7965

    Article  CAS  PubMed  Google Scholar 

  • Mtui GYS (2012) Lignocellulolytic enzymes from tropical fungi: types, substrates and applications. Sci Res Essays 7:1544–1555

    CAS  Google Scholar 

  • Nazia G, Nabi M, Asgher AH, Shah AM, Asad MJ (2003) Production of pectinase by Trichoderma harzianum in solid state fermentation of citrus peel. Pak J Agric Sci 40(3-4):193–201

    Google Scholar 

  • Negi S, Banerjee R (2009) Characterization of amylase and protease produced by Aspergillus awamori in a single bioreactor. Food Res Int 42:443–448

    Article  CAS  Google Scholar 

  • Nicol S (1998) Life after death for empty shells. New Sci 129:46–53

    Google Scholar 

  • Nirmal NP, Shankar S, Laxman RS (2011) Fungal proteases: an overview. Int J Biotech Biosci 1:1–40

    Google Scholar 

  • Oda S, Kameda A, Okanan M, Sakakibara Y, Ohashi S (2015) Discovery of secondary metabolites in an extractive liquid-surface immobilization system and its application to high-throughput interfacial screening of antibiotic-producing fungi. J Antibiot (Tokyo) 68:691–697

    Article  CAS  Google Scholar 

  • Ogasawara W, Shida Y, Furukawa T, Shimada R, Nakagawa S, Kawamura M, Yagyu T, Kosuge A, Xu J, Nogawa M, Okada H, Morikawa Y (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi K, Yoshida Y, Sekiguchi J (1994) Lipase production of Aspergillus oryzae. J Ferment Bioeng 77:490–495

    Article  CAS  Google Scholar 

  • Okada H, Wakamatsu M, Takano Y, Nogawa M, Morikawa Y (1999) Expression of two Trichoderma reesei xylanases in the fission yeast Schizosaccharomyces pombe. J Biosci Bioeng 88:563–566

    Article  CAS  PubMed  Google Scholar 

  • Paloheimo M, Haarmann T, Makinen S, Vehmaanpera J (2016) Production of industrial enzymes in Trichoderma reesei. In: Schmoll M, Dattenabock C (eds) Gene expression systems in fungi: advancements and applications. Fungal biology. Springer, Germany, pp 1–61

    Google Scholar 

  • Pandian RTP, Raja M, Sharma P (2018) Characterization of three different chitinase genes from Trichoderma asperellum Strain Ta13. Proc Natl Acad Sci India Sect B Biol Sci 88:1661–1668

    Article  CAS  Google Scholar 

  • Penttila ME (1998) Heterologous protein production in Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol vol 2. Taylor & Francis, London, pp 356–383

    Google Scholar 

  • Pereira N, Couto MAPG, Anna LMMS (2008) Biomass of lignocellulosic composition for fuel ethanol production and the context of biorefinery. Ser Biotechnol Rio de Janeiro, Biblioteca Nacional 2:2–45

    Google Scholar 

  • Pifferi PG, Tramontini M, Malacarne A (1989) Immobilization of endo-polygalacturonase from Aspergillus niger on various types of macromolecular supports. Biotechnol Bioeng 33:1258–1266

    Article  CAS  PubMed  Google Scholar 

  • Pirzadah T, Garg S, Singh J, Vyas A, Kumar M, Gaur N, Bala M, Rehman R, Varma A, Kumar V, Kumar M (2014) Characterization of actinomycetes and Trichoderma spp. for cellulase production utilizing crude substrates by response surface methodology. Springer Plus 3:622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Polizeli MLT, Rizzati ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Portnoy T, Margeot A, Le CS, Linke R, Atanasova L, Fekete E, Sandor E, Karaffa L, Druzhinina IS, Seiboth B, Kubicek CP (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12(269):1–12

    Google Scholar 

  • Pozo MJ, Baek JM, Garcia JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41:336–348

    Article  CAS  PubMed  Google Scholar 

  • Puranen T, Alapuranen M, Vehmaanpera J (2014) Trichoderma enzymes for textile industries. Biotechnol Biol Trichoderma 26:351–362

    Article  CAS  Google Scholar 

  • Racheal OO, Ahmed ATF, Ndigwe EV, Morakinyo SD (2015) Extraction, purification and characterization of protease from Aspergillus niger isolated from yam peels. Int J Nutr Food Sci 4:125–131

    Article  CAS  Google Scholar 

  • Rachmawaty R, Madihah B (2016) Characterization of crude chitinase produced by Trichoderma virens in solid state fermentation. In: International conference on mathematics, science, technology, education, and their applications, Makassar, pp 347–354

    Google Scholar 

  • Raghuwanshi S, Deswal D, Karp M, Kuhad RC (2014) Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel 124:183–189

    Article  CAS  Google Scholar 

  • Rahnama N, Foo HL, Rahman NAA, Ariff A, Shah UKM (2014) Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rai S, Kashyap PL, Kumar S, Srivastava AK, Ramteke PW (2016) Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment. World J Microbiol Biotechnol 32(8):1–11

    CAS  Google Scholar 

  • Rajesh EM, Arthe R, Rajendran R, Balakumar C (2010) Investigation of lipase production by Trichoderma reesei and optimization of production parameters. Electron J Environ Agric Food Chem 9:1177–1189

    CAS  Google Scholar 

  • Raju K, Jaya R, Ayyanna C (1994) Hydrolysis of casein by bajara protease importance. Biotechnol Coming Decad 181:55–70

    Google Scholar 

  • Ranimol G, Venugopala T, Gopalakrishnana S, Sunkarb S (2018) Production of laccase from Trichoderma harzianum and its application in dye decolourisation. Biocatal Agric Biotechnol 16:400–404

    Article  Google Scholar 

  • Rocha VAL, Maeda RN, Anna LMMS, Pereira N (2013) Sugarcane bagasse as feedstock for cellulase production by Trichoderma harzianum in optimized culture medium. Process Biotechnol 16:1–13

    Google Scholar 

  • Rombouts FM, Pilnik WL (1980) Pectic enzymes. In: Rose AH (ed) Economic microbiology, vol vol 5. Academic Press, London, pp 227–282

    Google Scholar 

  • Rose SH, van Zyl WH (2002) Constitutive expression of the Trichoderma reesei β-1,4-xylanase gene (xyn2) and the β-1,4-endoglucanase gene (egI) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58:461–468

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Duenas FJ, Martinez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saarelainen R, Paloheimo M, Fagerstrom R, Suominen PL, Nevalai-nen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanse II (pI9) gene xln2. Mol Gen Genet 241:497–503

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Savitha S, Swaminathan K (2009) Redox-mediated decolorization of recalcitrant textile dyes by Trichoderma harzianum WL1 laccase. World J Microbiol Biotechnol 25:1733–1741

    Article  CAS  Google Scholar 

  • Saili NS, Siddiquee S, Wong CM, Ling V, González M, Kumar SV (2014) Lignocellulolytic activities among Trichoderma isolates from Lahad Datu, Sabah and Deception Island, Antarctic. J Microb Biochem Technol 6:5

    Google Scholar 

  • Saini R, Saini HS, Dahiya A (2017) Amylases: characteristics and industrial applications. J Pharmacogn Phytochem 6:1865–1871

    CAS  Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  • Savazzini F, Longa CMO, Pertot I (2009) Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. Soil Biol Biochem 41:1457–1465

    Article  CAS  Google Scholar 

  • Savoie JM, Mata G (1999) The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulotytic activities during cultivation in wheat straw. World J Microbiol Biotechnol 15:369–373

    Article  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2015) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Shahrim Z, Sabaratnam V, Rahman NAA, Abd-Aziz S, Hassan MA, Karim MIA (2008) Production of reducing sugars by Trichoderma sp. KUPM0001 during solid substrate fermentation of sago starch processing waste Hampas. Res J Microbiol 3:569–579

    Article  CAS  Google Scholar 

  • Sharma SK, Kalra KL, Kocher GS (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass Bioenergy 27:399–402

    Article  CAS  Google Scholar 

  • Sharma P, Kumar VP, Ramesh R, Saravanan K, Deep S, Sharma M, Mahesh S, Dinesh S (2011) Biocontrol genes from Trichoderma species: a review. Afr J Biotechnol 10:19898–19907

    CAS  Google Scholar 

  • Sharma AK, Sharma V, Saxena J (2016) A review paper on properties of fungal lipases. Int J Curr Microbiol Appl Sci 5:123–130

    Article  CAS  Google Scholar 

  • Singh A (1999) Engineering enzyme properties. Ind J Microbiol 39:65–77

    Google Scholar 

  • Singh S, Sharma V, Soni ML (2011) Biotechnological applications of industrially important amylase enzyme. Int J Pharm Biol Sci 2:486–496

    CAS  Google Scholar 

  • Singh R, Mittal A, Kumar M, Mehta PK (2016) Amylases: a note on current applications. Int Res J Biol Sci 5:27–32

    Google Scholar 

  • Singh A, Shukla N, Kabadwal BC, Tewari AK, Kumar J (2018) Review on plant-Trichoderma–pathogen interaction. Int J Curr Microbiol Appl Sci 7:2382–2397

    Article  CAS  Google Scholar 

  • Smitha C, Finosh GT, Rajesh R, Abraham PK (2014) Induction of hydrolytic enzymes of phytopathogenic fungi in response to Trichoderma viride influence biocontrol activity. Int J Curr Microbiol Appl Sci 3:1207–1217

    Google Scholar 

  • Song J, Yang Q, Liu B, Chen D (2005) Expression of the chitinase gene from Trichoderma aureoviride in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:39–43

    Article  CAS  Google Scholar 

  • Song J, Liu B, Liu Z, Yang Q (2010) Cloning of two cellobiohydrolase genes from Trichoderma viride and heterogenous expression in yeast Saccharomyces cerevisiae. Mol Biol Rep 37:2135–2140

    Article  CAS  PubMed  Google Scholar 

  • Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222

    Article  CAS  PubMed  Google Scholar 

  • Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T (1992) Action of neopullulanase: neopululanase catalyzes both hydrolysis and tranglycosylation at alpha-(1-4)- and alpha-(1-6)-glucosicic linkages. J Biol Chem 267:18447–18452

    Article  CAS  PubMed  Google Scholar 

  • Tapre AR, Jain RK (2014) Pectinases: enzymes for fruit processing industry. Int Food Res J 21:447–453

    CAS  Google Scholar 

  • Tolan JS, Foody B (1999) Cellulases from submerged fermentation. Adv Biochem Eng Biotechnol 65:41–67

    CAS  Google Scholar 

  • Toscano L, Montero G, Cervantes L, Stoytcheva M, Gochev V, Beltran M (2013) Production and partial characterization of extracellular lipase from Trichoderma harzianum by solid-state fermentation. Biotechnol Biotechnol Equip 27:3776–3781

    Article  CAS  Google Scholar 

  • Ulker S, Ozel A, Colak A, Karaoglu SA (2011) Isolation, production, and characterization of an extracellular lipase from Trichoderma harzianum isolated from soil. Turk J Biol 35:543–550

    CAS  Google Scholar 

  • Urbina-Salazar AR, Inca-Torres AR, Falcon-Garcia G, Carbonero-Aguilar P, Rodriguez-Morgado B, del Campo JA, Parrado J, Bautista J (2019) Chitinase production by Trichoderma harzianum grown on a chitin- rich mushroom byproduct formulated medium. Waste Biomass Valori 10:2915–2923

    Article  CAS  Google Scholar 

  • Van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Sahai V, Prevost D, Valero JR, Surampalli RY (2007) Bench-scale fermentation of Trichoderma viride on wastewater sludge: rheology, lytic enzymes and biocontrol activity. Enzyme Microb Technol 41:764–771

    Article  CAS  Google Scholar 

  • Viterbo A, Montero M, Friesem ORD, Monte E, Chet ALI (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ma R, Li S, Gong M, Yao B, Bai Y, Gu J (2018) An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Expr 8:1–11

    Article  CAS  Google Scholar 

  • Wariishi H, Dunford HB, MacDonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium: transient state kinetics and reaction mechanism. J Biol Chem 264:23688–23695

    Google Scholar 

  • Weimer P, Weston W (1985) Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnol Bioeng 27:1540–1547

    Article  CAS  PubMed  Google Scholar 

  • Wheeler H (1975) Plant pathogenesis. Academic Press, New York, pp 2–3

    Book  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Nadia L, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C (2017) Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One 12(6):1–20

    Google Scholar 

  • Xiong H, Weymarn N, Turunen O, Leisola M, Pastinen O (2005) Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresour Technol 96:753–759

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Huang C, Peng W, Tang L, Yang X, Chen X, Chen X, Ma L, Chen Y (2013) Efficient cellulase production from low-cost substrates by Trichoderma reesei and its application on the enzymatic hydrolysis of corncob. Afr J Microbiol Res 7:5018–5024

    Article  CAS  Google Scholar 

  • Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, Abbate E, Galinyte V, Schneider P (2000a) Redox chemistry in laccase catalysed oxidation of N-hydroxy compounds. Appl Environ Microbiol 66:2052–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Nogawa M, Okada H, Morikawa Y (2000b) Regulation of xyn3 gene expression in Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 54:370–375

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Ruan X, Wang X, Liu Z, Hu L, Li C (2016) Overexpression of a chitinase gene from Trichoderma asperellum increases disease resistance in transgenic soybean. Appl Biochem Biotechnol 180:1542–1558

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhao X, Bai F (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol 247:676–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, R.L., Naraian, R. (2020). Trichoderma, a Factory of Multipurpose Enzymes: Cloning of Enzymatic Genes. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_5

Download citation

Publish with us

Policies and ethics