Skip to main content
Log in

Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The Trichoderma reesei xln2 gene coding for the pI 9.0 endoxylanase was isolated from the wild-type strain QM6a. The gene contains one intron of 108 nucleotides and codes for a protein of 223 amino acids in which two putative N-glycosylation target sites were found. Three different T. reesei strains were transformed by targeting a construct composed of the xln2 gene, including its promoter, to the endogenous cbh1 locus. Highest overall production levels of xylanase were obtained using T. reesei ALK02721, a genetically engineered strain, as a host. Integration into the cbh1 locus was not required for enhanced expression under control of the xln2 promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, NikuPaavola M-L, Bamford DH, Korhola M (1991) Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643–649

    Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Google Scholar 

  • Bailey MJ, Nevalainen KMH (1981) Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microb Technol 3:153–157

    Google Scholar 

  • Baker CJ, Whalen CH, Bateman DF (1977) Xylanase from Trichoderma pseudokoningii. Phytopathology 67:1250–1258

    Google Scholar 

  • Ballance JD (1991) Transformation systems for filamentous fungi and an overview of fungal gene structure. In: Leon SA, Berka RM (eds) Molecular industrial mycology. Systems and applications for filamentous fungi. Marcel Dekker, New York, pp 1–29

    Google Scholar 

  • Bartels D, Thompson RD (1983) The characterization of cDNA clones coding for wheat storage proteins. Nucleic Acid Res 11:2961–2978

    Google Scholar 

  • Bergés T, Barreau C (1989) Heat shock at an elevated temperature improves transformation efficiency of protoplasts from Podospora anserina. J Gen Microbiol 135:601–604

    Google Scholar 

  • Boedtker H, Frischauf AM, Lehrach H (1976) Isolation and translation of calvaria procollagen messenger RNA. Biochemistry 15:4765–4770

    Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: A high efficiency plasmid-transforming recA Escherichia coli strain with β-galactosidase selection. Bio/Techniques 5:376–378

    Google Scholar 

  • Frohman MA (1990) RACE: Rapid amplification of cDNA ends. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic Press, San Diego, pp 28–38

    Google Scholar 

  • Gavel Y, von Heijne G (1990) Sequence difference between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering 3:433–442

    Google Scholar 

  • Ghangas GS, Hu Y-J, Wilson DB (1989) Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 171:2963–2969

    Google Scholar 

  • Hanahan D (1983) Plasmid transformation of Escherichia coli. J Mol Biol 166:557–580

    Google Scholar 

  • Harkki A, Mantyla A, Penttila M, Muttilainen S, Bühler R, Suominen P, Knowles J, Nevalainen H (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb Technol 13:227–233

    Google Scholar 

  • Hromova M, Biely P, Vrasanska M (1986) Specificity of cellulase and β-xylanase induction in Trichoderma reesei QM9414. Arch Microbiol 144:307–311

    Google Scholar 

  • Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH (1985) Expression, glycosylation and secretion of an Aspergillus glucoamylase in Saccharomyces cerevisiae. Science 228:21–26

    Google Scholar 

  • Ito K, Ikemasu T, Ishikawa T (1992) Cloning and sequencing of the xynA gene encoding xylanase A of Aspergillus kawachii. Biosci Biotechnol Biochem 56:906–912

    Google Scholar 

  • John M, Schmidt J (1988) Xylanases and β-xylosidase of Trichoderma lignorum. Methods Enzymol 160A:662–671

    Google Scholar 

  • Kalkkinen N, Tilgmann C (1988) A gas-pulsed liquid-phase sequencer constructed from a Beckman 890D instrument by using Applied Biosystems delivery and cartridge blocks. J Protein Chem 7:242–243

    Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    Google Scholar 

  • Kantelinen A, Rättö M, Sundqvist J, Rauna M, Viikari L, Linko M (1988) Hemicellulases and their potential role in bleaching. Proceedings Int Pulp Bleaching Conference, Tappi, Finland, pp 1–9

  • Lahtinen T, Suominen P, Ojapalo P, Pehu-Lehtonen K, Lassenius I (1992) Using selective Trichoderma enzyme preparations in kraft pulp bleaching. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. Uni Publishers, Tokyo, Japan, pp 129–137

    Google Scholar 

  • Lappalainen A (1986) Purification and characterization of xylanolytic enzymes from Trichoderma reesei. Biotechnol Appl Biochem 8:437–448

    Google Scholar 

  • Lin L-L, Thomson JA (1991) Cloning, sequencing and expression of a gene encoding a 73 kDa xylanase enzyme from the rumen anaerobe Butyrivibrio fibrisolvens H17c. Mol Gen Genet 228:55–61

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maat J, Roza M, Verbakel J, Stam H, Santos da Silva MJ, Bosse M, Egmond MR, Hagemans MLD, van Gorcom RFM, Hessing JGM, van den Hondel CAMJJ, van Rotterdam C (1992) Xylanases and their application in bakery. In: Vissel J, Beldman G, Kusters van Sommeren MA, Voragen AGJ (eds) Xylans and xylanases. Elsevier Science, Amsterdam, pp 349–360

    Google Scholar 

  • Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Google Scholar 

  • Poutanen K, Rättö M, Puls J, Viikari L (1987) Evaluation of different microbial xylanolytic systems. J Biotechnol 6:49–60

    Google Scholar 

  • Shareck F, Roy C, Yaguchi M, Morosoli R, Kluepfel D (1991) Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107:75–82

    Google Scholar 

  • Sinner M, Dietrichs HH (1975) Enzymatische Hydrolyse von Laubholzxylanen III. Kennzeichnung von fünf isolierten β-1,4-Xylanasen. Holzforschung 29:207–214

    Google Scholar 

  • Suominen P, Mäntylä A, Saarelainen R, Paloheimo M, Fagerström R, Parkkinen E, Nevalainen H (1992) Genetic engineering of Trichoderma reesei to produce suitable enzyme combinations for applications in the pulp and paper industry. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. Uni Publishers, Tokyo, Japan pp 439–445

    Google Scholar 

  • Suominen PL, Mäntylä AL, Karhunen T, Hakola S, Nevalainen H. High frequency one-step gene replacement in Trichoderma reesei II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241:523–530

  • Tan LUL, Wong KKY, Yu EKC, Saddler JN (1985) Purification and characterization of two β-D-xylanases from Trichoderma harzianum. Enzyme Microb Technol 7:425–430

    Google Scholar 

  • Teeri T, Lehtovaara P, Kauppinen S, Salovuori I, Knowles JCK (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52

    Google Scholar 

  • Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb Technol 14:566–574

    Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Google Scholar 

  • Törrönen A, Mach RL, Messner R, Gonzales R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: Characterization of both enzymes and genes. Bio/Technology 10:1461–1465

    Google Scholar 

  • van den Broeck H, DeGraaff L, Hille J, van Ooyen A, Visser J, Harder A (1992) Cloning and expression of xylanase genes from fungal origin. European Patent No. 0 463 706 A1

  • Vanhanen S, Penttilä M, Lehtovaara P, Knowles J (1989) Isolation and characterization of the 3-phosphoglycerate kinase gene (pgk) from the filamentous fungus Trichoderma reesei. Curr Genet 12:181–186

    Google Scholar 

  • Viikari L, Ranua M, Kantelinen A, Linko M, Sundqvist J (1986) Bleaching with enzymes. Proc 3rd Int Conf Biotechnology in the Pulp and Paper Industry, Stockholm, Sweden pp 67–69

  • Viikari L, Ranua M, Kantelinen A, Sundqvist J (1987) Application of enzymes in bleaching. Proc 4th Int Symp Wood and Pulping Chemistry, Paris, France, pp 151–154

  • von Heijnc G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acid Res 14:4683–4690

    Google Scholar 

  • Whitehead TR, Lee DA (1991) Cloning and comparison of xylanase genes from ruminal and colonic Bacterioides species. Curr Microbiol 23:15–19

    Google Scholar 

  • Wood MW, McCrae SI (1986) Studies of two low molecular weight endo-(1,4)-β-xylanases constitutively synthesized by the cellulolytic fungus Trichoderma koningii. Carbohydr Res 148:321–330

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarelainen, R., Paloheimo, M., Fagerström, R. et al. Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2 . Molec. Gen. Genet. 241, 497–503 (1993). https://doi.org/10.1007/BF00279891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00279891

Key words

Navigation