Skip to main content

Advertisement

Log in

Probing Stemness and Neural Commitment in Human Amniotic Fluid Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Recently, human amniotic fluid (AF) cells have attracted a great deal of attention as an alternative cell source for transplantation and tissue engineering. AF contains a variety of cell types derived from fetal tissues, of which a small percentage is believed to represent stem cell sub-population(s). In contrast to human embryonic stem (ES) cells, AF cells are not subject to extensive legal or ethical considerations; nor are they limited by lineage commitment characteristic of adult stem cells. However, to become therapeutically valuable, better protocols for the isolation of AF stem cell sub-populations need to be developed. This study was designed to examine the molecular components involved in self-renewal, neural commitment and differentiation of AF cells obtained at different gestational ages. Our results showed that, although morphologically heterogeneous, AF cells derived from early gestational periods ubiquitously expressed KERATIN 8 (K8), suggesting that the majority of these cells may have an epithelial origin. In addition, AF cells expressed various components of NOTCH signaling (ligands, receptors and target genes), a pathway involved in stem cell maintenance, determination and differentiation. A sub-population of K8 positive cells (<10%) co-expressed NESTIN, a marker detected in the neuroepithelium, neural stem cells and neural progenitors. Throughout the gestational periods, a much smaller AF cell sub-population (<1%) expressed pluripotency markers, OCT4a, NANOG and SOX2, from which SOX2 positive AF cells could be isolated through single cell cloning. The SOX2 expressing AF clones showed the capacity to give rise to a neuron-like phenotype in culture, expressing neuronal markers such as MAP2, NFL and NSE. Taken together, our findings demonstrated the presence of fetal cells with stem cell characteristics in the amniotic fluid, highlighting the need for further research on their biology and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Hipp, J., & Atala, A. (2008). Sources of stem cells for regenerative medicine. Stem Cell Review, 4, 3–11.

    Article  Google Scholar 

  2. Strauer, B. E., & Kornowski, R. (2003). Stem cell therapy in perspective. Circulation, 107, 929–934.

    Article  PubMed  Google Scholar 

  3. Rohwedel, J., Guan, K., Hegert, C., & Wobus, A. M. (2001). Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicology in Vitro, 15, 741–753.

    Article  CAS  PubMed  Google Scholar 

  4. Bongso, A., & Richards, M. (2004). History and perspective of stem cell research. Best Practice and Research Clinical Obstetrics and Gynaecology, 18, 827–842.

    Article  PubMed  Google Scholar 

  5. Riazi, A. M., Kwon, S. Y., & Stanford, W. L. (2009). Stem cell sources for regenerative medicine. Methods in Molecular Biology, 482, 55–90.

    Article  CAS  PubMed  Google Scholar 

  6. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  CAS  PubMed  Google Scholar 

  7. Pittenger, M. F., Mosca, J. D., & McIntosh, K. R. (2000). Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Current Topics in Microbiology and Immunology, 251, 3–11.

    CAS  PubMed  Google Scholar 

  8. De Coppi, P., Pozzobon, M., Piccoli, M., Gazzola, M. V., Boldrin, L., Slanzi, E., et al. (2006). Isolation of mesenchymal stem cells from human vermiform appendix. Journal of Surgical Research, 135, 85–91.

    Article  PubMed  CAS  Google Scholar 

  9. Bartsch, G., Yoo, J. J., De Coppi, P., Siddiqui, M. M., Schuch, G., Pohl, H. G., et al. (2005). Propagation, expansion, and multilineage differentiation of human somatic stem cells from dermal progenitors. Stem Cells and Development, 14, 337–348.

    Article  CAS  PubMed  Google Scholar 

  10. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.

    Article  PubMed  CAS  Google Scholar 

  11. Tyden, O., Bergstrom, S., & Nilsson, B. A. (1981). Origin of amniotic fluid cells in mid-trimester pregnancies. British Journal of Obstetrics and Gynaecology, 88, 278–286.

    CAS  PubMed  Google Scholar 

  12. Prusa, A. R., & Hengstschlager, M. (2002). Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit, 8, RA253–RA257.

    PubMed  Google Scholar 

  13. Priest, R. E., Marimuthu, K. M., & Priest, J. H. (1978). Origin of cells in human amniotic fluid cultures: ultrastructural features. Laboratory Investigation, 39, 106–109.

    CAS  PubMed  Google Scholar 

  14. Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–776.

    Article  CAS  PubMed  Google Scholar 

  15. Chiba, S. (2006). Notch signaling in stem cell systems. Stem Cells, 24, 2437–2447.

    Article  CAS  PubMed  Google Scholar 

  16. Dale, B. A., Holbrook, K. A., Kimball, J. R., Hoff, M., & Sun, T. T. (1985). Expression of epidermal keratins and filaggrin during human fetal skin development. The Journal of Cell Biology, 101, 1257–1269.

    Article  CAS  PubMed  Google Scholar 

  17. Holbrook, K. A., & Odland, G. F. (1975). The fine structure of developing human epidermis: light, scanning, and transmission electron microscopy of the periderm. Journal of Investigative Dermatology, 65, 16–38.

    Article  CAS  PubMed  Google Scholar 

  18. Blanpain, C., & Fuchs, E. (2009). Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews. Molecular Cell Biology, 10, 207–217.

    Article  CAS  PubMed  Google Scholar 

  19. Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: turning over new leaves. Cell, 128, 445–458.

    Article  CAS  PubMed  Google Scholar 

  20. Owens, D. W., & Lane, E. B. (2003). The quest for the function of simple epithelial keratins. Bioessays, 25, 748–758.

    Article  CAS  PubMed  Google Scholar 

  21. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., & Krepler, R. (1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell, 31, 11–24.

    Article  CAS  PubMed  Google Scholar 

  22. Franke, W. W., Schiller, D. L., Moll, R., Winter, S., Schmid, E., Engelbrecht, I., et al. (1981). Diversity of cytokeratins. Differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. Journal of Molecular Biology, 153, 933–959.

    Article  CAS  PubMed  Google Scholar 

  23. Jackson, B. W., Grund, C., Schmid, E., Burki, K., Franke, W. W., & Illmensee, K. (1980). Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation, 17, 161–179.

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharya, B., Miura, T., Brandenberger, R., Mejido, J., Luo, Y., Yang, A. X., et al. (2004). Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 103, 2956–2964.

    Article  CAS  PubMed  Google Scholar 

  25. Maurer, J., Nelson, B., Cecena, G., Bajpai, R., Mercola, M., Terskikh, A., et al. (2008). Contrasting expression of keratins in mouse and human embryonic stem cells. PLoS ONE, 3, e3451.

    Article  PubMed  CAS  Google Scholar 

  26. Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    Article  CAS  PubMed  Google Scholar 

  27. Sikorska, M., Sandhu, J. K., Deb-Rinker, P., Jezierski, A., Leblanc, J., Charlebois, C., et al. (2008). Epigenetic modifications of SOX2 enhancers, SRR1 and SRR2, correlate with in vitro neural differentiation. Journal of Neuroscience Research, 86, 1680–1693.

    Article  CAS  PubMed  Google Scholar 

  28. Rebhan, M., Vacun, G., Bayreuther, K., & Rosner, H. (1994). Altered ganglioside expression by SH-SY5Y cells upon retinoic acid-induced neuronal differentiation. NeuroReport, 5, 941–944.

    Article  CAS  PubMed  Google Scholar 

  29. Bani-Yaghoub, M., Tremblay, R. G., Lei, J. X., Zhang, D., Zurakowski, B., Sandhu, J. K., et al. (2006). Role of Sox2 in the development of the mouse neocortex. Developmental Biology, 295, 52–66.

    Article  CAS  PubMed  Google Scholar 

  30. Rozen, S., & Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365–386.

    CAS  PubMed  Google Scholar 

  31. Galipeau, J., Li, H., Paquin, A., Sicilia, F., Karpati, G., & Nalbantoglu, J. (1999). Vesicular stomatitis virus G pseudotyped retrovector mediates effective in vivo suicide gene delivery in experimental brain cancer. Cancer Research, 59, 2384–2394.

    CAS  PubMed  Google Scholar 

  32. Ory, D. S., Neugeboren, B. A., & Mulligan, R. C. (1996). A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proceedings of the National Academy of Sciences of the United States of America, 93, 11400–11406.

    Article  CAS  PubMed  Google Scholar 

  33. Milunsky, A. (1979). Amniotic fluid cell culture. In Genetic Disorder and the fetus: Diagnosis, prevention, and treatment (p. 75). New York: Plenum Press.

  34. Moriyama, M., Durham, A. D., Moriyama, H., Hasegawa, K., Nishikawa, S., Radtke, F., et al. (2008). Multiple roles of Notch signaling in the regulation of epidermal development. Developmental Cell, 14, 594–604.

    Article  CAS  PubMed  Google Scholar 

  35. Powell, B. C., Passmore, E. A., Nesci, A., & Dunn, S. M. (1998). The Notch signalling pathway in hair growth. Mechanisms of Development, 78, 189–192.

    Article  CAS  PubMed  Google Scholar 

  36. Favier, B., Fliniaux, I., Thelu, J., Viallet, J. P., Demarchez, M., Jahoda, C. A., et al. (2000). Localisation of members of the notch system and the differentiation of vibrissa hair follicles: receptors, ligands, and fringe modulators. Developmental Dynamics, 218, 426–437.

    Article  CAS  PubMed  Google Scholar 

  37. Peh, G. S., Lang, R. J., Pera, M. F., & Hawes, S. M. (2009). CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation. Stem Cells and Development, 18, 269–282.

    Article  CAS  PubMed  Google Scholar 

  38. Mignone, J. L., Roig-Lopez, J. L., Fedtsova, N., Schones, D. E., Manganas, L. N., Maletic-Savatic, M., et al. (2007). Neural potential of a stem cell population in the hair follicle. Cell Cycle, 6, 2161–2170.

    CAS  PubMed  Google Scholar 

  39. Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., et al. (2003). Nestin expression in hair follicle sheath progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9958–9961.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Z., de Paiva, C. S., Luo, L., Kretzer, F. L., Pflugfelder, S. C., & Li, D. Q. (2004). Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells, 22, 355–366.

    Article  PubMed  Google Scholar 

  41. Liedtke, S., Stephan, M., & Kogler, G. (2008). Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biological Chemistry, 389, 845–850.

    Article  CAS  PubMed  Google Scholar 

  42. Lee, J., Kim, H. K., Rho, J. Y., Han, Y. M., & Kim, J. (2006). The human OCT-4 isoforms differ in their ability to confer self-renewal. Journal of Biological Chemistry, 281, 33554–33565.

    Article  CAS  PubMed  Google Scholar 

  43. Cauffman, G., Liebaers, I., Van Steirteghem, A., & Van de Velde, H. (2006). POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells, 24, 2685–2691.

    Article  CAS  PubMed  Google Scholar 

  44. Zsebo, K. M., Williams, D. A., Geissler, E. N., Broudy, V. C., Martin, F. H., Atkins, H. L., et al. (1990). Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell, 63, 213–224.

    Article  CAS  PubMed  Google Scholar 

  45. Li, C., Zhou, J., Shi, G., Ma, Y., Yang, Y., Gu, J., et al. (2009). Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 18, 4340–4349.

    Article  CAS  PubMed  Google Scholar 

  46. Tamagawa, T., Ishiwata, I., & Saito, S. (2004). Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Human Cell, 17, 125–130.

    Article  PubMed  Google Scholar 

  47. Gearhart, J. (2004). New human embryonic stem-cell lines—more is better. The New England Journal of Medicine, 350, 1275–1276.

    Article  CAS  PubMed  Google Scholar 

  48. D’Ippolito, G., Diabira, S., Howard, G. A., Menei, P., Roos, B. A., & Schiller, P. C. (2004). Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science, 117, 2971–2981.

    Article  PubMed  CAS  Google Scholar 

  49. Modena, A. B., & Fieni, S. (2004). Amniotic fluid dynamics. Acta Biomed, 75(Suppl 1), 11–13.

    PubMed  Google Scholar 

  50. Pappa, K. I., & Anagnou, N. P. (2009). Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regenerative Medicine, 4, 423–433.

    Article  PubMed  Google Scholar 

  51. Hoehn, H., Bryant, E. M., Karp, L. E., & Martin, G. M. (1974). Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. I. Clonal morphology and growth potential. Pediatric Research, 8, 746–754.

    Article  CAS  PubMed  Google Scholar 

  52. Gosden, C. M. (1983). Amniotic fluid cell types and culture. British Medical Bulletin, 39, 348–354.

    CAS  PubMed  Google Scholar 

  53. Moll, R., Moll, I., & Wiest, W. (1982). Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicles during skin development in human fetuses. Differentiation, 23, 170–178.

    Article  CAS  PubMed  Google Scholar 

  54. Troy, T. C., & Turksen, K. (2005). Commitment of embryonic stem cells to an epidermal cell fate and differentiation in vitro. Developmental Dynamics, 232, 293–300.

    Article  CAS  PubMed  Google Scholar 

  55. Virtanen, I., von Koskull, H., Lehto, V. P., Vartio, T., & Aula, P. (1981). Cultured human amniotic fluid cells characterized with antibodies against intermediate filaments in indirect immunofluorescence microscopy. The Journal of Clinical Investigation, 68, 1348–1355.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J., Basak, J. M., Demehri, S., & Kopan, R. (2007). Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes. Development, 134, 2795–2806.

    Article  CAS  PubMed  Google Scholar 

  57. Sun, Y., Kong, W., Falk, A., Hu, J., Zhou, L., Pollard, S., et al. (2009). CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS ONE, 4, e5498.

    Article  PubMed  CAS  Google Scholar 

  58. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., et al. (2004). Defining the epithelial stem cell niche in skin. Science, 303, 359–363.

    Article  CAS  PubMed  Google Scholar 

  59. Vasil’ev, A. V., Vorotelyak, E. A., Krokhina, T. B., Tsitrin, E. B., Terskikh, V. V., & Khrushchov, N. G. (2004). Nestin-positive cells of cultured basal layer of human epidermis. Doklady Biological Sciences, 394, 87–89.

    Article  PubMed  Google Scholar 

  60. Hoffman, L. M., & Carpenter, M. K. (2005). Characterization and culture of human embryonic stem cells. Nature Biotechnology, 23, 699–708.

    Article  CAS  PubMed  Google Scholar 

  61. Medina, R. J., Kataoka, K., Takaishi, M., Miyazaki, M., & Huh, N. H. (2006). Isolation of epithelial stem cells from dermis by a three-dimensional culture system. Journal of Cellular Biochemistry, 98, 174–184.

    Article  CAS  PubMed  Google Scholar 

  62. Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschlager, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18, 1489–1493.

    Article  PubMed  Google Scholar 

  63. Liu, Q., Xie, F., Siedlak, S. L., Nunomura, A., Honda, K., Moreira, P. I., et al. (2004). Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences, 61, 3057–3075.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka, S., Kamachi, Y., Tanouchi, A., Hamada, H., Jing, N., & Kondoh, H. (2004). Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Molecular and Cellular Biology, 24, 8834–8846.

    Article  CAS  PubMed  Google Scholar 

  65. Miyagi, S., Nishimoto, M., Saito, T., Ninomiya, M., Sawamoto, K., Okano, H., et al. (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. Journal of Biological Chemistry, 281, 13374–13381.

    Article  CAS  PubMed  Google Scholar 

  66. Sharov, A. A., Masui, S., Sharova, L. V., Piao, Y., Aiba, K., Matoba, R., et al. (2008). Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data. BMC Genomics, 9, 269.

    Article  PubMed  CAS  Google Scholar 

  67. Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L., & Chang, Y. J. (2006). Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biology of Reproduction, 74, 545–551.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Fred Gage (Salk Institute, La Jolle, CA, USA) for providing the SOX2 promoter construct, and Sandhya Gangaraju and Brandon Smith for their technical assistance. AJ is funded by the CIHR - Frederick Banting and Charles Best Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marianna Sikorska or Mahmud Bani-Yaghoub.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Expression of pluripotency stem cell markers in the C-KIT sorted AF cells. A–B. Immunofluorescence of dissociated AF cells stained with C-KIT (green) antibody prior to sorting for C-KIT positive cells (C-KIT+) by Fluorescence Activated Cell Sorting (FACS). B, merged immunofluorescence and phase contrast images. Scale bar: 50 μm. C. Flow cytometry gating for C-KIT+ AF cell population. D. qPCR analysis of mRNA harvested from C-KIT positive (C-KIT+) and negative (C-KIT−) AF cells directly following sorting discriminated the expression of SOX2, OCT4a/b and NANOG. Fold expression levels were normalized to β-ACTIN (ACTB). (GIF 43 kb)

High resolution (TIFF 7324 kb)

Supplementary Figure 2

Identification of SOX2 positive cells in AF cultures, using SOX2 promoter-EGFP retrovirus. A. The AP2 retroviral vector containing SOX2 promoter-EGFP was used to infect AF cell cultures. B–C. The SOX2 expressing AF cells were identified based on EGFP expression (green) prior (B) and after (C) differentiation into neurons. (GIF 31 kb)

High resolution (TIFF 3309 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jezierski, A., Gruslin, A., Tremblay, R. et al. Probing Stemness and Neural Commitment in Human Amniotic Fluid Cells. Stem Cell Rev and Rep 6, 199–214 (2010). https://doi.org/10.1007/s12015-010-9116-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9116-7

Keywords

Navigation