Skip to main content

Microbial Rhizobacteria-Mediated Signalling and Plant Growth Promotion

  • Chapter
  • First Online:
Bioactive Molecules in Plant Defense

Abstract

Bacteria are the most abundant microorganisms in soil compared to fungi and other microbes. They play a major role in maintaining soil fertility and plant growth. The rhizosphere is the region of soil that is directly influenced by root exudates of plants and associated with several soil microbes. The root exudates offer carbon-rich nutrients to the microbes, which in turn promotes plant growth indirectly and has a significant role in chemotaxis and biofilm formation. The relationship creates a symbiotic association between plants and microorganisms as a beneficial role such as atmospheric nitrogen fixation, increasing the availability of plant nutrients as well as water, root architecture modification, phytohormone production, microbial volatile production and induced systemic resistance (ISR). During the tripartite (plant-pathogen-rhizobacteria) interaction, different signalling pathways, viz. jasmonic acid (JA), salicylic acid (SA) and ethylene (ET) are activated, which ultimately results in enhanced systemic resistance. JA regulates plant defence through intricate crosstalks with diverse signalling networks manipulated by other phytohormones such as salicylic acid (SA), ethylene (ET) and nitric oxide (NO). The role of non-secondary metabolites, volatile organic compounds and phytohormones in plant growth promotion and inducing resistance is discussed in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Khan MS (2012) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)- specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C, Megias M, Temprano F (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73

    Article  CAS  PubMed  Google Scholar 

  • Alstram S (1991) lnduction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterisation with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Anjanadevi IP, John NS, John KS, Jeeva ML, Misra RS (2016) Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. J Basic Microbiol 56:67–77

    Article  CAS  PubMed  Google Scholar 

  • Ann M, Cho Y, Ryu H, Kim H, Park K (2013) Growth promotion of tobacco plant by 3-hydroxy-2-butanone from Bacillus vallismortis EXTN-1. Korean J Pestic Sci 17:388–393

    Article  Google Scholar 

  • Arshad M, Frankenberger J (1993) Microbial production of plant growth regulators. In: Metting FB Jr (ed) Soil Microbial Echol. Marcel Dekker Inc. NY, pp 307–347

    Google Scholar 

  • Asari S, Matzén S, Petersen M, Bejai S, Meijer J (2016) Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol 92:fiw070

    Article  PubMed  CAS  Google Scholar 

  • Aseri GK, Jain N, Tarafdar JC (2009) Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am-Eurasian J Agric Environ Sci 5:564–570

    CAS  Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233

    Article  CAS  PubMed  Google Scholar 

  • Awasthi R, Tewari R, Nayyar H (2011) Synergy between plants and P-solubilizing microbes in soils: effects on growth and physiology of crops. Int Res J Microbiol 2:484–503

    Google Scholar 

  • Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7:2431–2439

    Google Scholar 

  • Badawi FSF, Biomy AMM, Desoky AH (2011) Peanut plant growth and yield as influenced by coinoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann Agric Sci 56:17–25

    Article  Google Scholar 

  • Badenoch-Jones J, Rolfe BG, Letham DS (1983) Phytohormones, Rhizobium mutants, and nodulation in legumes auxin metabolism in effective and ineffective pea root nodules. Plant Physiol 73(2):347–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais P, Harsh W, Tiffany GP, Laura G, Simon MV, Jorge M (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Baker KF, Snyder WC (1965) Ecology of soil-borne plant pathogens: prelude to biological control. University of California Press, Berkeley

    Google Scholar 

  • Bastian F, Cohen A, Piccol P, Luna M, Baraldi R, Bottini R (1998) Production of IAA and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11. https://doi.org/10.1023/A:1005964031159

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya D, Duta S, Yu SM, Jeong SC, Lee YH (2018) Taxonomic and functional changes of bacterial communities in the rhizosphere of kimchi cabbage after seed bacterization with Proteus vulgaris JBLS202. Plant Pathol J 34(4):286–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blom D, Fabbri C, Connor E, Schiestl F, Klauser D, Boller T (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD (1991) Microbial dynamics in the rhizosphere: possible strategies in managing rhizosphere populations. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 25–32

    Chapter  Google Scholar 

  • Burdman S, Jurkevitch E, Okon Y (2000) Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol II, pp 229–250

    Google Scholar 

  • Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC, Santoyo G, Macías-Rodríguez L, Valencia-Cantero E (2015) Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (Strategy II Plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623

    Article  CAS  Google Scholar 

  • Cooper WR, Jia L, Goggin L (2005) Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J Chem Ecol 31:1953–1967

    Article  CAS  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Damodaran T, Sah V, Rai RB, Sharma DK, Mishra VK, Jha SK, Kannan R (2013) Isolation of salt tolerant endophytic and rhizospheric bacteria by natural selection and screening for promising plant growth-promoting rhizobacteria (PGPR) and growth vigour in tomato under sodic environment. Afr J Microbiol Res 7(44):5082–5089

    Google Scholar 

  • Datta C, Basu P (2000) lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • Davis CA, Atekwana E, Atekwana E, Slater LD, Rossbach S, Mormile MR (2006) Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements. Geophys Res Lett 33(18)

    Article  CAS  Google Scholar 

  • del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Santoyo G, Farías-Rodríguez R, Valencia-Cantero E (2013) Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol 58:579–585

    Article  CAS  Google Scholar 

  • De Vos M, Van Oosten VR, van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC, Dicke M (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153–162. https://doi.org/10.1023/A:1004658000815

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J, Pedrosa, FO (1987) Nitrogen fixing bacteria in non leguminous crop plants. Brock/Springer, Madison, WI, USA. (Science Technology Brock/Springer Contemporary Bioscience Series)

    Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sec B Biol Sci 85:1–12

    Article  CAS  Google Scholar 

  • Eleazar E-S, Dendooven L, Magaña IP, Parra R, Roberto De la Torre M (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 76:147–155. https://doi.org/10.1016/S0168-1656(99)00182-0

    Article  Google Scholar 

  • Etesami H, Emami S, Alikhani H (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects-a review. J Soil Sci Plant Nutr 17. https://doi.org/10.4067/s0718-95162017000400005

    Article  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  CAS  PubMed  Google Scholar 

  • Gelmi C, Perez-Correa R (2000) Solid substrate cultivation of G. fujikuroi on an inert support. Process Biochem 35:1227

    Google Scholar 

  • Ghelue MV, Løvaas E, Ringø E, Solheim B (1997) Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor (s). Physiol Plant 99:579–587. https://doi.org/10.1111/j.1399-3054,1997.tb05360.x

    Article  Google Scholar 

  • Glandorf DCM, Sluis IV, Bakkers PAHM, Schippers B (1994) Agglutination adherence and root colonization by fluorescent Pseudomonads. Appl Environ Microbiol 60:1726–1733

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Sabat J, Parida R, Kerkatta D (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204

    CAS  Google Scholar 

  • Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernandez J, Valencia-Cantero E, Reyez H, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Gutierrez-Mañero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 1:1–13

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Ann Rev Phytopathol 41:117–153

    Google Scholar 

  • Hao HT, Zhao X, Shang QH, Wang Y, Guo ZH, Zhang YB (2016) Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens. PLoS ONE 11:e0158621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14. https://doi.org/10.1007/s11104-007-9514-z

    Article  CAS  Google Scholar 

  • Hedden P, Thomas S (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25. https://doi.org/10.1042/BJ20120245

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19. PMID:15588698

    Article  CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate-and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Huang Z, He L, Sheng X, He Z (2013) Weathering of potash feldspar by Bacillus sp. L11. Wei sheng wu xue bao. Acta Microbiol Sinica 53:1172–1178

    CAS  Google Scholar 

  • Hubbell DH, Tien TM, Gaskin MH, Lee J (1979) Physiological interaction in the Azospirillum grass root association. In: Vose P, Ruschel AP (eds) Associative symbiosis. CRC Press, The Netherlands, pp 1–6

    Google Scholar 

  • Hughes M, Donnelly C, Croizer A, Wheeler CT (1999) Effects of the exposure of roots Alnus glutinosa to light on flavonoid and nodulation. Can J Bot 77:1311–1315

    CAS  Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1–aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • Joo GJ, Kim YM, Lee IJ, Song KS, Rhee IK (2004) Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus. Biotechnol Lett 26:487–491

    Article  CAS  PubMed  Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci https://doi.org/10.1016/j.tplants.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  • Kang S-M, Khan A, Hamayun M, Shinwari Z, Kim Y-H, Joo G-J, Lee I-J (2012) Acinetobacter Calcoaceticus ameliorated plant growth and influenced gibberellins and functional biochemicals. Abstracts of papers 44:365–372

    Google Scholar 

  • Karimi K, Amini J, Harighi B, Bahramnejad B (2012) Evaluation of biocontrol potential of pseudomonas and Bacillus spp. against Fusarium Wilt of Chickpea. Aus J Crop Sci 6:695–703

    Google Scholar 

  • Keshavarz Zarjani J, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693

    CAS  PubMed  Google Scholar 

  • Khan MR, Kounsar K, Hamid A (2002) Effect of certain rhizobacteria and antagonistic fungi on root nodulation and root-knot nematode disease of green gram. Nematologia Mediterranea 30:85–89

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265

    Chapter  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and iaa and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Rees DC (1994). Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397. https://doi.org/10.1021/bi00168a001

    Article  CAS  PubMed  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JWE (1993) Plant growth promoting rhizobacteria as biological agents. In: Metting FB Jr (ed) Soil microbial ecology. Application in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JWE, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. ISI Atlas Sci Anim Plant Sci 60–64

    Google Scholar 

  • Kloepper J, Tuzun S, Kuc J (1992) Proposed definitions related to induced disease resistance. Biocon Sci Tech 2:347–349

    Article  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193. https://doi.org/10.1080/10408440802291497

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy HA (1989) Effect of pesticides on phosphate solubilizing microorganisms, M. Sc. (Agric.) thesis, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande BA, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol. https://doi.org/10.1016/s0966-842x(00)01732-7

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publication, p 684. https://doi.org/10.1007/0-306-48162-6

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH, Ryu CM (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7:e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letham DS (1967) Chemistry and physiology of kinetin-like compounds. Annu Rev Plant Physiol 18:349–364

    Article  CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Carlson J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395

    Article  Google Scholar 

  • Lipping Y, Jiatao X, Daohong J, Yanping F, Guoqing L, Fangcan L (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1 potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Pseudomonas. In: Ramos J-L (ed) Kluwer Academic/Plenum Publishers, New York, pp 403–430

    Google Scholar 

  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, Chichester, United Kingdom

    Google Scholar 

  • Lynn TM, Win HS, Kyaw EP, Latt ZK, Yu SS (2013) Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int J Innov Appl Stud 3:959–966

    Google Scholar 

  • Magalhães FMM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. Acad Brasileira de Ciências 55:417–430

    Google Scholar 

  • Manero FJ, Ramos Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plantarum 111:206–211

    Article  Google Scholar 

  • Manikandan R, Raguchander T (2014) Fusarium oxysporum f. sp. lycopersici retardation through induction of defensive response in tomato plants using a liquid formulation of Pseudomonas fluorescens (Pf1). Eur J Plant Pathol 140. https://doi.org/10.1007/s10658-014-0481-y

    Article  CAS  Google Scholar 

  • Manulis S, Valinski L, Gafni Y, Hershenhorn J (1991) Indole-3-acetic acid biosynthetic pathways in Erwinia herbicola in relation to pathogenity in Gypsophia paniculata. Physiol Mol Plant P 39:161–171

    Article  CAS  Google Scholar 

  • Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB (2004) Siderophore production by a marine Pseudomonas aeruginosa and Its antagonistic action against phytopathogenic fungi. Appl Biochem Biotechnol 118:243–252

    Article  CAS  PubMed  Google Scholar 

  • Maougal RT, Brauman A, Plassard C, Abadie J, Djekoun A, Drevon JJ (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Mariano RLR, Michereff SJ, Silveira EB, Assis SMP Reis A (1997) Plant growth promoting rhizobacteria in Brazil. In: Ogoshi A, Kobayashi Y, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria in present status and future prospects. University of Hokaido/OECD, Sapporo, pp 22–29

    Google Scholar 

  • Martin RF, Domenech C, Olmedo EC (2000) Ent-Kaurene and squalene synthesis in F. fujikuroi cell-free extracts. Phytochemistry 54:723–728

    Article  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas flourescens strain CHAO: influence of the gacA gene and of pyoverdine production. Phytopathol 84:139–146

    Article  CAS  Google Scholar 

  • Maurya BR, Verma JP, Meena RS (eds) (2014) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, India, pp 293–313

    Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217

    Article  PubMed  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil and fertilizer phosphorus update. In: Alberta soil science workshop proceedings of coast terrace inn Edmonton, AB 84 104 20–22 Feb

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2015a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43:235–237

    Article  Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Meldau D, Meldau S, Hoang L, Underberg S, Wünsche H, Baldwin I (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp: b55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CO (1961) A kinetin-like compound in maize. Proc Nat Acad Sci USA 47:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):1–8

    Google Scholar 

  • Morgenstern Ely, Yaacov Okon (1987) The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor × Sorghum Sudanense. Arid Land Res Manage 1:115–127. https://doi.org/10.1080/15324988709381135

    Article  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MN, Sørensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Normander B, Hendriksen NB, Nybroe O (1999) Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol 65(4646–51):79

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Park Y-S, Dutta S, Ann M, Raaijmakers J, Park K (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461. https://doi.org/10.1016/j.bbrc.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  • Parmar P (2010) Isolation of potassium solubilizing bacteria and their inoculation effect on growth of wheat (Triticum aestivum L. em. Thell.). M. Sc. thesis submitted to CCS Haryana Agricultural university, Hisar

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Paulsen IT, Press CM, Ravel J, Kobayashi D, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Z, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rososvitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Shomashow LS, Loper JE (2005) Complete sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedgley DE (1991) Aerobiology: the atmosphere as a source and sink for microbes. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves, pp 43–59

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground, molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers J, Lemanceau P, van der Putten Wim H (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11. https://doi.org/10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Amsterdam, pp 195–230

    Chapter  Google Scholar 

  • Prabhukarthikeyan SR, Keerthana U, Raguchander T (2018) Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in Turmeric plants. Microbiol Res 210. https://doi.org/10.1016/j.micres.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Sharma M, Modi H (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoscus Esculantus). Int J Agri Sci Res (IJASR) 1:181–188

    Google Scholar 

  • Prin Y, Rougier M (1987) Pre infection events in the establishment of Alnus frankia symbiosis: study of the root hair deformation step. Life Sci Adv 6:98–106

    Google Scholar 

  • Puppo A, Rigaud J (1978) Cytokinins and morphological aspects of French-bean roots in the present of Rhizobium. Physiol Plant 42:202–206

    Article  CAS  Google Scholar 

  • Ramyabharathi SA, Sankari Meena K, Rajendran L, Karthikeyan G, Jonathan EI, Raguchander T (2018) Biocontrol of wilt-nematode complex infecting gerbera by Bacillus subtilis under protected cultivation. Egypt J Biol Pest Contr 28(1):2536–9342. https://doi.org/10.1186/s41938-018-0027-2P-21

    Article  Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554. https://doi.org/10.1093/molbev/msh047

    Article  CAS  PubMed  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiyad SA, Jhala YK, Vyas RV (2015) Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. Int J Sci Res Publications 5:1–6

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Sasirekha B, Shivakumar S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agricul Nat Res. https://doi.org/10.1016/j.anres.2016.02.003

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  CAS  PubMed  Google Scholar 

  • Sequeira L (1973) Hormone metabolism in diseased plants. Ann Rev Plant Physiol 24:353–380

    Article  CAS  Google Scholar 

  • Shanmugam P, Narayanasamy M (2008) Optimization and production of salicylic acid by rhizobacterial strain Bacillus licheniformis MML2501. Internet J Microbiol 6(1):1–8

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chili and cotton. Agri Sci China 2:409–412

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Singh PN, Yadav RL, Awasthi SK, Joshi BB, Singh RK, Lal RJ, Duttamajumder SK (2010) Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. J Hortic Forest 2:66–71

    Google Scholar 

  • Skoog F, Strong FM, Miller CO (1965) Cytokinins. Science 148:532–533

    Article  CAS  PubMed  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Baraz J Microbiol 39:151–156

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Potassium in agriculture, pp 201–276

    Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770. https://doi.org/10.1105/tpc.009159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen fixing bacterium closely associated with grasses. FEMS Microbiol Lett 24:506

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Štyriaková I, Štyriak I, Galko D, Hradil P, Bezdička P (2003) The release of iron-bearing minerals and dissolution of feldspars by heterotrophic bacteria of Bacillus species. Ceram Silik 47:20–26

    Google Scholar 

  • Subhashini DV, Kumar A (2014) Phosphate solubilising Streptomyces spp obtained from the rhizosphere of Ceriops decandra of Corangi mangroves. Indian J Agri Sci 84

    Google Scholar 

  • Suslow TV (1980) Growth and yield enhancement of sugarbeet by pelleting with specific Pseudomonas spp. Phytopathol News 12:40 (Abstr)

    Google Scholar 

  • Tarafdar JC, Rao AV, Bala K (1988) Production of phosphatases by fungi isolated from desert soils. Folia Microbiol 33:453–457

    Article  CAS  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Luduena L, Pena D, Ibanez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26:213–324

    Article  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Thomashow LS, Weller DM (1998) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    Article  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 493–499

    Google Scholar 

  • Thrane C, Olsson S, Nielsen TH, Sorensen J (1999) Vital fluorescent strains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of Pearl Millet (Pennisetum americanum L.) Appl Environ Microbiol 37(5):1016–1024

    Google Scholar 

  • Turlings CTJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1252

    Article  CAS  PubMed  Google Scholar 

  • Turner JT, Blackman P (1991) Factors related to peanut yield increases following Bacillus subtilis seed treatment. Plant Dis 75:347–353

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551. https://doi.org/10.1111/jam.12866

    Article  CAS  PubMed  Google Scholar 

  • Van de Poel B, Van Der Straeten D (2014) 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene. Front Plant Sci 5:640. https://doi.org/10.3389/fpls.2014.00640

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Loon LC, Bakker PAHM (2003) Signalling in rhizobacteria-plant interactions In: De Kroon H, Visser EJW (eds) Root ecology, vol 168. Springer, Berlin, Heidelberg, pp 297–330

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) lnduced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vassilev N, Vassileva M, Vassileva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144. https://doi.org/10.1007/s00253-006-0380-z

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Becerra C, Macías-Rodríguez L, López-Bucio J, Altamirano-Hernández J, Flores-Cortez I, Valencia-Cantero E (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340

    Article  CAS  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21. https://doi.org/10.1016/j.tplants.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  • Vijendra Kumar M, Ashok Kumar K (2012) Plant growth promoting and phytostimulatory potential of Bacillus subtilis and Bacillus amyloliquefaciens. ARPN J Agri Biol Sci 7(7):19–24

    Google Scholar 

  • Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD (2014) Physiology of iron metabolism. Transfus Med Hemother 41(3):213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XM, Bai YJ, Cai YJ, Zheng XH (2017) Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 53:109–115. https://doi.org/10.1016/j.procbio.2016.12.012

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) lnduction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583. https://doi.org/10.1073/pnas.95.12.6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that over produce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Xie X, Zhang H, Pare P (2009) Sustained growth promotion in Arabidopsis with longterm exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M, Sheng J, Chen L, Yejun Men Gan L, Guo S, Shen L (2014) Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings World J Microbiol Biotechnol 30(3):835–845

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7

    Article  CAS  Google Scholar 

  • Yan C, Xie D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13:1233–1240

    Article  PubMed  Google Scholar 

  • Young S, Pharis RP, Reid D, Reddy MS, Lifshitz R, Brown G (1990) PGPR: is there a relationship between plant regulators and the stimulation of plant growth or biological activity. In: Keel C, Koller B, Defago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. International Union of Biological Sciences, Switzerland, pp 182–186

    Google Scholar 

  • Yung SH (2010) IAA production by Streptomyces scabies and its role in plant microbe interaction, M.Sc. thesis, Cornell University, New York

    Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhang F, Narjes dasht I, Hynes RK, Donald LS (1997) Plant growth-promoting Rhizobacteria and Soybean [Glycine max (L.) Merr.] Growth and physiology at suboptimal root zone temperatures. Ann Bot 79:243–249

    Article  Google Scholar 

  • Zhang H, Rong H, Pilbeam D (2007) Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim M, Dowd S, Pare P (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S, Zhu B (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afri J Microbiol Res 7:41–47

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Li Z, Yu D (2010) Bacillus megaterium Strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Karthikeyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthikeyan, G., Rajendran, L., Suganyadevi, M., Raguchander, T. (2019). Microbial Rhizobacteria-Mediated Signalling and Plant Growth Promotion. In: Jogaiah, S., Abdelrahman, M. (eds) Bioactive Molecules in Plant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-27165-7_3

Download citation

Publish with us

Policies and ethics