Skip to main content

Plant Acclimation to Environmental Stress Using Priming Agents

  • Chapter
  • First Online:
Plant Acclimation to Environmental Stress

Abstract

Abiotic stress factors represent key elements limiting agricultural productivity worldwide. Increased frequency of extreme environmental events resulting from global climatic changes remarkably influences plant growth and development. Close examination of plant-to-plant communication in nature has revealed the development of unique strategies from plants for responding to abiotic stress, with one of the most interesting being through priming for improved defense responses. The process of priming involves prior exposure to a biotic or abiotic stress factor making a plant more resistant to future exposure. Although the phenomenon has been known for many years, it has only recently been suggested that priming can enhance the resistance of crops to environmental stresses in the field. Priming can also be achieved by applying natural or synthetic compounds which act as signaling transducers, “activating” the plant’s defense system. In this chapter, an up-to-date overview of the literature is presented in terms of some of the main priming agents commonly employed toward induced acclimation of plants to environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkader AF, Esawy MA (2011) Case study of a biological control: geobacillus ­caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants. Acta Physiol Plant 33(6):2289–99. doi:10.1007/s11738-011-0769-x

    Article  Google Scholar 

  • Ait-Barka E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated ­grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436

    Article  PubMed  CAS  Google Scholar 

  • An L, Liu Y, Zhang M, Chen T, Wang X (2005) Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation. J Plant Physiol 162:317–326

    Article  PubMed  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA (2011) The message of nitric oxide in cadmium challenged plants. Plant Sci 181(5):612–20. doi:10.1016/j.plantsci.2011.03.019

    Article  PubMed  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J (2009) Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber. J Plant Growth Regul 28:177–186

    Article  CAS  Google Scholar 

  • Athwal GS, Huber SC (2002) Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J 29:119–129

    Article  PubMed  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their ­biotechnological applications. Plant Cell Tissue Org Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992) Sulfur emissions to the atmosphere from natural sources. J Atmos Chem 14:315–337

    Article  CAS  Google Scholar 

  • Baudouin E (2011) The language of nitric oxide signaling. Plant Biol (Stuttg) 13:233–242

    Article  CAS  Google Scholar 

  • Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–48

    Article  PubMed  CAS  Google Scholar 

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:1–7

    Article  Google Scholar 

  • Behnamnia M, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinosteroid ­alleviates drought-induced oxidative stress in Lycopersicon esculentum L. Gen Appl Plant Physiol 35:22–34

    CAS  Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on st­abilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K  +  channels of Vicia stomatal guard-cells following the photolysis of caged Inositol 1, 4, 5-trisphosphate. Nature 346:766–769

    Article  PubMed  CAS  Google Scholar 

  • Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, Salac I et al (2004) Sulphur supply and infection with Pyrenopeziza brassica influence L-cysteine desulfhydrase activity in Brassica napus L. J Exp Bot 55:2305–2312

    Article  PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental ­challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bressano M, Curetti M, Giacheroa L, Gil SV, Cabello M, March G et al (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J Plant Physiol 167:1622–1626

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Tancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and ­stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM et al (2011) Nitric oxide ­participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    Article  PubMed  CAS  Google Scholar 

  • Cesur A, Tabur S (2011) Chromotoxic effects of exogenous hydrogen peroxide (H2O2) in barley seeds exposed to salt stress. Acta Physiol Plant 33:705–709

    Article  CAS  Google Scholar 

  • Chao Y, Kao CH (2010) Heat shock-induced ascorbic acid accumulation in leaves increases ­cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Soil 336:39–48

    Article  CAS  Google Scholar 

  • Chawla S, Goyal SC, Angrish R, Rani C, Arora V, Datta KS et al (2010) Acclimatory response to hydrogen peroxide and glutathione under salt-boron stress through their impact on mineral nutrition and antioxidant defense system in pigeonpea (Cajanus cajan L.). Physiol Mol Biol Plants 16:295–304

    Article  CAS  Google Scholar 

  • Chen SL, Chen CT, Kao CH (1991) Polyamines promote the biosynthesis of ethylene in detached rice leaves. Plant Cell Physiol 100:238–245

    Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Fernandez-Ocan A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, del Rio LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Zhou Y, Ding J, Xia X, Shi K, Chen S et al (2011) Role of nitric oxide in hydrogen peroxide- dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • De Kok LJ, Bosma W, Maas FM, Kuiper PJC (1985) The effect of short-term H2S fumigation on water-soluble sulphydryl and glutathione levels in spinach. Plant Cell Environ 8:189–194

    Article  Google Scholar 

  • De Kok LJ, Stuiver CEE, Westerman S, Stulen I (2002) Elevated levels of hydrogen sulfide in the plants environment: nutrient or toxin. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, pp 201–219

    Chapter  Google Scholar 

  • Debiane D, Garçon G, Verdin A, Fontaine J, Durand R, Shirali P et al (2009) Mycorrhization ­alleviates benzo[a]pyrene-induced oxidative stress in an in vitro chicory root model. Phytochemistry 70:1421–1427

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  CAS  Google Scholar 

  • Della Mea M, De Filippis F, Genovesi V, Serafini-Fracassini D, Del Duca S (2007) The acropetal wave of developmental cell death (DCD) of Nicotiana tabacum corolla is preceded by ­activation of transglutaminase in different cell compartments. Plant Physiol 144:1–13

    Article  CAS  Google Scholar 

  • Ding S, Huang CL, Sheng HM, Song CL, Li YB, An LZ (2011) Effect of inoculation with the endophyte Clavibacter sp. strain Enf12 on chilling tolerance in Chorispora bungeana. Physiol Plant 141:141–151

    Article  PubMed  CAS  Google Scholar 

  • Fan GJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542

    Article  Google Scholar 

  • Fan H, Guo S, Jiao Y, Zhang R, Li J (2007) Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front Agric China 1:308–314

    Article  Google Scholar 

  • Farinati S, DalCorso G, Panigati M, Furini A (2011) Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. J Exp Bot 62(10):3433–47. doi:10.1093/jxb/err015

    Article  PubMed  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195:254–261

    Article  CAS  Google Scholar 

  • Fedina IS, Nedeva D, Çiçek N (2009) Pre-treatment with H2O2 induces salt tolerance in barley seedlings. Biol Plant 53:321–324

    Article  CAS  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ­ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  PubMed  CAS  Google Scholar 

  • Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    Article  PubMed  CAS  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia-is survival a balancing act? Trends Plant Sci 9:449–456

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Guo Y, Lin S, Fang Y, Bai J (2010) Hydrogen peroxide pretreatment alters the activity of antioxidant enzymes and protects chloroplast ultrastructure in heat-stressed cucumber leaves. Sci Hortic 126:20–26

    Article  CAS  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulated K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci U S A 100:11116–11121

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the ­adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010a) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010b) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 346:769–771

    Article  PubMed  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Graziano M, Lamattina L (2005) Nitric oxide and iron in plants: An emerging and converging story. Trends Plant Sci 10:4–8

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  PubMed  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Hällgren JE, Fredriksson SA (1982) Emission of hydrogen sulphide from sulfate dioxide-­fumigated pine trees. Plant Physiol 70:456–459

    Article  PubMed  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine ­biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  PubMed  CAS  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Physiological and biochemical mechanisms of nitric oxide induced abiotic stress tolerance in plants. Am J Plant Physiol 5:295–324

    Article  CAS  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  PubMed  CAS  Google Scholar 

  • Hung S, Yu C, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sinica 46:1–10

    CAS  Google Scholar 

  • Joshi ΜΜ, Ibrahium ΙΚΑ, Hollis JP (1975) Hydrogen sulphide: effects on the physiology of rice plants and relation to straighthead disease. Phytopathology 65:1170–1175

    Article  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  PubMed  CAS  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2007) Osmotic stress- and indole-3-butyric acid-induced NO generation are partially distinct processes in root growth and development in Pisum sativum. Physiol Plant 133:406–416

    Article  CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the ­inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kramer GF, Wang CY (1989) Correlation of reduced chilling injury with increased spermine and spermidine levels in zucchini squash. Physiol Plant 76:479–484

    Article  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor MA, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Kumar M, Sirhindi G, Bhardwaj R, Kumar S, Jain G (2010) Effect of exogenous H2O2 on a­ntioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Ind J Biochem Biol 47:378–382

    CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:250–251

    Article  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  PubMed  CAS  Google Scholar 

  • Latef AA, He CX (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  CAS  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre I, Gratia E, Lutts S (2001) Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci 161:943–952

    Article  Google Scholar 

  • Legocka J, Zajcher I (1999) Role of spermidine in stabilization of the apoprotein of the lightharvesting chlorophyll a/b-protein complex of photosystem II during leaf senescence process. Acta Physiol Plant 21:127–132

    Article  CAS  Google Scholar 

  • Li D, Xiao Z, Liu L, Wang J, Song G, Bi Y (2010) Effects of exogenous hydrogen sulfide (H2S) on the root tip and root border cells of Pisum sativum. Chin Bull Bot 45:354–362 [Chinese with English abstract]

    CAS  Google Scholar 

  • Li J, Qiu Z, Zhang X, Wang L (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835–842

    Article  CAS  Google Scholar 

  • Li L, Bhatia M, Moore PK (2006) Hydrogen sulphide-a novel mediator of inflammation? Curr Opin Pharmacol 6:125–129

    Article  PubMed  CAS  Google Scholar 

  • Li L, Whiteman M, Salto-Tellez M, Tan CH, Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103–113

    Article  PubMed  CAS  Google Scholar 

  • Li L, Whiteman M, Tan CH, Guan YY, Neo KL, Cheng Y et al (2008) Characterization of a novel, water-soluble hydrogen sulfide releasing molecule (GYY4137): new insights into the biology of hydrogen sulphide. Circulation 117:2351–2360

    Article  PubMed  CAS  Google Scholar 

  • Li W, Liu X, Khan MA, Yamaguchi S (2005) The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. J Plant Res 118:207–214

    Article  PubMed  CAS  Google Scholar 

  • Liberek K, Lewandowska A, Ziętkiewicz S (2008) Chaperones in control of protein disaggregation. EMBO J 27:328–335

    Article  PubMed  CAS  Google Scholar 

  • Lin WC, Block GS (2010) Can H2O2 application reduce chilling injury of horticultural crops? Acta Hort 875:33–36

    Google Scholar 

  • Lisjak M, Srivastava N, Teklic T, Civale L, Lewandowski K, Wilson I et al (2010) A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiol Biochem 48:931–935

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Honda C, Moriguchi T (2006) Involvement of polyamine in floral and fruit development. JARQ 40:51–58

    CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462

    Article  PubMed  CAS  Google Scholar 

  • López-Ráez JA, Verhage A, Fernandez I, Garcıa JM, Azcon-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed  CAS  Google Scholar 

  • Luo ZB, Janz D, Jiang X, Gobel C, Wildhagen H, Tan Y et al (2009) Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. Plant Physiol 151:1902–1917

    Article  PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Ethylene production by leaves of rice (Oryza sativa L.) in relation to salinity tolerance and exogenous putrescine application. Plant Sci 116:15–25

    Article  CAS  Google Scholar 

  • Ma W, Xu W, Xu H, Chen Y, He Z, Ma M (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 232:325–335

    Article  PubMed  CAS  Google Scholar 

  • Mackerness SAH, John CF, Jordan B, Thomas B (2001) Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    Article  CAS  Google Scholar 

  • Maiale S, Sanchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. J Plant Physiol 161:35–42

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28:489–499

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis A, Fotopoulos V (2011) Oxidative and nitrosative signaling in plants: two branches in the same tree? Plant Signal Behav 6:210–214

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis Α, Tanou G, Diamantidis G (2010) NO says more than ‘YES’ to salt tolerance: Salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav 5:1–4

    Article  Google Scholar 

  • Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA (2008) Plant polyamine catabolism: the state of the art. Plant Signal Behav 3:1061–1066

    Article  PubMed  Google Scholar 

  • Navarro A, Sanchez-Blanco MJ, Mortec A, Banon S (2009) The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L. Environ Exp Bot 66:362–371

    Article  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2006a) Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? J Plant Physiol 163:506–516

    Article  PubMed  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2006b) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48:51–63

    Article  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2007) Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant Soil 291:225–238

    Article  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J et al (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Neto A, Prisco JT, Filho JE, Medeiros J, Filho EG (2005) Hydrogen peroxide pre-treatment induced salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122

    Article  CAS  Google Scholar 

  • Öztürk L, Demir Y (2003) Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves. Plant Growth Regul 40:89–95

    Article  Google Scholar 

  • Palavan-Unsal N, Arisan D (2009) Nitric oxide signalling in plants. Bot Rev 75:203–229

    Article  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  PubMed  CAS  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  PubMed  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    PubMed  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:1–9

    Article  Google Scholar 

  • Rennenberg H (1983) Role of O-acetylserine in hydrogen sulphide emission from pumpkin leaves in response to sulfate. Plant Physiol 73:560–565

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H (1984) The fate excess of sulfur in higher plants. Annu Rev Plant Physiol 35:121–153

    Article  CAS  Google Scholar 

  • Rennenberg H, Huber B, Schroder P, Stahl K, Haunold W, Georgii HW, Slovik S, Pfanz H (1990) Emission of volatile sulfur compounds from spruce trees. Plant Physiol 92:560–564

    Article  PubMed  CAS  Google Scholar 

  • Rhee J, Kim R, Choi H, Lee J, Lee Y, Lee J (2011) Molecular and biochemical modulation of heat shock protein 20 (Hsp20) gene by temperature stress and hydrogen peroxide (H2O2) in the monogonont rotifer, Brachionus sp. Comp Biochem Physiol C-Toxicol Pharmacol 154:19–27

    Article  PubMed  CAS  Google Scholar 

  • Rhee JS, Raisuddin S, Lee KW, Seo JS, Ki JS, Kim IC et al (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C-Toxicol Pharmacol 149:104–112

    Article  PubMed  CAS  Google Scholar 

  • Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J (2005) Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem 43:473–483

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, van de Staaij JWM, Björn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Munoz Y, Polon R, Ruiz-Lozano JM (2010) Arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869

    Article  PubMed  CAS  Google Scholar 

  • Sekiya J, Schmidt A, Wilson LG, Filner P (1982a) Emission of hydrogen sulfide by leaf tissue in response to L-cysteine. Plant Physiol 70:430–436

    Article  PubMed  CAS  Google Scholar 

  • Sekiya J, Wilson LG, Filner P (1982b) Resistance to injury by sulphur dioxide: correlation with its reduction to, and emission of hydrogen sulfide in Cucurbitaceae. Plant Physiol 70:437–441

    Article  PubMed  CAS  Google Scholar 

  • Serafini-Fracassini D, Del Duca S, Monti F, Poli F, Sacchetti G, Bregoli AM et al (2002) Transglutaminase activity during senescence and programmed cell death in the corolla of tobacco (Nicotiana tabacum) flowers. Cell Death Differ 9:309–321

    Article  PubMed  CAS  Google Scholar 

  • Shan CJ, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL et al (2011) Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol Plant 33(6):2533–2540. doi:10.1007/s11738-011-0746-4

    Article  CAS  Google Scholar 

  • Shi S, Wang G, Wang Y, Zhang L, Zhang L (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide. Biol Chem 13:1–9

    CAS  Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Scherer FE, Handro W, Guerra MP, Floh IS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araukaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    Article  CAS  Google Scholar 

  • Singh DB, Verma S, Mishra SN (2002) Putrescine effect on nitrate reductase activity, organic nitrogen, protein, and growth in heavy metal and salinity stressed mustard seedlings. Biol Plant 45:605–608

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide. Biol Chem 20:289–297

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, Elsevier, London

    Google Scholar 

  • Song L, Ding W, Shen J, Zhang Z, Bi Y, Zhang L (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    Article  CAS  Google Scholar 

  • Stuiver CEE, De Kok LJ, Kuiper PJC (1992) Freezing tolerance and biochemical changes in wheat shoots as affected by H2S fumigation. Plant Physiol Biochem 30:47–55

    CAS  Google Scholar 

  • Tan J, Zhao H, Hong J, Han Y, Li H, Zhao W (2008) Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci 4:307–313

    Google Scholar 

  • Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D (2010) Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J Proteome Res 9:5994–6006

    Article  PubMed  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G et al (2009a) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  PubMed  CAS  Google Scholar 

  • Tanou G, Molassiotis A, Diamantidis G (2009b) Hydrogen peroxide- and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904–1913

    Article  PubMed  CAS  Google Scholar 

  • Thompson CR, Kats G (1978) Effects of continuous hydrogen sulphide fumigation on crop and forest plants. Environ Sci Technol 12:550–553

    Article  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  PubMed  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Volkov RA, Panchuk II, Mullineaux PM, Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol Biol 61:733–746

    Article  PubMed  CAS  Google Scholar 

  • Wahid A, Perveen M, Gelani S, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    Article  PubMed  CAS  Google Scholar 

  • Walters DR (2003a) Polyamines and plant disease. Phytochemistry 64:97–107

    Article  PubMed  CAS  Google Scholar 

  • Walters DR (2003b) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    Article  CAS  Google Scholar 

  • Wang BL, Shi L, Li YX, Zhang WH (2010a) Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231:1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X et al (2010b) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Feng H, Qu Y, Cheng J, Zhao Z, Zhang M et al (2006) The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environ Exp Bot 57:51–61

    Article  CAS  Google Scholar 

  • Whiteman M, Ling L, Rose P, Tan HC, Parkinson DB, Moore PK (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antiox, Redox Signal 12:1147–1154

    Article  CAS  Google Scholar 

  • Wilson LG, Bressan RA, Filner P (1978) Light-dependent emission of hydrogen sulfide from plants. Plant Physiol 61:184–189

    Article  PubMed  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181(5):593–603. doi:10.1016/j.plantsci.2011.04.002

    Article  PubMed  CAS  Google Scholar 

  • Winner WE, Smith CL, Koch GW, Mooney HA, Bewley JD, Krouse HR (1981) Rates of emission of H2S from plants and patterns of stable sulfur isotope fractionation. Nature 289:672–673

    Article  CAS  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-Acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Chen J, Liang J, Yang W, Wu J, Chen L et al (2009) Effects of exogenous NO on ascorbate-glutathione cycle in loquat leaves under low temperature stress. Chin J Appl Ecol 20:1395–1400

    CAS  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys 497:13–20

    Article  PubMed  CAS  Google Scholar 

  • Xu FJ, Jin CW, Liu WJ, Zhang YS, Lin XY (2011) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44–53

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Xu X, Zhao Y, Jiao K, Herbert SJ, Hao L (2008) Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul 54:249–259

    Article  CAS  Google Scholar 

  • Xuan Y, Zhou S, Wang L, Cheng Y, Zhao L (2010) Nitric oxide functions as a signal and acts upstream of AtCaM3 in thermotolerance in Arabidopsis seedlings. Plant Physiol 153:1895–1906

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Li S, Sheng H, Feng H, Xu S, An L (2007) Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 55:294–301

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2006) NO signal at the crossroads: polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci 11:522–524

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine c-lyase. Science 322:587–590

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  PubMed  CAS  Google Scholar 

  • Yu C, Murphy TM, Lin C (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    Article  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008a) Hydrogen sulfide promotes wheat seed germination and alleviates the oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hu LY, Li P, Hu KD, Jiang CX, Luo JP (2010a) Hydrogen sulfide alleviated chromium toxicity in wheat. Biol Plant 54:743–747

    Article  CAS  Google Scholar 

  • Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, Jones RL (2010b) Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32:849–857

    Article  CAS  Google Scholar 

  • Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL (2010c) Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol 52:556–567

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY et al (2009a) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51:1084–1092

    Google Scholar 

  • Zhang H, Wang MJ, Hu LY, Wang SH, Hu KD, Bao LJ, Luo JP (2010d) Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 57:532–539

    Article  CAS  Google Scholar 

  • Zhang H, Ye YK, Wang SH, Luo JP, Tang J, Ma DF (2009b) Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regul 58:243–250

    Article  CAS  Google Scholar 

  • Zhang L, Zhou S, Xuan Y, Sun M, Zhao L (2009c) Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation. J Plant Biol 52:135–140

    Article  CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008b) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Tan J, Guo Z, Lu S, He S, Shu W et al (2009d) Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant Cell Environ 32:509–519

    Article  PubMed  CAS  Google Scholar 

  • Zhang YY, Liu J, Liu YL (2004) Nitric oxide alleviates the growth inhibition of maize seedlings under salt stress. J Plant Physiol Mol Biol 30:455–459

    CAS  Google Scholar 

  • Zhao L, He J, Wang X, Zhang L (2008) Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J Plant Physiol 165:182–191

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L (2004) Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol 134:849–857

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  PubMed  CAS  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed  CAS  Google Scholar 

  • Zheng C, Jiang D, Dai T, Jing Q, Cao W (2010) Effects of nitroprusside, a nitric oxide donor, on carbon and nitrogen metabolism and the activity of the antioxidation system in wheat seedlings under salt stress. Acta Ecol Sinica 30:1174–1183

    CAS  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Schiavo FL, Terzi M (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

V.F. would like to acknowledge financial support from C.U.T. Internal Grant EX032 and Grants-in-Aid from COST Action FA0605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios Fotopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filippou, P., Tanou, G., Molassiotis, A., Fotopoulos, V. (2013). Plant Acclimation to Environmental Stress Using Priming Agents. In: Tuteja, N., Singh Gill, S. (eds) Plant Acclimation to Environmental Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5001-6_1

Download citation

Publish with us

Policies and ethics