Skip to main content

Advertisement

Log in

Stem Cells in Amniotic Fluid as New Tools to Study Human Genetic Diseases

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

In future, the characterization and isolation of different human stem cells will allow the detailed molecular investigation of cell differentiation processes and the establishment of new therapeutic concepts for a wide variety of diseases. Since the first successful isolation and cultivation of human embryonic stem cells about 10 years ago, their usage for research and therapy has been constrained by complex ethical consideration as well as by the risk of malignant development of undifferentiated embryonic stem cells after transplantation into the patient’s body. Adult stem cells are ethically acceptable and harbor a low risk of tumor development. However, their differentiation potential and their proliferative capacity are limited. About 4 years ago, the discovery of amniotic fluid stem cells, expressing Oct-4, a specific marker of pluripotent stem cells, and harboring a high proliferative capacity and multilineage differentiation potential, initiated a new and promising stem cell research field. Inbetween, amniotic fluid stem cells have been demonstrated to harbor the potential to differentiate into cells of all three embryonic germlayers. These stem cells do not form tumors in vivo and do not raise the ethical concerns associated with human embryonic stem cells. Further investigations will reveal whether amniotic fluid stem cells really represent an intermediate cell type with advantages over both, adult stem cells and embryonic stem cells. The approach to generate clonal amniotic fluid stem cell lines as new tools to investigate molecular and cell biological consequences of human natural occurring disease causing mutations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weissman, I. L. (2000). Stem cells: Units of development, units of regeneration, and units in evolution. Cell, 100, 157–168.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenthal, N. (2003). Prometheus’s vulture and the stem-cell promise. New England Journal of Medicine, 349, 267–274.

    Article  PubMed  Google Scholar 

  3. Schulman, A. (2005). The search for alternative sources of human pluripotent stem cells. Stem Cell Reviews, 1, 291–292.

    Article  PubMed  Google Scholar 

  4. Wood, A. (2005). Ethics and embryonic stem cell research. Stem Cell Reviews, 1, 317–324.

    Article  PubMed  Google Scholar 

  5. Kamm, F. M. (2005). Ethical issues in using and not using embryonic stem cells. Stem Cell Reviews, 1, 325–330.

    Article  PubMed  Google Scholar 

  6. Milunsky, A. (1979). Amniotic fluid cell culture. In A. Milunsky (Ed.) Genetic disorder and the fetus. New York: Plenum.

    Google Scholar 

  7. Hoehn, H., & Salk, D. (1982). Morphological and biochemical heterogeneity of amniotic fluid cells in culture. Methods in Cell Biology, 26, 11–34.

    Article  PubMed  CAS  Google Scholar 

  8. Gosden, C. M. (1983). Amniotic fluid cell types and culture. British Medical Bulletin, 39, 348–354.

    PubMed  CAS  Google Scholar 

  9. Prusa, A., & Hengstschläger, M. (2002). Amniotic fluid cells and human stem cell research—A new connection. Medical Science Monitor, 8, 253–257.

    Google Scholar 

  10. Fauza, D. (2004). Amniotic fluid and placental stem cells. Best Practical Research in Clinical Obstetrics and Gynaecology, 18, 877–891.

    Article  Google Scholar 

  11. Guillot, P. V., O’Donoghue, K., Kurata, H., & Fisk, N. M. (2006). Fetal stem cells: Betwixt and between. Seminars in Reproductive Medicine, 24, 340–347.

    Article  PubMed  CAS  Google Scholar 

  12. Delo, D. M., DeCoppi, P., Bartsch, G., & Atala, A. (2006). Amniotic fluid and placental stem cells. Methods in Enzymology, 419, 426–438.

    Article  PubMed  CAS  Google Scholar 

  13. Thakar, N., Priest, R. E., & Priest, J. H. (1982). Estrogen production by cultured amniotic fluid cells. Clinical Research, 30, 888A.

    Google Scholar 

  14. Whitsett, C. F., Priest, R. E., Priest, J. H., & Marion, J. (1983). HLA-typing of culture amniotic fluid cells. American Journal of Clinical Pathology, 79, 186.

    PubMed  CAS  Google Scholar 

  15. Miki, T., & Strom, S. C. (2006). Amnion-derived pluripotent/multipotent stem cells. Stem Cell Reviews, 2, 133–142.

    Article  PubMed  CAS  Google Scholar 

  16. Sakuragawa, N., Misawa, H., Ohsugi, K., Kakishita, K., Ishii, T., & Thangavel, R., et al. (1997). Evidence for active acetylcholine metabolism in human amniotic epithelial cells: Applicable to intracerebral allografting for neurologic disease. Neuroscience Letters, 232, 53–56.

    Article  PubMed  CAS  Google Scholar 

  17. Elwan, M. A., & Sakuragawa, N. (1997). Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport, 8, 3435–3438.

    Article  PubMed  CAS  Google Scholar 

  18. Sakuragawa, N., Elwan, M. A., Fujii, T., & Kawashima, K. (1999). Possible dynamic neurotransmitter metabolism surrounding the fetus. Journal of Child Neurology, 11, 265–266.

    Google Scholar 

  19. Uchida, S., Inanaga, Y., Kobayashi, M., Hurukawa, S., Araie, M., & Sakuragawa, N. (2000). Neurptrophic function of conditioned medium from human amniotic epithelial cells. Journal of Neuroscience Research, 62, 585–590.

    Article  PubMed  CAS  Google Scholar 

  20. Marx, C. E., Vance, B. J., Jarskog, L. F., Chescheir, N. C., & Gilmore, J. H. (1999). Nerve growth factor, brain-derived neurothrophic factor, and neurotrophin-3 levels in human amniotic fluid. American Journal of Obstetrics and Gynecology, 181, 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  21. Kakishita, K., Elwan, M., Nakao, N., Itakura, T., & Sakuragawa, N. (2000). Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: A potential source of donor for transplantation therapy. Experimental Neurology, 165, 27–34.

    Article  PubMed  CAS  Google Scholar 

  22. Kakishita, K., Nakao, N., Sakuragawa, N., & Itakura, T. (2003). Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Research, 980, 48–56.

    Article  PubMed  CAS  Google Scholar 

  23. Sankar, V., & Muthusamy, R. (2003). Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience, 118, 11–17.

    Article  PubMed  CAS  Google Scholar 

  24. Wei, J. P., Zhang, T. S., Kawa, S., Aizawa, T., Ota, M., & Akaike, T., et al. (2003). Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplantation, 12, 545–552.

    PubMed  Google Scholar 

  25. Takashima, S., Ise, H., Zhao, P., Akaike, T., & Nikaido, T. (2004). Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Structure and Function, 29, 73–84.

    Article  PubMed  CAS  Google Scholar 

  26. Miki, T., Lehmann, T., Cai, H., Stolz, D. B., & Strom, S. C. (2005). Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  27. Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology of Reproduction, 77, 577–588.

    Article  PubMed  CAS  Google Scholar 

  28. Kaviani, A., Perry, T. E., Dzakovic, A., Jennings, R. W., Ziegler, M. M., & Fauza, D. O. (2001). The amniotic fluid as a source of cells for fetal tissue engineering. Journal of Pediatric Surgery, 36, 1662–1665.

    Article  PubMed  CAS  Google Scholar 

  29. Mitka, M. (2001). Amniotic cell show promise for fetal tissue engineering. The Journal of the American Medical Association, 286, 2083.

    Article  CAS  Google Scholar 

  30. Fuchs, J. R., Kaviani, A., Oh, J. T., LaVan, D., Udagawa, T., & Jennings, R. W., et al. (2004). Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. Journal of Pediatric Surgery, 39, 834–838.

    Article  PubMed  Google Scholar 

  31. Kunisaki, S. M., Fuchs, J. R., Kaviani, A., Oh, J. T., LaVan, D. A., & Vacanti, J. P., et al. (2006). Hyperoncotic enhancement of fetal pulmonary growth after tracheal occlusion: An alveolar and capillary morphometric analysis. Journal of Pediatric Surgery, 41, 34–39.

    Article  PubMed  Google Scholar 

  32. Kunisaki, S. M., Freedman, D. A., & Fauza, D. O. (2006). Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. Journal of Pediatric Surgery, 41, 675–682.

    Article  PubMed  Google Scholar 

  33. Kunisaki, S. M., Armant, M., Kao, G. S., Stevenson, K., Kim, H., & Fauza, D. O. (2007). Tissue engineering from human mesenchymal amniocytes: A prelude to clinical trials. Journal of Pediatric Surgery, 42, 974–980.

    Article  PubMed  Google Scholar 

  34. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., & Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  35. Monk, M., & Holding, C. (2001). Human embryonic genes re-expressed in cancer cells. Oncogene, 20, 8085–8091.

    Article  PubMed  CAS  Google Scholar 

  36. Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Waknitz, M. A., & Itskovitz-Eldor, J., et al. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biology, 227, 271–278.

    Article  PubMed  CAS  Google Scholar 

  37. Mosquera, A., Fernandez, J. L., Campos, A., Goyanes, V. J., Ramiro-Diaz, J., & Gosalvez, J. (1999). Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells. Journal of Medical Genetics, 36, 494–496.

    PubMed  CAS  Google Scholar 

  38. Prusa, A. R., Marton, E., Rosner, M., Freilinger, A., Bernaschek, G., & Hengstschläger, M. (2003). Stem cell marker expression in human trisomy 21 amniotic fluid cells and trophoblasts. Journal of Neural Transmission, 67, 235–242.

    PubMed  CAS  Google Scholar 

  39. Pesce, M., & Schöler, H. R. (2001). Oct-4: Gatekeeper in the beginnings of mammalian development. Stem Cells, 19, 271–278.

    Article  PubMed  CAS  Google Scholar 

  40. Donavan, P. J. (2001). High Oct-ane fuel powers the stem cell. Nature Genetics, 29, 246–247.

    Article  CAS  Google Scholar 

  41. Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschläger, M. (2003). Oct-4 expressing cells in human amniotic fluid: A new source for stem cell research? Human Reproduction, 18, 1489–1493.

    Article  PubMed  Google Scholar 

  42. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., & Gold, J. D., et al. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19, 971–974.

    Article  PubMed  CAS  Google Scholar 

  43. Martin, F. H., Suggs, S. V., Langley, K. E., Lu, H. S., Ting, J., & Okino, K. H., et al. (1990). Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 63, 203–211.

    Article  PubMed  CAS  Google Scholar 

  44. Shamblott, M. J., Axelman, J., Littlefield, J. W., Blumenthal, P. D., Huggins, G. R., & Cui, Y., et al. (2001). Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proceedings of the National Academy of Sciences of the United States of America, 98, 113–118.

    Article  PubMed  CAS  Google Scholar 

  45. Tsai, M.-S., Lee, J.-L., Chang, Y.-J., & Hwang, S.-M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19, 1450–1456.

    Article  PubMed  Google Scholar 

  46. Bossolasco, P., Montemurro, T., Cova, L., Zangrossi, S., Calzarossa, C., & Miatiotis, S., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 16, 329–336.

    Article  PubMed  CAS  Google Scholar 

  47. Tsai, M.-S., Hwang, S.-M., Tsai, Y.-L., Lee, J.-L., & Chang, Y.-L. (2006). Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biology of Reproduction, 74, 545–551.

    Article  PubMed  CAS  Google Scholar 

  48. De Coppi, P., Bartsch, G., Siddiqui, M. M., Xu, T., Santos, T. X., & Perin, L., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    Article  PubMed  CAS  Google Scholar 

  49. Kim, J., Lee, Y., Kim, H., Hwang, K. J., Kwon, H. C., & Kim, S. K., et al. (2007). Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Proliferation, 40, 75–90.

    Article  PubMed  CAS  Google Scholar 

  50. Karlmark, K. R., Freilinger, A., Marton, E., Rosner, M., Lubec, G., & Hengstschläger, M. (2005). Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. International Journal of Molecular Medicine, 16, 987–992.

    PubMed  CAS  Google Scholar 

  51. Buehr, M., Nichols, J., Stenhouse, F., Mountford, P., Greenhalgh, C. J., & Kantachuvesiri, S., et al. (2003). Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines. Biology of Reproduction, 68, 222–229.

    Article  PubMed  CAS  Google Scholar 

  52. Hosler, B. A., Larosa, G. J., Grippo, J. F., & Gudas, L. J. (1989). Expression of REX-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Molecular and Cellular Biology, 9, 5623–5629.

    PubMed  CAS  Google Scholar 

  53. Ben-Shushan, E., Thompson, J. R., Gudas, L. J., & Bergman, Y. (1998). Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Molecular and Cellular Biology, 18, 1866–1878.

    PubMed  CAS  Google Scholar 

  54. Du, Z.-W., Cong, H.-C., & Yao, Z. (2001). Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridization. Biochemical and Biophysical Research Communications, 282, 701–706.

    Article  PubMed  CAS  Google Scholar 

  55. Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current Biology, 11, 514–518.

    Article  PubMed  CAS  Google Scholar 

  56. Siegel, N., Rosner, M., Hanneder, M., Freilinger, A., & Hengstschläger, M. (2007). Human amniotic fluid stem cells: A new perspective. Amino Acids, doi:10.1007/s00726-007-0593-1.

  57. Hengstschläger, M., Braun, K., Soucek, T., Miloloza, A., & Hengstschläger-Ottnad, E. (1999). Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle. Mutation Research-Reviews in Muation Research, 436, 1–9.

    Google Scholar 

  58. in ‘tAnker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H. J., Willemze, R., et al (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102, 1548–1549.

  59. Noort, W. A., Kruisselbrink, A. B., in ‘tAnker, P. S., Kruger, M., van Bezooijen, R. L., & de Paus, R. A., et al. (2002). Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Experimental Hematology, 30, 870–878.

    Article  PubMed  Google Scholar 

  60. Prusa, A. R., Marton, E., Rosner, M., Bettelheim, D., Lubec, G., & Pollak, A., et al. (2004). Neurogenic cell in human amniotic fluid, American Journal of Obstetrics and Gynecology, 191, 309–314.

    Article  PubMed  Google Scholar 

  61. De Gemmis, P., Lapucci, C., Bertelli, M., Tognetto, A., Fanin, E., & Vettor, R., et al. (2006). A real-time PCR approach to evaluate adipogenic potential of amniotic fluid-derived human mesenchymal stem cells, Stem Cells and Development, 15, 719–728.

    Article  PubMed  Google Scholar 

  62. Rehni, A. K., Singh, N., Jaggi, A. S., & Singh, M. (2007). Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice, Behavioural Brain Research, 183, 95–100.

    Article  PubMed  CAS  Google Scholar 

  63. Tsai, M.-S., Hwang, S.-M., Chen, K.-D., Lee, Y.-S., Hsu, L.-W., Chang, Y.-J., et al (2007). Functional network analysis on the transcriptomes of mesechymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells, 25, 2511–2523.

    Article  PubMed  CAS  Google Scholar 

  64. DeCoppi, P., Callegari, A., Chiavegato, A., Gasparotto, L., Piccoli, M., Taiani, J., et al. (2007). Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells, Journal of Urology, 177, 369–376.

    Article  Google Scholar 

  65. Kolambkar, Y. M., Peister, A., Soker, S., Atala, A., & Guldberg, R. E. (2007). Chondrogenic differentiation of amniotic fluid-derived stem cells. Journal of Molecular Histology, doi:10.1007/s10735-007-9118-1.

  66. Jones, D. G., Anderson, E. R., & Galvin, K. A. (2003). Spinal cord regeneration: Moving tentatively towards new perspectives, Neurological Rehabilitation, 18, 339–351.

    CAS  Google Scholar 

  67. Luque, J. M., & Gimenez y Ribotta, M. (2004). Neural stem cells and the quest for restorative neurology, Histology and Histopathology, 19, 271–280.

    PubMed  CAS  Google Scholar 

  68. Ricard, J., & Liebl, D. J. (2004). Neurogenesis: Is the adult stem cell young or old?, International Union of Biochemistry and Molecular Biology Life, 56, 1–6.

    PubMed  CAS  Google Scholar 

  69. Oh, J. E., Fountoulakis, M., Juranville, J. F., Rosner, M., Hengstschläger, M., & Lubec, G. (2004). Proteomic determination of metabolic enzymes of the amnion cells: Basis for a possible diagnostic tool?, Proteomics, 4, 1145–1158.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Experiments of MH’s laboratory discussed in this article were part of a project, which has been reviewed and accepted by the ethics commission of the Medical University of Vienna, Austria (project number: 036/2002). The current work of the group on human amniotic fluid stem cells is supported by the Research Training Network “Developing a stem cell based therapy to replace nephrons lost through reflux nephropathy” (http://www.kidstem.org) funded by the European Community as part of the Framework program 6 (FP6 036097-2). We apologize to those colleagues whose work is not cited due to space limitations or our inability to draw connections between elements of the primary literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hengstschläger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, N., Rosner, M., Hanneder, M. et al. Stem Cells in Amniotic Fluid as New Tools to Study Human Genetic Diseases. Stem Cell Rev 3, 256–264 (2007). https://doi.org/10.1007/s12015-007-9003-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-9003-z

Keywords

Navigation