Skip to main content

Advertisement

Log in

ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Despite the advancements that have been made in treating infants with congenital malformations, these still represent a major cause of disease and death during the first years of life and childhood. Regeneration of natural tissue from living cells to restore damaged tissues and organs is the main purpose of regenerative medicine. This relatively new field has emerged by the combination of tissue engineering and stem cell transplantation as a possible strategy for the replacement of damaged organs or tissues. This review would like to offer an insight on the latest evolution of stem cells with a glance at their possible application for regenerative medicine, particularly in the Paediatric Surgery field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Placzek MR, Chung IM, Macedo HM, Ismail S, Mortera Blanco T, Lim M, Cha JM, Fauzi I, Kang Y, Yeo DC, Ma CY, Polak JM, Panoskaltsis N, Mantalaris A (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6(32):209–232

    Article  CAS  PubMed  Google Scholar 

  2. Safinia L, Datan N, Höhse M, Mantalaris A, Bismarck A (2005) Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 26(36):7537–7547

    Article  CAS  PubMed  Google Scholar 

  3. Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ, Swart EF, Kaazempur-Mofrad M, Borenstein JT, Vacanti JP, Neville C (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805

    Article  PubMed  Google Scholar 

  4. Nagy RD, Tsai BM, Wang M et al (2005) Stem cell transplantation as a therapeutic approach to organ failure. J Surg Res 129(1):152–160

    Article  CAS  PubMed  Google Scholar 

  5. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143

    Article  CAS  PubMed  Google Scholar 

  7. McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99:1341–1346

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz RE, Reyes M, Koodie L, Jiang Y, Blackstad M, Lund T, Lenvik T, Johnson S, Hu WS, Verfaillie CM (2002) Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest 109(10):1291–1302

    CAS  PubMed  Google Scholar 

  9. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530 (erratum in: Science 1998 Aug 14;281(5379):923)

    Article  CAS  PubMed  Google Scholar 

  11. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. PNAS 98(1):113–118

    Article  CAS  PubMed  Google Scholar 

  12. Kofidis T, de Bruin JL, Hoyt G, Ho Y, Tanaka M, Yamane T, Lebl DR, Swijnenburg RJ, Chang CP, Quertermous T, Robbins RC (2005) Myocardial restoration with embryonic stem cell bioartificial tissue transplantation. J Heart Lung Transplant 24(6):737–744

    Article  PubMed  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Sweier JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145

    Article  CAS  PubMed  Google Scholar 

  14. Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR (2008) Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 43(11):1953–1963

    Article  PubMed  Google Scholar 

  15. De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  PubMed  Google Scholar 

  16. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  17. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19(3):193–204

    Article  CAS  PubMed  Google Scholar 

  18. Amit M, Shariki C, Margulets V et al (2004) Feeder layer and serum-free culture of human embryonic stem cells. Biol Reprod 70(3):837–845

    Article  CAS  PubMed  Google Scholar 

  19. Richards M, Fong CY, Chan WK et al (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20(9):933–936

    Article  CAS  PubMed  Google Scholar 

  20. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  21. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  CAS  PubMed  Google Scholar 

  22. Fong H, Hohenstein KA, Donovan PJ (2008) Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26(8):1931–1938 (Epub 2008 Apr 3)

    Article  CAS  PubMed  Google Scholar 

  23. Lott JP, Savulescu J (2007) Towards a global human embryonic stem cell bank. Am J Bioeth 7(8):37–44

    Article  PubMed  Google Scholar 

  24. Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11 Review

    Article  PubMed  Google Scholar 

  25. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444(7118):481–485 (epub 2006 Aug 23. Erratum in: Nature. 2006 Nov 23;444(7118):512. Nature. 2007 Mar 15;446(7133):342)

    Article  CAS  PubMed  Google Scholar 

  26. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439(7073):216–219 (epub 2005 Oct 16)

    Article  CAS  PubMed  Google Scholar 

  27. Deb KD, Sarda K (2008) Human embryonic stem cells: preclinical perspectives. J Transl Med 6:7

    Article  PubMed  Google Scholar 

  28. Briggs R, King TJ (1952) The transplantation of living nuclei from blastula cells into enucleated frog’s eggs. Proc Natl Acad Sci USA 38:455–463

    Article  CAS  PubMed  Google Scholar 

  29. Gurdon JB, Laskey RA (1970) The transplantation of nuclei from single cultured cells into enucleate frogs’eggs. J Embryol Exp Morphol 24(2):227–248

    CAS  PubMed  Google Scholar 

  30. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569):64–66

    Article  CAS  PubMed  Google Scholar 

  31. Franco D, Moreno N, Ruiz-Lozano P (2007) Non-resident stem cell populations in regenerative cardiac medicine. Cell Mol Life Sci 64(6):683–691

    Article  CAS  PubMed  Google Scholar 

  32. Dalgetty DM, Medine CN, Iredale JP, Hay DC (2009) Progress and future challenges in stem cell-derived liver technologies. Am J Physiol Gastrointest Liver Physiol 297(2):G241–G248

    Article  CAS  PubMed  Google Scholar 

  33. Anglani F, Forino M, Del Prete D, Tosetto E, Torregrossa R, D’Angelo A (2004) In search of adult renal stem cells. J Cell Mol Med 8(4):474–487

    Article  CAS  PubMed  Google Scholar 

  34. Lerou PH, Yabuuchi A, Huo H, Takeuchi A, Shea J, Cimini T, Ince TA, Ginsburg E, Racowsky C, Daley GQ (2008) Human embryonic stem cell derivation from poor-quality embryos. Nat Biotechnol 26(2):212–214 (epub 2008 Jan 27)

    Article  CAS  PubMed  Google Scholar 

  35. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324 (epub 2007 Jun 6)

    Article  CAS  PubMed  Google Scholar 

  36. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  CAS  PubMed  Google Scholar 

  37. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  39. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  40. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181

    Article  CAS  PubMed  Google Scholar 

  41. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  CAS  PubMed  Google Scholar 

  42. Yu J, Thomson JA (2008) Pluripotent stem cell lines. Genes Dev 22(15):1987–1997 Review

    Article  CAS  PubMed  Google Scholar 

  43. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977

    Article  CAS  PubMed  Google Scholar 

  44. Friedenstein AJ, Kulagina NN, Panasuk AF, Rudakowa SF (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    CAS  PubMed  Google Scholar 

  45. Campagnoli C, Roberts IAG (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402

    Article  CAS  PubMed  Google Scholar 

  46. In ‘t Anker PS, Scherjon SA (2003) Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102:1548–1549

    Article  PubMed  Google Scholar 

  47. Tsai MS, Lee JL (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456

    Article  PubMed  Google Scholar 

  48. Fan CG, Thang FW, Zhang Q (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14:311–321

    Article  PubMed  Google Scholar 

  49. Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274 (epub 2008 Aug 14)

    Article  PubMed  Google Scholar 

  50. Eyckmans J, Luyten FP (2006) Species specificity of ectopic bone formation using periosteum-derived mesenchymal progenitor cells. Tissue Eng 12(8):2203–2213

    Article  CAS  PubMed  Google Scholar 

  51. Erices A, Conget P (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  CAS  PubMed  Google Scholar 

  52. Romanov YA, Svintsitskaya VA (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  PubMed  Google Scholar 

  53. Igura K, Takahashi K, Mitsuru A, Yamaguchi S (2004) Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 6:543–553

    Article  CAS  PubMed  Google Scholar 

  54. Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol 86:85–99

    Article  CAS  PubMed  Google Scholar 

  55. Horwitz EM, Blanc KL (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  56. Kern S, Eichler H (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  57. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489

    Article  CAS  PubMed  Google Scholar 

  58. Karlsson H, Samarasinghe S, Ball LM, Sundberg B, Lankester AC, Dazzi F, Uzunel M, Rao K, Veys P, Le Blanc K, Ringdén O, Amrolia PJ (2008) Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood 112(3):532–541 (epub 2008 Apr 28)

    Article  CAS  PubMed  Google Scholar 

  59. Crisostomo PR, Markel TA, Wang Y, Meldrum DR (2008) Surgically relevant aspects of stem cell paracrine effects. Surgery 143(5):577–581 (epub 2008 Jan 30)

    Article  PubMed  Google Scholar 

  60. Takeda Y, Mori T, Imabayashi H, Kiyono T, Gojo S, Miyoshi S, Hida N, Ita M, Segawa K, Ogawa S, Sakamoto M, Nakamura S, Umezawa A (2004) Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? J Gene Med 6:833–845

    Article  CAS  PubMed  Google Scholar 

  61. Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12(2):105–116

    Article  CAS  PubMed  Google Scholar 

  62. Terai M, Uyama T, Sugiki T, Li XK, Umezawa A, Kiyono T (2005) Immortalization of human fetal cells: the life span of umbilical cord blood-derived cells can be prolonged without manipulating p16INK4a/RB braking pathway. Mol Biol Cell 16:1491–1499

    Article  CAS  PubMed  Google Scholar 

  63. Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H (2007) Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 43(3–4):129–138 (epub 2007 May 21)

    Article  CAS  PubMed  Google Scholar 

  64. Pelagiadis I, Dimitriou H, Kalmanti M (2008) Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pediatr Hematol Oncol 30(4):301–309

    Article  PubMed  Google Scholar 

  65. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    Article  CAS  PubMed  Google Scholar 

  66. Hong SH, Gang EJ, Jeong JA et al (2005) In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells. Biochem Biophys Res Commun 330:1153–1161

    Article  CAS  PubMed  Google Scholar 

  67. Sugaya K (2003) Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. Int Rev Cytol 228:1–30

    Article  PubMed  Google Scholar 

  68. Dimmeler S, Zeiher AM (2009) Cell therapy of acute myocardial infarction: open questions. Cardiology 113(3):155–160 (epub 2008 Dec 22)

    Article  PubMed  Google Scholar 

  69. Koc ON, Gerson SC, Lazarus HM et al (2002) Allogenic mesenchymal stem cell infusion for treatment of metachromatic leucodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  CAS  PubMed  Google Scholar 

  70. Whyte MP, Kurtzberg J, McAlister WH et al (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636

    Article  PubMed  Google Scholar 

  71. Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309

    Article  CAS  PubMed  Google Scholar 

  72. Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932

    Article  CAS  PubMed  Google Scholar 

  73. Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79:1607–1614

    Article  PubMed  Google Scholar 

  74. Mazzini L, Mareschi K, Ferrero I, Vassallo E, Oliveri G, Nasuelli N, Oggioni G, Testa L, Fagioli F (2008) Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 265(1):78–83

    Article  CAS  PubMed  Google Scholar 

  75. Burt RK, Loh Y, Pearce W, Beohar N, Barr WG, Craig R, Wen Y, Rapp JA, Kessler J (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299(8):925–936

    Article  CAS  PubMed  Google Scholar 

  76. Fuchs JR, Hannouche D, Terada S et al (2005) Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells 23:958–964

    Article  CAS  PubMed  Google Scholar 

  77. Kunisaki SM, Freedman DA, Fauza DO (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 41:675–682

    Article  PubMed  Google Scholar 

  78. Zsebo KM et al (1990) Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 63:213–224

    Article  CAS  PubMed  Google Scholar 

  79. Pan GJ, Chang ZY, Scholer HR, Pei D (2002) Stem cell pluripotency and transcription factor Oct4. Cell Res 12:321–329

    Article  PubMed  Google Scholar 

  80. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    Article  CAS  PubMed  Google Scholar 

  81. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ (2008) Generation of human-induced pluripotent stem cells. Nat Protoc 3(7):1180–1186

    Article  CAS  PubMed  Google Scholar 

  82. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, LE Rees, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030 (epub 2008 Nov 18)

    Article  PubMed  Google Scholar 

  83. Thapar N (2009) New frontiers in the treatment of Hirschsprung disease. J Pediatr Gastroenterol Nutr 48(Suppl 2):S92–S94

    Article  PubMed  Google Scholar 

  84. Zani A, Cananzi M, Eaton S, Pierro A, De Coppi P (2009) Stem cells as a potential treatment of necrotizing enterocolitis. J Pediatr Surg 44(3):659–660 Comment on: J Pediatr Surg. 2008 Nov;43(11):1953–63

    Article  PubMed  Google Scholar 

  85. Javaid-Ur-Rehman, Waseem T (2008) Intestinal tissue engineering: where do we stand? Surg Today 38:484–486

  86. Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240(5):748–754

    Article  PubMed  Google Scholar 

  87. Ware CB, Nelson AM, Blau CA (2006) A comparison of NIH-approved human ESC lines. Stem Cells 24(12):2677–2684

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo De Coppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozzobon, M., Ghionzoli, M. & De Coppi, P. ES, iPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pediatr Surg Int 26, 3–10 (2010). https://doi.org/10.1007/s00383-009-2478-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-009-2478-8

Keywords

Navigation