Skip to main content

Amniotic Fluid Stem Cell Culture Methods

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Abstract

In the last decade, amniotic fluid (AF) has gained extensive attention as a source of stem cells with potential applications in pharmaceutical screening, disease modeling and cell-based therapies. In particular, the routine collection of AF through amniocentesis in the clinic has facilitated its availability for isolating amniotic fluid stem cells (AFSCs) as a reliable and renewable source of stem cells without the issues of ethical constraints associated with embryonic stem cells (ESCs) and scarcity related to adult stem cells. AFSCs display beneficial immunomodulatory properties, high survival rates, widely-used stem cell markers and the capacity for long term culturing, expansion and cryopreservation. Furthermore, there is compelling evidence that AFSCs can differentiate into various cell types of the three germ layers under the proper culturing conditions. AFSCs and their differentiated cell types have been proven to be safe and functional in animal models. These features along with the compatibility of AF cells may provide patients with opportunities to have access to their own cells. Blood relatives and possibly others with a high matching probability may benefit as well.

This chapter offers a review of AFSCs isolation and culturing methods with an emphasis on cell characterization and differentiation. Recent methods to enrich AFSCs based on morphological features, cell surface marker(s) and transcription factors have been discussed in detail. In addition, culturing conditions to differentiate AFSCs into several cell types, single cell cloning, reprogramming approaches and neuronal differentiation have been covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chang medium was developed for the primary culture of human AF cells for use in karyotyping and other antenatal genetic testing. The formula consists of a two part system: a liquid basal medium and supplement. The medium contains salts (7900 mg/L), dextrose (1400 mg/L), amino acids (1000 mg/L), polypeptides (66 mg/L), vitamins (22 mg/L), deoxyribonucleosides (21 mg/L), ribonucleosides (20 mg/L), sodium pyruvate (110 mg/L), newborn calf serum (6 % v/v), fetal bovine serum (6 % v/v) as well as steroid hormones (0.0013 mg/L), hormones and trace element (0.0025 mg/L) and other components (8 mg/L).

References

  1. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.

    Article  PubMed  Google Scholar 

  2. Klemmt PA, Vafaizadeh V, Groner B. The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opin Biol Ther. 2011;11(10):1297–314.

    Article  CAS  PubMed  Google Scholar 

  3. Downs KM, Harmann C. Developmental potency of the murine allantois. Development. 1997;124(14):2769–80.

    CAS  PubMed  Google Scholar 

  4. Snow MH, Bennett D. Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol. 1978;47:39–52.

    CAS  PubMed  Google Scholar 

  5. Ichikawa T, et al. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLoS One. 2013;8(7):e64506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4(3):423–33.

    Article  PubMed  Google Scholar 

  7. Gilbert WM, Brace RA. Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin Perinatol. 1993;17(3):150–7.

    CAS  PubMed  Google Scholar 

  8. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8.

    Article  PubMed  Google Scholar 

  9. Parolini O, et al. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med. 2009;4(2):275–91.

    Article  CAS  PubMed  Google Scholar 

  10. Bartha JL, et al. Alpha-fetoprotein and hematopoietic growth factors in amniotic fluid. Obstet Gynecol. 2000;96(4):588–92.

    CAS  PubMed  Google Scholar 

  11. Heidari Z, et al. Characterization of the growth factor activity of amniotic fluid on cells from hematopoietic and lymphoid organs of different life stages. Microbiol Immunol. 1996;40(8):583–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sherer DM. A review of amniotic fluid dynamics and the enigma of isolated oligohydramnios. Am J Perinatol. 2002;19(5):253–66.

    Article  PubMed  Google Scholar 

  13. Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989;161(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert WM, et al. Technetium Tc 99m rapidly crosses the ovine placenta and intramembranous pathway. Am J Obstet Gynecol. 1996;175(6):1557–62.

    Article  CAS  PubMed  Google Scholar 

  15. Medina-Gomez P, del Valle M. The culture of amniotic fluid cells. An analysis of the colonies, metaphase and mitotic index for the purpose of ruling out maternal cell contamination. Ginecol Obstet Mex. 1988;56:122–6.

    CAS  PubMed  Google Scholar 

  16. Murphy SV, Atala A. Amniotic fluid stem cells. In: Perinatal stem cells. New York, NY: John Wiley & Sons; 2013. p. 1–15.

    Chapter  Google Scholar 

  17. Jacobson CB, Barter RH. Intrauterine diagnosis and management of genetic defects. Am J Obstet Gynecol. 1967;99(6):796–807.

    Article  CAS  PubMed  Google Scholar 

  18. Fuchs F, Riis P. Antenatal sex determination. Nature. 1956;177(4503):330.

    Article  CAS  PubMed  Google Scholar 

  19. Serr DM, Sachs L, Danon M. The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report). Bull Res Counc Isr. 1955;5B(2):137–8.

    CAS  PubMed  Google Scholar 

  20. Steele MW, Breg Jr WR. Chromosome analysis of human amniotic-fluid cells. Lancet. 1966;1(7434):383–5.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson MM, Emery AE. Amniotic fluid cells; prenatal sex prediction and culture. Br Med J. 1970;1(5695):523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shih VE, Schulman JD. Ornithine-ketoacid transaminase activity in human skin and amniotic fluid cell culture. Clin Chim Acta. 1970;27(1):73–5.

    Article  CAS  PubMed  Google Scholar 

  23. Chitham RG, Quayle SJ, Hill L. The selection of a method for the culture of cells from amniotic fluid. J Clin Pathol. 1973;26(9):721–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang HC, Jones OW. Reduction of sera requirements in amniotic fluid cell culture. Prenat Diagn. 1985;5(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  25. Chang HC, Jones OW. Enhancement of amniocyte growth on a precoated surface. Prenat Diagn. 1991;11(6):357–70.

    Article  CAS  PubMed  Google Scholar 

  26. Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):RA253–7.

    PubMed  Google Scholar 

  27. Torricelli F, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol. 1993;98(2):119–26.

    CAS  PubMed  Google Scholar 

  28. Prusa AR, et al. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod. 2003;18(7):1489–93.

    Article  PubMed  Google Scholar 

  29. In ‘t Anker PS, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.

    Article  PubMed  Google Scholar 

  30. Kaviani A, et al. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kaviani A, et al. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196(4):592–7.

    Article  PubMed  Google Scholar 

  32. Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  33. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10(6):709–16.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J, et al. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch Gynecol Obstet. 2014;290(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  35. Tsai MS, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    Article  PubMed  Google Scholar 

  36. Fleischman RA. From white spots to stem cells: the role of the Kit receptor in mammalian development. Trends Genet. 1993;9(8):285–90.

    Article  CAS  PubMed  Google Scholar 

  37. Andrews PW, et al. Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of the same coin. Biochem Soc Trans. 2005;33(Pt 6):1526–30.

    Article  CAS  PubMed  Google Scholar 

  38. Andrews PW, et al. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984;3(4):347–61.

    Article  CAS  PubMed  Google Scholar 

  39. Inniss K, Moore H. Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev. 2006;15(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  40. Henderson JK, et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells. 2002;20(4):329–37.

    Article  CAS  PubMed  Google Scholar 

  41. Shevinsky LH, et al. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell. 1982;30(3):697–705.

    Article  CAS  PubMed  Google Scholar 

  42. Fox N, et al. Distribution of murine stage-specific embryonic antigens in the kidneys of three rodent species. Exp Cell Res. 1982;140(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  43. Shamblott MJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A. 1998;95(23):13726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maguire CT, et al. Genome-wide analysis reveals the unique stem cell identity of human amniocytes. PLoS One. 2013;8(1):e53372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zia S, et al. Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenat Diagn. 2013;33(10):921–8.

    PubMed  Google Scholar 

  46. Petsche Connell J, et al. Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Eng Part B Rev. 2013;19(4):368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roubelakis MG, Trohatou O, Anagnou NP. Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells Int. 2012;2012:107836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Moschidou D, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012;20(10):1953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bani-Yaghoub M, et al. Amniotic stem cells: potential in regenerative medicine. Stem Cells Int. 2012;2012:530674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Dionigi B, et al. A comparative analysis of human mesenchymal stem cell response to hypoxia in vitro: implications to translational strategies. J Pediatr Surg. 2014;49(6):915–8.

    Article  PubMed  Google Scholar 

  51. Romani R, et al. Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. Mol Biosyst. 2015;11(6):1622–32.

    Article  CAS  PubMed  Google Scholar 

  52. Nichols J, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    Article  CAS  PubMed  Google Scholar 

  53. Takeda J, Seino S, Bell GI. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res. 1992;20(17):4613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hatano SY, et al. Pluripotential competence of cells associated with Nanog activity. Mech Dev. 2005;122(1):67–79.

    Article  CAS  PubMed  Google Scholar 

  55. Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med. 2009;1(2):228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136(14):2311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghaleb AM, et al. Kruppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res. 2005;15(2):92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jezierski A, et al. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev. 2010;6(2):199–214.

    Article  CAS  PubMed  Google Scholar 

  59. Wang KH, et al. Upregulation of nanog and sox-2 genes following ectopic expression of Oct-4 in amniotic fluid mesenchymal stem cells. Biotechnol Appl Biochem. 2015;62:591.

    Article  CAS  PubMed  Google Scholar 

  60. Tsai MS, et al. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod. 2006;74(3):545–51.

    Article  CAS  PubMed  Google Scholar 

  61. Kim J, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 2007;40(1):75–90.

    Article  CAS  PubMed  Google Scholar 

  62. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  63. Dobreva MP, et al. On the origin of amniotic stem cells: of mice and men. Int J Dev Biol. 2010;54(5):761–77.

    Article  CAS  PubMed  Google Scholar 

  64. Pozzobon M, Ghionzoli M, De Coppi P. ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr Surg Int. 2010;26(1):3–10.

    Article  PubMed  Google Scholar 

  65. De Coppi P, et al. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007;177(1):369–76.

    Article  PubMed  Google Scholar 

  66. Piccoli M, et al. Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells. 2012;30(8):1675–84.

    Article  CAS  PubMed  Google Scholar 

  67. Ditadi A, et al. Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood. 2009;113(17):3953–60.

    Article  CAS  PubMed  Google Scholar 

  68. Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis. 2012;8(3):77–88.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zani A, et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 2014;63(2):300–9.

    CAS  PubMed  Google Scholar 

  70. Wolfrum K, et al. The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. PLoS One. 2010;5(10):e13703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Moschidou D, et al. Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells Dev. 2013;22(3):444–58.

    Article  CAS  PubMed  Google Scholar 

  72. De Coppi P. C-kit/CD117 cells from amniotic fluid and membranes and their cardiomyogenic potential. Circ Res. 2010;107(6):e11. author reply e12.

    Article  PubMed  CAS  Google Scholar 

  73. Moorefield EC, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6(10):e26535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Romani R, et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med. 2015;19:1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Di Trapani M, et al. Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age. Stem Cells Dev. 2015;24(1):132–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Di Trapani M, et al. Comparative study of immune regulatory properties of stem cells derived from different tissues. Stem Cells Dev. 2013;22(22):2990–3002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Valli A, et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. Oncogene. 2010;29(7):966–77.

    Article  CAS  PubMed  Google Scholar 

  78. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103(5):389–98.

    Article  CAS  PubMed  Google Scholar 

  79. Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development. 1997;124(19):3755–64.

    CAS  PubMed  Google Scholar 

  80. Chen WQ, et al. Variations of protein levels in human amniotic fluid stem cells CD117/2 over passages 5-25. J Proteome Res. 2009;8(11):5285–95.

    Article  CAS  PubMed  Google Scholar 

  81. Arnhold S, et al. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011;2011:715341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ginsberg M, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell. 2012;151(3):559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Resca E, et al. Enrichment in c-Kit improved differentiation potential of amniotic membrane progenitor/stem cells. Placenta. 2015;36(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  84. Roubelakis MG, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. 2011;15(9):1896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Roubelakis MG, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007;16(6):931–52.

    Article  CAS  PubMed  Google Scholar 

  86. Goodwin HS, et al. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7(11):581–8.

    Article  CAS  PubMed  Google Scholar 

  87. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  88. Parolini O, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  89. Sarugaser R, et al. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23(2):220–9.

    Article  PubMed  Google Scholar 

  90. Klein JD, Fauza DO. Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol. 2011;698:75–88.

    Article  CAS  PubMed  Google Scholar 

  91. Kunisaki SM, et al. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9. discussion 979–80.

    Article  PubMed  Google Scholar 

  92. Phermthai T, et al. A novel method to derive amniotic fluid stem cells for therapeutic purposes. BMC Cell Biol. 2010;11:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9(6):557–82.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Cheng L, Gerecht S. Efficient and scalable expansion of human pluripotent stem cells under clinically compliant settings: a view in 2013. Ann Biomed Eng. 2014;42(7):1357–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perin L, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40(6):936–48.

    Article  CAS  PubMed  Google Scholar 

  96. Jiang G, et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 2014;23(21):2613–25.

    Article  CAS  PubMed  Google Scholar 

  97. Li C, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 2009;18(22):4340–9.

    Article  CAS  PubMed  Google Scholar 

  98. Galende E, et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram. 2010;12(2):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu HE, et al. Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Exp Cell Res. 2011;317(13):1895–903.

    Article  CAS  PubMed  Google Scholar 

  100. Liu T, et al. High efficiency of reprogramming CD34(+) cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev. 2012;21(12):2322–32.

    Article  CAS  PubMed  Google Scholar 

  101. Fan Y, et al. Generation of human beta-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev. 2012;58(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  102. Kunisaki SM. Congenital anomalies: treatment options based on amniotic fluid-derived stem cells. Organogenesis. 2012;8(3):89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Diecke S, Wu JC. Pushing the reset button: chemical-induced conversion of amniotic fluid stem cells into a pluripotent state. Mol Ther. 2012;20(10):1839–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lu HE, et al. Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res. 2013;319(4):498–505.

    Article  CAS  PubMed  Google Scholar 

  105. Li Q, et al. Generation of induced pluripotent stem cells from human amniotic fluid cells by reprogramming with two factors in feeder-free conditions. J Reprod Dev. 2013;59(1):72–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pipino C, et al. Trisomy 21 mid-trimester amniotic fluid induced pluripotent stem cells maintain genetic signatures during reprogramming: implications for disease modeling and cryobanking. Cell Reprogram. 2014;16(5):331–44.

    Article  CAS  PubMed  Google Scholar 

  107. Kanemura H, et al. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One. 2014;9(1):e85336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Joo S, et al. Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res. 2012;35(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  109. Prusa AR, et al. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol. 2004;191(1):309–14.

    Article  PubMed  Google Scholar 

  110. Croft AP, Przyborski SA. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells. 2006;24(8):1841–51.

    Article  CAS  PubMed  Google Scholar 

  111. Mareschi K, et al. Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy. 2009;11(5):534–47.

    Article  CAS  PubMed  Google Scholar 

  112. Toselli M, et al. Do amniotic fluid-derived stem cells differentiate into neurons in vitro? Nat Biotechnol. 2008;26(3):269–70. author reply 270–1.

    Article  CAS  PubMed  Google Scholar 

  113. Rennie K, et al. Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol. 2013;91(5):271–86.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang S, Cui W. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6(3):305–11.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Wei PC, et al. SOX9 as a predictor for neurogenesis potentiality of amniotic fluid stem cells. Stem Cells Transl Med. 2014;3(10):1138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab. 2011;29(4):390–5.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kolambkar YM, et al. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol. 2007;38(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  118. Atala A. Amniotic fluid-derived pluripotential cells. Chapter 16. In: Essentials of stem cell biology. Amsterdam: Elsevier Inc.; 2009.

    Google Scholar 

  119. Benavides OM, et al. Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells. Tissue Eng Part A. 2012;18(11–12):1123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roubelakis MG, et al. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One. 2013;8(1):e54747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buchanan SS, et al. Cryopreservation of stem cells using trehalose: evaluation of the method using a human hematopoietic cell line. Stem Cells Dev. 2004;13(3):295–305.

    Article  CAS  PubMed  Google Scholar 

  122. Pegg DE. Long-term preservation of cells and tissues: a review. J Clin Pathol. 1976;29(4):271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 1985;313(6003):573–5.

    Article  CAS  PubMed  Google Scholar 

  124. Angelo PC, et al. Cryopreservation does not alter karyotype, multipotency, or NANOG/SOX2 gene expression of amniotic fluid mesenchymal stem cells. Genet Mol Res. 2012;11(2):1002–12.

    Article  CAS  PubMed  Google Scholar 

  125. Miranda-Sayago JM, et al. Evaluation of a low cost cryopreservation system on the biology of human amniotic fluid-derived mesenchymal stromal cells. Cryobiology. 2012;64(3):160–6.

    Article  CAS  PubMed  Google Scholar 

  126. Janz Fde L, et al. Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. J Biomed Biotechnol. 2012;2012:649353.

    PubMed  Google Scholar 

  127. Zambelli A, et al. Clinical toxicity of cryopreserved circulating progenitor cells infusion. Anticancer Res. 1998;18(6B):4705–8.

    CAS  PubMed  Google Scholar 

  128. Alessandrino P, et al. Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases. Bone Marrow Transplant. 1999;23(6):533–7.

    Article  CAS  PubMed  Google Scholar 

  129. Davis J, Rowley SD, Santos GW. Toxicity of autologous bone marrow graft infusion. Prog Clin Biol Res. 1990;333:531–40.

    CAS  PubMed  Google Scholar 

  130. Rodrigues JP, et al. Evaluation of trehalose and sucrose as cryoprotectants for hematopoietic stem cells of umbilical cord blood. Cryobiology. 2008;56(2):144–51.

    Article  CAS  PubMed  Google Scholar 

  131. Seo JM, et al. Cryopreservation of amniotic fluid-derived stem cells using natural cryoprotectants and low concentrations of dimethylsulfoxide. Cryobiology. 2011;62(3):167–73.

    Article  CAS  PubMed  Google Scholar 

  132. Nadler HL. Patterns of enzyme development utilizing cultivated human fetal cells derived from amniotic fluid. Biochem Genet. 1968;2(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  133. DeMars R, et al. Lesch-Nyhan mutation: prenatal detection with amniotic fluid cells. Science. 1969;164(3885):1303–5.

    Article  CAS  PubMed  Google Scholar 

  134. Wahlstrom J, Brosset A, Bartsch F. Viability of amniotic cells at different stages of gestation. Lancet. 1970;2(7681):1037.

    Article  CAS  PubMed  Google Scholar 

  135. Gregson NM. A technique for culturing cells from amniotic fluid. Lancet. 1970;1(7637):84.

    Article  CAS  PubMed  Google Scholar 

  136. Gray C, Davidson RG, Cohen MM. A simplified technique for the culture of amniotic fluid cells. J Pediatr. 1971;79(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  137. Marchant GS. Evaluation of methods of amniotic fluid cell culture. Am J Med Technol. 1971;37(10):391–6.

    CAS  PubMed  Google Scholar 

  138. Knorr-Gartner H, Harle I. A modified method of culturing human amniotic fluid cells for prenatal detection of genetic disorders. Humangenetik. 1972;14(4):333–4.

    CAS  PubMed  Google Scholar 

  139. Felix JS, et al. Amniotic fluid cell culture. I. Experimental design for evaluating cell culture variables: determination of optimal fetal calf serum concentration. Pediatr Res. 1974;8(11):870–4.

    Article  CAS  PubMed  Google Scholar 

  140. Butterworth J, et al. Effect of serum concentration, type of culture medium and pH on the lysosomal enzyme activity of cultured human amniotic fluid cells. Clin Chim Acta. 1974;53(2):239–46.

    Article  CAS  PubMed  Google Scholar 

  141. Rudiger HW, et al. Enhancement of amniotic fluid cell growth in culture. Humangenetik. 1974;22(1):81–4.

    Article  CAS  PubMed  Google Scholar 

  142. Huddleston JF, Carney Jr FE. Midtrimester amniocentesis and culture of amniotic fluid cells. Clin Obstet Gynecol. 1976;19(4):941–56.

    Article  CAS  PubMed  Google Scholar 

  143. Chettur L, Christensen E, Philip J. Stimulation of amniotic fluid cells by fibroblast growth factor. Clin Genet. 1978;14(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  144. Zhou XT, et al. A simple method of culturing amniotic fluid cells. Chin Med J (Engl). 1980;93(8):553–5.

    CAS  Google Scholar 

  145. Martin AO. Characteristics of amniotic fluid cells in vitro and attempts to improve culture techniques. Clin Obstet Gynaecol. 1980;7(1):143–73.

    CAS  PubMed  Google Scholar 

  146. Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54.

    CAS  PubMed  Google Scholar 

  147. Seguin LR, Palmer CG. Variables influencing growth and morphology of colonies of cells from human amniotic fluid. Prenat Diagn. 1983;3(2):107–16.

    Article  CAS  PubMed  Google Scholar 

  148. Brackertz M, et al. Decreased oxygen supply enhances growth in culture of human mid-trimester amniotic fluid cells. Hum Genet. 1983;64(4):334–8.

    Article  CAS  PubMed  Google Scholar 

  149. Miron PM. Preparation, culture, and analysis of amniotic fluid samples. Curr Protoc Hum Genet. 2012; Chapter 8: Unit 8.4.

    Google Scholar 

  150. Hoehn H, et al. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Pediatr Res. 1974;8(8):746–54.

    Article  CAS  PubMed  Google Scholar 

  151. Priest RE, et al. Differentiation in human amniotic fluid cell cultures: I: Collagen production. J Med Genet. 1977;14(3):157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Megaw JM, et al. Differentiation in human amniotic fluid cell cultures: II: Secretion of an epithelial basement membrane glycoprotein. J Med Genet. 1977;14(3):163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aula P, et al. Glial origin of rapidly adhering amniotic fluid cells. Br Med J. 1980;281(6253):1456–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Priest RE, et al. Differentiation in human amniotic fluid cell cultures: chorionic gonadotropin production. In Vitro. 1979;15(2):142–7.

    Article  CAS  PubMed  Google Scholar 

  155. Sarkar S, et al. Neural origin of cells in amniotic fluid. Am J Obstet Gynecol. 1980;136(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  156. Cremer M, et al. Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect. Hum Genet. 1981;56(3):365–70.

    Article  CAS  PubMed  Google Scholar 

  157. Harris A. Glycoproteins that distinguish different cell types found in amniotic fluid. Hum Genet. 1982;62(3):188–92.

    Article  CAS  PubMed  Google Scholar 

  158. Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods Cell Biol. 1982;26:11–34.

    Article  CAS  PubMed  Google Scholar 

  159. Zhang S, et al. The heterogeneity of cell subtypes from a primary culture of human amniotic fluid. Cell Mol Biol Lett. 2010;15(3):424–39.

    CAS  PubMed  Google Scholar 

  160. Wilson PG, et al. Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity. Stem Cells Int. 2012;2012:485950.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bottai D, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neurol Neurosci. 2012;30(1):55–68.

    PubMed  Google Scholar 

  162. Pentz S, Horler H. A cryopreservative procedure for storing cultivated and uncultivated amniotic fluid cells in liquid nitrogen. J Med Genet. 1980;17(6):472–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Schmidt D, et al. Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis. 2008;17(4):446–55. discussion 455.

    PubMed  Google Scholar 

  164. Niknejad H, et al. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold. Cryobiology. 2013;67(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  165. Cho HJ, et al. Evaluation of cell viability and apoptosis in human amniotic fluid-derived stem cells with natural cryoprotectants. Cryobiology. 2014;68(2):244–50.

    Article  CAS  PubMed  Google Scholar 

  166. Mathew S, et al. Factors which affect growth of amniotic fluid cells. Indian J Med Res. 1990;92:86–8.

    CAS  PubMed  Google Scholar 

  167. Bishara A, et al. Determination of surface bound and shed HLA antigens of amniotic cells by ELISA. Isr J Med Sci. 1990;26(1):34–8.

    CAS  PubMed  Google Scholar 

  168. Byrne D, Azar G, Nicolaides K. Why cell culture is successful after early amniocentesis. Fetal Diagn Ther. 1991;6(1–2):84–6.

    Article  CAS  PubMed  Google Scholar 

  169. Persutte WH, Lenke RR. Failure of amniotic-fluid-cell growth: is it related to fetal aneuploidy? Lancet. 1995;345(8942):96–7.

    Article  CAS  PubMed  Google Scholar 

  170. Mosquera A, et al. Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells. J Med Genet. 1999;36(6):494–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fuchs JR, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8. discussion 834–8.

    Article  PubMed  Google Scholar 

  172. Kunisaki SM, Freedman DA, Fauza DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg. 2006;41(4):675–82. discussion 675–82.

    Article  PubMed  Google Scholar 

  173. Pan HC, et al. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci. 2007;14(11):1089–98.

    Article  CAS  PubMed  Google Scholar 

  174. Schmidt D, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):164–70.

    Google Scholar 

  175. Dai W, Kloner RA. Myocardial regeneration by human amniotic fluid stem cells: challenges to be overcome. J Mol Cell Cardiol. 2007;42(4):730–2.

    Article  CAS  PubMed  Google Scholar 

  176. Kunisaki SM, et al. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng. 2007;13(11):2633–44.

    Article  CAS  PubMed  Google Scholar 

  177. Steigman SA, et al. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6. discussion 1126.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Peister A, et al. Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds. Tissue Eng Part A. 2009;15(10):3129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pan HC, et al. Combination of G-CSF administration and human amniotic fluid mesenchymal stem cell transplantation promotes peripheral nerve regeneration. Neurochem Res. 2009;34(3):518–27.

    Article  CAS  PubMed  Google Scholar 

  180. Donaldson AE, et al. Human amniotic fluid stem cells do not differentiate into dopamine neurons in vitro or after transplantation in vivo. Stem Cells Dev. 2009;18(7):1003–12.

    Article  CAS  PubMed  Google Scholar 

  181. Pan HC, et al. Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem Res. 2009;34(7):1304–16.

    Article  CAS  PubMed  Google Scholar 

  182. Cananzi M, Atala A, De Coppi P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online. 2009;18 Suppl 1:17–27.

    Article  PubMed  Google Scholar 

  183. Liu YW, et al. Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis. Int J Cardiol. 2013;168(1):66–75.

    Article  PubMed  Google Scholar 

  184. Turner CG, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61.

    Article  PubMed  Google Scholar 

  185. Da Sacco S, De Filippo RE, Perin L. Amniotic fluid as a source of pluripotent and multipotent stem cells for organ regeneration. Curr Opin Organ Transplant. 2011;16(1):101–5.

    Article  PubMed  CAS  Google Scholar 

  186. Antonucci I, et al. Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant. 2011;20(6):789–95.

    Article  PubMed  Google Scholar 

  187. Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011;32 Suppl 4:S316–9.

    Article  CAS  PubMed  Google Scholar 

  188. Mirabella T, et al. Recruitment of host’s progenitor cells to sites of human amniotic fluid stem cells implantation. Biomaterials. 2011;32(18):4218–27.

    Article  PubMed  CAS  Google Scholar 

  189. Skardal A, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Turner CG, et al. Craniofacial repair with fetal bone grafts engineered from amniotic mesenchymal stem cells. J Surg Res. 2012;178(2):785–90.

    Article  PubMed  Google Scholar 

  191. Klemmt P. Application of amniotic fluid stem cells in basic science and tissue regeneration. Organogenesis. 2012;8(3):76.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Santana AC, et al. Protective effects of human amniotic fluid stem cells in a model of aorta allograft vasculopathy in rats. Transplant Proc. 2012;44(8):2490–4.

    Article  CAS  PubMed  Google Scholar 

  193. Tajiri N, et al. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One. 2012;7(8):e43779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kim BS, et al. Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Med. 2012;10:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rodrigues MT, et al. Amniotic fluid-derived stem cells as a cell source for bone tissue engineering. Tissue Eng Part A. 2012;18(23–24):2518–27.

    Article  CAS  PubMed  Google Scholar 

  196. Yang DY, et al. Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1 alpha in a sciatic nerve injury model. J Neurosurg. 2012;116(6):1357–67.

    Article  CAS  PubMed  Google Scholar 

  197. Weber B, et al. Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials. 2012;33(16):4031–43.

    Article  CAS  PubMed  Google Scholar 

  198. Vadasz S, et al. Second and third trimester amniotic fluid mesenchymal stem cells can repopulate a de-cellularized lung scaffold and express lung markers. J Pediatr Surg. 2014;49(11):1554–63.

    Article  PubMed  Google Scholar 

  199. Zavatti M, et al. Critical-size bone defect repair using amniotic fluid stem cell/collagen constructs: effect of oral ferutinin treatment in rats. Life Sci. 2015;121:174–83.

    Article  CAS  PubMed  Google Scholar 

  200. Payton S. Basic research: urethral sphincter regeneration using stem cells from amniotic fluid. Nat Rev Urol. 2014;11(7):365.

    Article  PubMed  Google Scholar 

  201. Kim JA, et al. MYOD mediates skeletal myogenic differentiation of human amniotic fluid stem cells and regeneration of muscle injury. Stem Cell Res Ther. 2013;4(6):147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Yang JD, et al. Effect of amniotic fluid stem cells and amniotic fluid cells on the wound healing process in a white rat model. Arch Plast Surg. 2013;40(5):496–504.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yang CM, et al. Engraftment of genetically modified human amniotic fluid-derived progenitor cells to produce coagulation factor IX after in utero transplantation in mice. Cell Biol Int. 2013;37(5):420–9.

    Article  CAS  PubMed  Google Scholar 

  204. Barboni B, et al. Synthetic bone substitute engineered with amniotic epithelial cells enhances bone regeneration after maxillary sinus augmentation. PLoS One. 2013;8(5):e63256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kim J, et al. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomed Mater. 2013;8(1):014107.

    Article  PubMed  CAS  Google Scholar 

  206. Roh DH, et al. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell Transplant. 2013;22(9):1577–90.

    Article  PubMed  Google Scholar 

  207. Hartmann-Fritsch F, et al. Human amniotic fluid derived cells can competently substitute dermal fibroblasts in a tissue-engineered dermo-epidermal skin analog. Pediatr Surg Int. 2013;29(1):61–9.

    Article  PubMed  Google Scholar 

  208. Berardinelli P, et al. Role of amniotic fluid mesenchymal cells engineered on MgHA/collagen-based scaffold allotransplanted on an experimental animal study of sinus augmentation. Clin Oral Investig. 2013;17(7):1661–75.

    Article  PubMed  Google Scholar 

  209. Tsangaris G, et al. The amniotic fluid cell proteome. Electrophoresis. 2005;26(6):1168–73.

    Article  CAS  PubMed  Google Scholar 

  210. Skardal A, et al. Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater. 2013;17:307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Steigman SA, et al. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  212. De Gemmis P, et al. A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells. Stem Cells Dev. 2006;15(5):719–28.

    Article  PubMed  Google Scholar 

  213. McLaughlin D, et al. Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J Neurosci Res. 2006;83(7):1190–200.

    Article  CAS  PubMed  Google Scholar 

  214. Jiang TM, et al. Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells. In Vitro Cell Dev Biol Anim. 2010;46(9):793–800.

    Article  CAS  PubMed  Google Scholar 

  215. Pfeiffer S, McLaughlin D. In vitro differentiation of human amniotic fluid-derived cells: augmentation towards a neuronal dopaminergic phenotype. Cell Biol Int. 2010;34(9):959–67.

    Article  CAS  PubMed  Google Scholar 

  216. Orciani M, et al. Neurogenic potential of mesenchymal-like stem cells from human amniotic fluid: the influence of extracellular growth factors. J Biol Regul Homeost Agents. 2011;25(1):115–30.

    CAS  PubMed  Google Scholar 

  217. Jezierski A, et al. Human amniotic fluid cells form functional gap junctions with cortical cells. Stem Cells Int. 2012;2012:607161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Preitschopf A, et al. mTORC1 is essential for early steps during Schwann cell differentiation of amniotic fluid stem cells and regulates lipogenic gene expression. PLoS One. 2014;9(9):e107004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Maraldi T, et al. Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell Tissue Res. 2014;357(1):1–13.

    Article  PubMed  Google Scholar 

  220. Hartmann K, et al. Amniotic fluid derived stem cells give rise to neuron-like cells without a further differentiation potential into retina-like cells. Am J Stem Cells. 2013;2(2):108–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Park JS, et al. Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue, or bone marrow encapsulated in fibrin gels containing TGF-beta3. Biomaterials. 2011;32(32):8139–49.

    Article  CAS  PubMed  Google Scholar 

  222. Preitschopf A, et al. Chondrogenic differentiation of amniotic fluid stem cells and their potential for regenerative therapy. Stem Cell Rev. 2012;8(4):1267–74.

    Article  CAS  PubMed  Google Scholar 

  223. Carraro G, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Trovato L, et al. Pluripotent stem cells isolated from human amniotic fluid and differentiation into pancreatic beta-cells. J Endocrinol Invest. 2009;32(11):873–6.

    Article  CAS  PubMed  Google Scholar 

  225. Zou G, et al. Induction of pancreatic beta-cell-like cells from CD44+/CD105+ human amniotic fluids via epigenetic regulation of the pancreatic and duodenal homeobox factor 1 promoter. DNA Cell Biol. 2011;30(9):739–48.

    Article  CAS  PubMed  Google Scholar 

  226. Li B, et al. Neuronal restrictive silencing factor silencing induces human amniotic fluid-derived stem cells differentiation into insulin-producing cells. Stem Cells Dev. 2011;20(7):1223–31.

    Article  CAS  PubMed  Google Scholar 

  227. Chun SY, et al. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters. J Tissue Eng Regen Med. 2015;9(5):540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Carnevale G, et al. In vitro differentiation into insulin-producing beta-cells of stem cells isolated from human amniotic fluid and dental pulp. Dig Liver Dis. 2013;45(8):669–76.

    Article  CAS  PubMed  Google Scholar 

  229. Zhou Y, et al. Genetic modification of primate amniotic fluid-derived stem cells produces pancreatic progenitor cells in vitro. Cells Tissues Organs. 2013;197(4):269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gage BK, et al. Cellular reprogramming of human amniotic fluid cells to express insulin. Differentiation. 2010;80(2–3):130–9.

    Article  CAS  PubMed  Google Scholar 

  231. Zhang P, et al. Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells Dev. 2009;18(9):1299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Connell JP, et al. Formation of functional gap junctions in amniotic fluid-derived stem cells induced by transmembrane co-culture with neonatal rat cardiomyocytes. J Cell Mol Med. 2013;17(6):774–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Walther G, Gekas J, Bertrand OF. Amniotic stem cells for cellular cardiomyoplasty: promises and premises. Catheter Cardiovasc Interv. 2009;73(7):917–24.

    Article  PubMed  Google Scholar 

  234. Bollini S, et al. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev. 2011;7(2):364–80.

    Article  PubMed  Google Scholar 

  235. Guan X, et al. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J Tissue Eng Regen Med. 2011;5(3):220–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ma X, et al. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo. J Tissue Eng Regen Med. 2012;6(8):598–613.

    Article  CAS  PubMed  Google Scholar 

  237. Maioli M, et al. Amniotic fluid stem cells morph into a cardiovascular lineage: analysis of a chemically induced cardiac and vascular commitment. Drug Des Devel Ther. 2013;7:1063–73.

    PubMed  PubMed Central  Google Scholar 

  238. Gao Y, et al. Amniotic fluid-derived stem cells demonstrated cardiogenic potential in indirect co-culture with human cardiac cells. Ann Biomed Eng. 2014;42(12):2490–500.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Antonucci I, et al. Isolation of osteogenic progenitors from human amniotic fluid using a single step culture protocol. BMC Biotechnol. 2009;9:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Chen Q, et al. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells. Anal Sci. 2010;26(10):1033–7.

    Article  CAS  PubMed  Google Scholar 

  241. Hipp JA, et al. Ethanol alters the osteogenic differentiation of amniotic fluid-derived stem cells. Alcohol Clin Exp Res. 2010;34(10):1714–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sun H, et al. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010;31(6):1133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Peister A, et al. Osteogenic differentiation of amniotic fluid stem cells. Biomed Mater Eng. 2008;18(4–5):241–6.

    CAS  PubMed  Google Scholar 

  244. Higuchi A, et al. Osteoblast differentiation of amniotic fluid-derived stem cells irradiated with visible light. Tissue Eng Part A. 2011;17(21–22):2593–602.

    Article  CAS  PubMed  Google Scholar 

  245. De Rosa A, et al. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng Part A. 2011;17(5–6):645–53.

    Article  PubMed  CAS  Google Scholar 

  246. Barba M, et al. Lim mineralization protein 3 induces the osteogenic differentiation of human amniotic fluid stromal cells through Kruppel-like factor-4 downregulation and further bone-specific gene expression. J Biomed Biotechnol. 2012;2012:813894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Rodrigues MT, et al. The effect of differentiation stage of amniotic fluid stem cells on bone regeneration. Biomaterials. 2012;33(26):6069–78.

    Article  CAS  PubMed  Google Scholar 

  248. Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2014. doi:10.1002/term.1911.

    Google Scholar 

  249. Liu M, Li Y, Yang ST. Curculigoside improves osteogenesis of human amniotic fluid-derived stem cells. Stem Cells Dev. 2014;23(2):146–54.

    Article  PubMed  CAS  Google Scholar 

  250. de Lara Janz F, et al. Simvastatin induces osteogenic differentiation in human amniotic fluid mesenchymal stem cells (AFMSC). Fundam Clin Pharmacol. 2014;28(2):211–6.

    Article  PubMed  CAS  Google Scholar 

  251. Zavatti M, et al. Ferutinin promotes proliferation and osteoblastic differentiation in human amniotic fluid and dental pulp stem cells. Life Sci. 2013;92(20–21):993–1003.

    Article  CAS  PubMed  Google Scholar 

  252. Decembrini S, et al. Comparative analysis of the retinal potential of embryonic stem cells and amniotic fluid-derived stem cells. Stem Cells Dev. 2011;20(5):851–63.

    Article  CAS  PubMed  Google Scholar 

  253. Ghionzoli M, et al. Human amniotic fluid stem cell differentiation along smooth muscle lineage. FASEB J. 2013;27(12):4853–65.

    Article  CAS  PubMed  Google Scholar 

  254. Li Y, et al. Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. Int J Mol Med. 2014;33(6):1507–13.

    CAS  PubMed  Google Scholar 

  255. Kang HH, et al. Urothelial differentiation of human amniotic fluid stem cells by urothelium specific conditioned medium. Cell Biol Int. 2014;38(4):531–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Siegel N, et al. Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev. 2007;3(4):256–64.

    Article  PubMed  Google Scholar 

  257. Rosner M, et al. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis. Oncotarget. 2011;2(9):705–12.

    Article  PubMed  PubMed Central  Google Scholar 

  258. Rehni AK, et al. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007;183(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  259. Chun SY, et al. Human amniotic fluid stem cell-derived muscle progenitor cell therapy for stress urinary incontinence. J Korean Med Sci. 2012;27(11):1300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Liu T, et al. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci. 2012;9(7):592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Zheng YB, et al. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One. 2012;7(7):e41392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Sedrakyan S, et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol. 2012;23(4):661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zagoura DS, et al. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut. 2012;61(6):894–906.

    Article  CAS  PubMed  Google Scholar 

  264. Peng SY, et al. Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J Obstet Gynecol. 2014;53(2):151–7.

    Article  PubMed  Google Scholar 

  265. Morigi M, De Coppi P. Cell therapy for kidney injury: different options and mechanisms--mesenchymal and amniotic fluid stem cells. Nephron Exp Nephrol. 2014;126(2):59.

    Article  CAS  PubMed  Google Scholar 

  266. Jun EK, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-beta/SMAD2 and PI3K/Akt pathways. Int J Mol Sci. 2014;15(1):605–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Villani V, et al. Amniotic fluid stem cells prevent beta-cell injury. Cytotherapy. 2014;16(1):41–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Stenson WF. Preventing necrotising enterocolitis with amniotic fluid stem cells. Gut. 2014;63(2):218–9.

    CAS  PubMed  Google Scholar 

  269. Li Y, et al. Therapeutic effects of amniotic fluid-derived mesenchymal stromal cells on lung injury in rats with emphysema. Respir Res. 2014;15:120.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Xiao GY, et al. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One. 2014;9(9):e106538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Bottai D, et al. Third trimester NG2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol. 2014;254:121–33.

    Article  CAS  PubMed  Google Scholar 

  272. Chang YJ, et al. Amniotic fluid stem cells with low gamma-interferon response showed behavioral improvement in Parkinsonism rat model. PLoS One. 2013;8(9):e76118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Lai D, et al. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC Dev Biol. 2013;13:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Sun D, et al. Therapeutic effects of human amniotic fluid-derived stem cells on renal interstitial fibrosis in a murine model of unilateral ureteral obstruction. PLoS One. 2013;8(5):e65042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Turner CG, et al. Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of spina bifida. Fetal Diagn Ther. 2013;34(1):38–43.

    Article  PubMed  Google Scholar 

  276. Grisafi D, et al. Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatr Pulmonol. 2013;48(11):1070–80.

    Article  PubMed  Google Scholar 

  277. Kim SW, et al. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model. Int J Cardiol. 2013;168(2):1062–9.

    Article  PubMed  Google Scholar 

  278. Pederiva F, et al. Amniotic fluid stem cells rescue both in vitro and in vivo growth, innervation, and motility in nitrofen-exposed hypoplastic rat lungs through paracrine effects. Cell Transplant. 2013;22(9):1683–94.

    Article  CAS  PubMed  Google Scholar 

  279. Orciani M, et al. Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells. Int J Immunopathol Pharmacol. 2008;21(3):595–602.

    CAS  PubMed  Google Scholar 

  280. Tweedell KS. New paths to pluripotent stem cells. Curr Stem Cell Res Ther. 2008;3(3):151–62.

    Article  CAS  PubMed  Google Scholar 

  281. Giuliani M, et al. Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood. 2011;118(12):3254–62.

    Article  CAS  PubMed  Google Scholar 

  282. Kobari L, et al. Human induced pluripotent stem cells can reach complete terminal maturation: in vivo and in vitro evidence in the erythropoietic differentiation model. Haematologica. 2012;97(12):1795–803.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Spinelli V, Guillot PV, De Coppi P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis. 2013;9(2):101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Simantov R. Amniotic stem cell international. Reprod Biomed Online. 2008;16(4):597–8.

    Article  CAS  PubMed  Google Scholar 

  285. Wu HW, et al. A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomed Microdevices. 2009;11(6):1297–307.

    Article  PubMed  Google Scholar 

  286. Wu HW, et al. The culture and differentiation of amniotic stem cells using a microfluidic system. Biomed Microdevices. 2009;11(4):869–81.

    Article  PubMed  Google Scholar 

  287. Zheng YM, et al. Development of cloned embryos from porcine neural stem cells and amniotic fluid-derived stem cells transfected with enhanced green fluorescence protein gene. Reproduction. 2009;137(5):793–801.

    Article  CAS  PubMed  Google Scholar 

  288. Bryzek A, et al. Expression and co-expression of surface markers of pluripotency on human amniotic cells cultured in different growth media. Ginekol Pol. 2013;84(12):1012–24.

    PubMed  Google Scholar 

  289. Soong YK, et al. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines. J Tissue Eng Regen Med. 2013. doi:10.1002/term.1702.

    Google Scholar 

  290. Chen CP, et al. Proteome differences between male and female fetal cells in amniotic fluid. OMICS. 2013;17(1):16–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Werber B, Martin E. A prospective study of 20 foot and ankle wounds treated with cryopreserved amniotic membrane and fluid allograft. J Foot Ankle Surg. 2013;52(5):615–21.

    Article  PubMed  Google Scholar 

  292. Sessarego N, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica. 2008;93(3):339–46.

    Article  PubMed  Google Scholar 

  293. Horwitz EM. Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res. 2003;34(6):600–6.

    Article  CAS  PubMed  Google Scholar 

  294. Bajek A, et al. Human amniotic-fluid-derived stem cells: a unique source for regenerative medicine. Expert Opin Biol Ther. 2014;14(6):831–9.

    Article  CAS  PubMed  Google Scholar 

  295. Pozzobon M, Piccoli M, De Coppi P. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell Tissue Bank. 2014;15(2):199–211.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmud Bani-Yaghoub Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Najem, D., Ribecco-Lutkiewicz, M., Sodja, C., Moretti, F.M., Stanimirovic, D., Bani-Yaghoub, M. (2016). Amniotic Fluid Stem Cell Culture Methods. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_10

Download citation

Publish with us

Policies and ethics