Biomass Conversion

  • Stephen R. Decker
  • John Sheehan
  • David C. Dayton
  • Joseph J. Bozell
  • William S. Adney
  • Bonnie Hames
  • Steven R. Thomas
  • Richard L. Bain
  • Stefan Czernik
  • Min Zhang
  • Michael E. Himmel

Abstract

In its simplest terms, biomass is all the plant matter found on our planet. Biomass is produced directly by photosynthesis, the fundamental engine of life on earth. Plant photosynthesis uses energy from the sun to combine carbon dioxide from the atmosphere with water to produce organic plant matter. More inclusive definitions are possible. For example, animal products and waste can be included in the definition of biomass. Animals, like plants, are renewable; but animals clearly are one step removed from the direct use of sunlight. Using animal rather than plant material thus leads to substantially less efficient use of our planet’s ultimate renewable resource, the sun. So, we emphasize plant matter in our definition of biomass. It is the photosynthetic capability of plants to utlize carbon dioxide from the atmosphere that leads to its designation as a “carbon neutral” fuel, meaning that it does not introduce new carbon into the atmosphere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, D. O., Solar energy use through biology—Past, present and future. Solar Energy 1978, 22, 307–328.CrossRefGoogle Scholar
  2. 2.
    USDOE International Energy Annual 2000; DOE/EIA-0219(2000); U.S. Department of Energy, Energy Information Administration: Washington, DC, 2002.Google Scholar
  3. 3.
    Goldemberg, J., Monaco, L., and Macedo, I., The Brazilian fuel-alcohol program. In Renewable Energy: Sources for Fuels and Electricity, Johansson, T., Kelly, H., Reddy, A., and Williams, R., Eds., Island Press: Washington, DC, 1993.Google Scholar
  4. 4.
    Rhodes, A. and Fletcher, D., Principles of Industrial Microbiology. Pergamon: New York, 1966.Google Scholar
  5. 5.
    Grohmann, K. and Himmel, M., Chapter 1: Enzymes for fuels and chemical feedstocks. In Enzymes in Biomass Conversion, Leatham, G. F.; Himmel, M. E., Eds. American Chemical Society: Washington, DC, 1991; Vol. 460, pp. 2–11.CrossRefGoogle Scholar
  6. 6.
    Sjostrom, E., Wood Chemistry: Fundamentals and Applications. Academic: San Diego, 1993; pp. 13–17.Google Scholar
  7. 7.
    Fry, S. C. and Miller, J. G., Toward a working model of the growing plant cell wall. In In Plant Cell Wall Polymers, Lewis, N. G. and Paice, M. G., Eds. American Chemical Society: Washington, DC, 1989; pp. 33–46.CrossRefGoogle Scholar
  8. 8.
    Chum, H. L. and Overend, R., Biomass and bioenergy in the United States. Advances in Solar Energy: An Annual Review. Boulder, Co, 2003, 15(3):83–148.Google Scholar
  9. 9.
    Haq, Z. Biomass for Electricity, Energy Information Administration, U.S. Department of Energy: Washington, DC, 2002.Google Scholar
  10. 10.
    Perry, H., The gasification of coal. Scientific American 1974, 230(3), 19–25.CrossRefGoogle Scholar
  11. 11.
    McKendry, P., Energy production from biomass (Part 3): Gasification technologies. Bioresource Technology 2002, 83, 55–63.CrossRefGoogle Scholar
  12. 12.
    Rapagna, S., Jand, N., and Foscolo, P., Catalytic gasification of biomass to produce hydrogen rich gas. International Journal of Hydrogen Energy 1998, 23(7), 551–557.CrossRefGoogle Scholar
  13. 13.
    USDOE A Biopwer Triumph—The Gasification Story; DOE/GO 102000-1058; Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy: Washington, DC, 2000.Google Scholar
  14. 14.
    Sherrard, E. C. and Gauger, W. H., Effect of salts upon the acid hydrolysis of wood. Industrial and Engineering Chemistry 1923, 15(1), 63–64.CrossRefGoogle Scholar
  15. 15.
    Sherrard, E. C., Ethyl alcohol from western larch—larix occidentalis, nuttal. Industrial Engineering Chemistry 1922, 14(10), 948–949.CrossRefGoogle Scholar
  16. 16.
    LaForge, F. B. and Hudson, C. S., The preparation of several useful substances from corn cobs. The Journal of Industrial and Engineering Chemistry 1918, 10(11), 925–927.CrossRefGoogle Scholar
  17. 17.
    Braconnot, H., Verwandlungen des Holzstoffs mittelst Schwefelsaure in Gummi, Zucker und eine eigne Saure, und mittelst Kali in Ulmin. Annalen der Physik 1819 (January), 547–571.Google Scholar
  18. 18.
    Dunning, J. and Lathrop, E., The saccharification of agricultural residues: A continuous process. Industrial Engineering Chemistry 1945, 37(1), 24–29.CrossRefGoogle Scholar
  19. 19.
    Faith, W., Development of the Scholler process in the United States. Industrial Engineering Chemistry 1945, 37,(1) 9–11.CrossRefGoogle Scholar
  20. 20.
    Saeman, J., Kinetics of wood saccharification: Hydrolosis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial Engineering Chemistry 1945, 37(1), 43–51.CrossRefGoogle Scholar
  21. 21.
    Sherrard, E. and Kressman, F., Review of processess in the United States prior to World War II. Industrial Engineering Chemistry 1945, 37(1), 5–8.CrossRefGoogle Scholar
  22. 22.
    Harris, E. and Berlinger, E. Madison Wood-Sugar Process; R1617; U.S. Forest Product Laboratory: Madison, WI, 1946.Google Scholar
  23. 23.
    Harris, E., Wood saccharification. In Advances in Carbohydrate Chemistry, Academic: New York, 1949; Vol. 4, pp. 163–188.Google Scholar
  24. 24.
    Gilbert, N., Hobbs, I., and Levine, J., Hydrolysis of wood using dilute sulfuric acid. Industrial and Engineering Chemistry 1952, 44(7), 1712–1720.CrossRefGoogle Scholar
  25. 25.
    Wenzl, H., Chapter IV: The acid hydrolysis of wood. In The Chemical Technology of Wood, Academic: New York, 1970; pp. 157–252.Google Scholar
  26. 26.
    Grethlein, H., Comparison of the economics of acid and enzymatic hydrolysis of newsprint. Biotechnology and Bioengineering 1978, 20, 503–525.CrossRefGoogle Scholar
  27. 27.
    Wright, J. High-Temperature Acid Hydrolysis of Cellulose for Alcohol Fuel Production; SERJ/TR-231-1714; Solat Energy Research Institute: Golden, CO, 1983.Google Scholar
  28. 28.
    Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J., Torget, R., and Graboski, M. In Chemical-Mechanical Methods for the Enhanced Utilization of Straw, Biotechnology and Bioengineering Symposium, 1984; John Wiley and Sons: New York, 1984; pp. 137–157.Google Scholar
  29. 29.
    Church, J. and Woolbridge, D., Continuous high solids acid hydrolysis of biomass in a 1.5 in plug flow reactor. Industrial Engineering and Chemistry: Product Research and development 1981, 20, 371–378.CrossRefGoogle Scholar
  30. 30.
    Wright, J. and d’Agnicourt, C. In Evaluation of Sulfuric Acid Hydrolysis for Alcohol Fuel Production, Biotechnology and Bioengineering Symposium, 1984; John Wiley and Sons: New York, 1984; pp. 105–123.Google Scholar
  31. 31.
    Harris, J., Baker, A., Conner, A., Jefferies, T., Minor, J., et al., Two-Stage Dilute Sulfuric Acid Hydrolysis of Wood: An Investigation of Fundamentals; General Technical Report FPL-45; U.S. Forest Products Laboratory: Madison, WI, 1985.Google Scholar
  32. 32.
    Wirght, J., Power, A., and Bergeron, P. Evaluation of Concentrated Halogen Acid Hydrolysis Processes for Alcohol Fuel Production; SERI/TR-232-2386; Solar Energy Research Institute: Golden, CO, 1985.Google Scholar
  33. 33.
    Farone, W. A. and Cuzens, J. E., Methods of Producing Sugars Using Strong Acid Hydrolysis of Cellulosic and Hemicellulosic Materials. U.S. Patent No. 5,562,777, October 8, 1996.Google Scholar
  34. 34.
    Wright, J. D. and D’Agincourt, C. G., Evaluation of sulfuric acid hydrolysis processes for alcohol fuel production. Biotechnology and Bioengineering Symp. 1984, 14, 105–121.Google Scholar
  35. 35.
    Grohmann, K., Torget, R., and Himmel, M., Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 1985, 15, 59–80.Google Scholar
  36. 36.
    Kong, F., Engler, C. R., and Soltes, E. J., Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem Biotechnol 1993, 34/35, 23–35.CrossRefGoogle Scholar
  37. 37.
    Chang, V. and Holtzapple, M., Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 2000, 84–86, 5–37.CrossRefGoogle Scholar
  38. 38.
    Vinzant, T. B., Ehrman, C. I., and Himmel, M. E., SSF of pretreated hardwoods: Effect of native lignin content. Appl Biochem Biotechnol 1997, 62, 97–102.CrossRefGoogle Scholar
  39. 39.
    Henrissat, B., Cellulases and their interaction with cellulose. Cellulose 1994, 1, 169–196.CrossRefGoogle Scholar
  40. 40.
    Zhang, M., Frandan, M., Newman, J., Finkelstein, M., and Picataggio, S., Promising ethanologens for xylose fermentation scientific note. Applied Biocemistry Biotechnology 1995, 51/52, 527–536.CrossRefGoogle Scholar
  41. 41.
    Zhang, M., Deanda, K., Finkelstein, M., and Picataggion, S., Metabolic engineering of a pentose metabolism pathway in ethanologenic zymomonas mobilis. Science 1995, 267, 240–243.CrossRefGoogle Scholar
  42. 42.
    Zhang, M., Chou, Y., Piccatagio, S., and Finkelstein, M. Single Zymomonas mobilis Strain fat Xylose and Arabinos Fermentation; NREL IR#95-51; National Renewable Energy Labratory: Golden, CO, 1996.Google Scholar
  43. 43.
    Ohta, K., Beall, D., Mejia, J., and Ingram, L., Genetic improvement of escerchia for ethanol production: Chromosol integration of zymomonas mobilis genes encoding pyruvate decarboxylase and alcochol dehydrogenase II. Applied Enviromental Microbiology 1991, 57(4), 893–900.Google Scholar
  44. 44.
    Lawford, H. and Rousseau, J. In Xylose to Ethanol: Enhanced Yield and Productivity Using Genetically Engineered Escherichia Coli, Energy from Biomass and Waste, Chicago, 1991; Klass, D., Ed. Chicago, 1991; pp. 583–623.Google Scholar
  45. 45.
    Ingram, L., Ohta, K., and Beall, D. In Genetic Modification of E. Coli for Ethanol Production, Energy from Biomass and Wastes, Chicago, 1991; Klass, D., Ed. Chicago, 1991; pp. 1105–1125.Google Scholar
  46. 46.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., and Pretorius, I. S., Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology Molecular Biology Reviews 2002, 66(3), 506–577.CrossRefGoogle Scholar
  47. 47.
    ISO ISO 14040: Environmental Management—Life Cycle Assessment—Principles and framework; ISO 14040: 1997(E); International Standardization Organization: Geneva, 6/15/97, 1997.Google Scholar
  48. 48.
    ISO ISO/TR 14049: Environmental Management—Life Cycle Assessment—Examples of Application of ISO 14041 to Goal and Scope Definition and Inventory Analysis; ISO/TR 14049; International Organization for Standardization: Geneva, March 15, 2000, 2000.Google Scholar
  49. 49.
    ISO ISO 14041: Environmental Management—Life Cycle Assessment—Goal and Scope Definition and Inventory analysis; ISO 14041:1998(E); International Organization for Standardization: Geneva, October 1, 1998, 1998.Google Scholar
  50. 50.
    ISO ISO 14004: Environmental Management Systems—General Guidelines on Principles, Systems and Supporting Techniques; ISO 14004:1996(E); International Organization for Standardization: Geneva, September 1,1996, 1996.Google Scholar
  51. 51.
    ISO ISO 14043: Environmental Management Systems—Life Cycle Assessment—Life Cycle Interpretation; ISO 14043:2000(E); International Organization for Standardization: Geneva, March 1, 2000, 2000.Google Scholar
  52. 52.
    ISO ISO 14001: Environmental Management systems—Specification with Guidance for Use; ISO 14001:1996(E); International Organization of Standardization: Geneva, September 1, 1996, 1996.Google Scholar
  53. 53.
    Spath, P. and Mann, M. Biomass Power and Conventional Fossil Systems with and without C02 Sequestration— Comparing the Energy Balance, Greenhouse Gas Emissions and Economics; NREL/TP-510-32575; National Renewable Energy Laboratory: Golden, CO, 2004.Google Scholar
  54. 54.
    Spath, P. and Dayton, D. Preliminary Screening—Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas; NREL/TP-510-34929; National Renewable Energy Laboratory: Golden, CO, 2003.Google Scholar
  55. 55.
    Energy Information Administration, Annual Energy Review. U.S. Department of Energy: Washington, DC, 1997; Vol. DOE/EIA-0383, (2006).Google Scholar
  56. 56.
    Lynd, L. R., Elander, R. T., and Wyman, C. E., Likely features and costs of mature biomass ethanol technology. Applied Biochemistry and Biotechnology 1996, 57/58, 741–761.CrossRefGoogle Scholar
  57. 57.
    Hoffert, M., Caldeira, K., Benford, G., Crisell, D., Green, C. J., et al., Advanced technology paths to global climate stability: Energy for a greenhouse plant. Science 2002, 298, 981–987.CrossRefGoogle Scholar
  58. 58.
    NRC Bio-Based Industrial Products: Priorities for Research and Commercialization; Committee on Bio-Based Industrial Products, National Research Council: Washington, DC, 2000.Google Scholar
  59. 59.
    Johansson, T., Kelly, H., Reddy, A., and Williams, R., Renewable fuels and electricity for a growing world economy. In Renewable Energy: Sources for Fuels and Electricity, Johansson, T.; Kelly, H.; Reddy, A.; Williams, R., Eds. Island Press: Washington, DC, 1996.Google Scholar
  60. 60.
    Lynd, L. R., Jin, H., Michels, J. G., Wyman, C. E., and Dale, B., Bioenergy: Background, Potential, and Policy: A policy briefing prepared for the Center for Strategic and International Studies; Center for Strategic and International Studies: Washington, DC, 2003.Google Scholar
  61. 61.
    Lovins, A. B., Datta, E. K., Bustnes, O.-E., Koomey, J. G., and Glasgow, N., Winning the Oil Endgame: Innovation for Profits, Jobs and Security. Rocky Mountain Institute: Snowmass, CO, 2004.Google Scholar
  62. 62.
    Greene, N. Growing Energy: How Biofuels Can Help End America’s Oil Dependence; Natural Resources Defense Council: New York, 2004.Google Scholar
  63. 63.
    Helle, S., Cameron, D., et al., Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of Saccharomyces cerevisiae. Enzyme Microbial Technology 2003, 33(6), 786–792.CrossRefGoogle Scholar
  64. 64.
    Klinke, H. B., Thomsen, A. B., et al., Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology Biotechnology 2004, 66(1), 10–26.CrossRefGoogle Scholar
  65. 65.
    Dien, B. S., Cotta, M. A., and Jeffries, T. W., Bacteria engineered for fuel ethanol production: Current status. Applied Microbiology Biotechnology 2003, 63(3), 258–266.CrossRefGoogle Scholar
  66. 66.
    Dupreez, J. C., Bosch, M., and Prior, B. A., The fermentation of hexose and pentose sugars by candida-shehatae and pichia-stipitis. Applied Microbiology Biotechnology 1986, 23(3–4), 228–233.Google Scholar
  67. 67.
    Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F., Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 1987, 53(10), 2420–5.Google Scholar
  68. 68.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O., Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 1991, 57(10), 2810–5.Google Scholar
  69. 69.
    Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O., Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 1991, 57(4), 893–900.Google Scholar
  70. 70.
    Lawford, H. G. and Rousseau, J. D., Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli. Appl Biochem Biotechnol 1992, 34–35, 185–204.CrossRefGoogle Scholar
  71. 71.
    Hahn-Hagerdal, B., Linden, T., Senac, T., and Skoog, K., Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Appl Biochem Biotechnol 1991, 28–29, 131–44.CrossRefGoogle Scholar
  72. 72.
    Padukone, N., Evans, K. W., McMillan, J. D., and Wyman, C. E., Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol. Appl Microbiol Biotechnol 1995, 43(5), 850–5.CrossRefGoogle Scholar
  73. 73.
    Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O., Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KOll. J Industrial Microbiology 1996, 16(1), 42–47.CrossRefGoogle Scholar
  74. 74.
    Zhang, M., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Picataggio, S., Metabolic engineering of zymomonas-mobilis for ethanol-production from renewable feedstocks. Abstracts of Papers of the American Chemical Society 1995, 209, 115–BTEC.Google Scholar
  75. 75.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S., Promising ethanologens for xylose fermentation—Scientific note. Applied Biochemistry Biotechnology 1995, 51–2, 527–536.CrossRefGoogle Scholar
  76. 76.
    Zhang, M., Eddy, C., Deanda, K., Finkestein, M., and Picataggio, S., Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas-mobilis. Science 1995, 267(5195), 240–243.CrossRefGoogle Scholar
  77. 77.
    Deanda, K., Zhang, M., Eddy, C., and Picataggio, S., Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 1996, 62(12), 4465–70.Google Scholar
  78. 78.
    Ho, N. W. Y., Chen, Z. D., and Brainard, A. P., Genetically engineered saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied Environmental Microbiology 1998, 64(5), 1852–59.Google Scholar
  79. 79.
    Toon, S. T., Philippidis, G. P., Ho, N. W. Y., Chen, Z. D., Brainard, A., et al., Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Applied Biochemistry Biotechnology 1997, 63–5, 243–255.CrossRefGoogle Scholar
  80. 80.
    Kuyper, M., Harhangi, H. R., Stave, A. K., Winkler, A. A., Jetten, M. S., et al., High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 2003, 4(1), 69–78.CrossRefGoogle Scholar
  81. 81.
    Kuyper, M., Hartog, M. M., Toirkens, M. J., Almering, M. J., Winkler, A. A., van Dijken, J. P., and Pronk, J. T., Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5(4–5), 399–409.CrossRefGoogle Scholar
  82. 82.
    Harhangi, H. R., Akhmanova, A. S., Emmens, R., van der Drift, C., de Laat, W. T., et al., Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 2003, 180(2), 134–41.CrossRefGoogle Scholar
  83. 83.
    Jeffries, T. W., and Kurtzman, C. P., Strain selection, taxonomy, and genetics of close-fermenting yeasts. Enzyme Microbial Technology 1994, 16(11), 922–932.CrossRefGoogle Scholar
  84. 84.
    Jeffries, T. W., Dahn, K., Kenealy, W. R., Pittman, P., Sreenath, H. K., and Davis, B. P., Genetic-engineering of the xylose-fermenting yeast Pichia-Stipitis for improved ethanol-production. Abstracts of Papers of the American Chemical Society 1994, 207, 167–BTEC.Google Scholar
  85. 85.
    Klapatch, T. R., Guerinot, M. L., and Lynd, L. R., Electrotransformation of Clostridium thermosaccharolyticum. J Industrial Microbiology 1996, 16(6), 342–347.CrossRefGoogle Scholar
  86. 86.
    Bothast, R. J., Saha, B. C., Flosenzier, A. V., and Ingram, L. O., Fermentation of L-arabinose, D-xylose and D-glucose by ethanologenic recombinant Klebsiella oxytoca strain P2. Biotechnology Letters 1994, 16(4), 401–406.CrossRefGoogle Scholar
  87. 87.
    Sedlak, M., and Ho, N. W. Y., Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microbial Technology 2001, 28(1), 16–24.CrossRefGoogle Scholar
  88. 88.
    Himmel, M. E., Adney, W. S., Baker, J. O., Elander, R., McMillan, J. D., et al., Advanced bioethanol production technologies: A perspective. In Fuels and Chemicals from Biomass, 1997; Vol. 666, pp. 2–45.CrossRefGoogle Scholar
  89. 89.
    Toon, S. T., Philippidis, G. P., Ho, N. W. Y., Chen, Z. D., Brainard, A., et al., Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Applied Biochemistry Biotechnology 1997, 63(5), 243–255.CrossRefGoogle Scholar
  90. 90.
    Zhang, Y.-H. P. and Lynd, L. R., Cellulose utilization by Clostridium thermocellum: Bioenergetics and hydrolysis product assimilation. PNAS 2005, 102(20), 7321–7325.CrossRefGoogle Scholar
  91. 91.
    VanRensburg, P., Zyl, W. H. V., and Pretorius, I. S., Engineering yeast for efficient cellulose degradation. Yeast 1998, 14(1), 67–76.CrossRefGoogle Scholar
  92. 92.
    Godbole, S., Decker, S. R., Nieves, R. A., Adney, W. S., Vinzant, T. B., et al., Cloning and expression of Trichoderma reesei CBH I in Pichia pastoris. Biotechnology Progress 1999, 15(3), 828–833.CrossRefGoogle Scholar
  93. 93.
    VanRooyen, R., Hahn-Hagerdal, B., Grange, D. C. L., and VanZyl, W. H., Comparative expression of novel betaglucosidases in Saccharomyces cerevisiae. Yeast 2003, 20, S223–S223.Google Scholar
  94. 94.
    ASTM Methods available from American Society for Testing and Materials at http://www.ASTM.org El690-01 Determining ethanol extractives in biomass El721-01 Determining acid-insoluble residue in biomass El755-01 Determining ash in biomass El756-01 Determining total solids in biomass El757-0101 Preparing biomass for compositional analysis El758-0101 Determining carbohydrates in biomass by high performance liquid chromatograph (HPLC) El821-96 Determining carbohydrates in biomass by gas chromatograph (GC). http://www.ASTM.org (April)Google Scholar
  95. 95.
    http://www.ott.doe.gov/biofuels/analytical_methods.html, n. R. e. 1. p. a. Standard Laboratory Analytical Methods (LAPs) for biomass compositional analysis, http://www.ott.doe.gov/biofuels/analytical_methods.html (April 2005).Google Scholar
  96. 96.
    Ehrman, C. I., Methods for the chemical analysis of biomass process streams. In Handbook on Bioethanol: Production and Utilization, Wyman, C. E., Ed. Taylor & Francis: Washington, DC, 1996.Google Scholar
  97. 97.
    DiFoggio, R., Examination of some misconceptions about near-infrared analysis. Applied Spectroscopy 1995, 49(1), 67–75.CrossRefGoogle Scholar
  98. 98.
    Wisconsin Wisconsin Corn Hybrid Trials. http://corn.agronomy.wisc.edu/ (4/7/05).Google Scholar
  99. 99.
    Minnesota Minnesota Agricultural Experiment Station. http://www.maes.umn.edu/maespubs/vartrial/cropages/cronpage.html (4/7/05).Google Scholar
  100. 100.
    Shull, G. H., A pure-line method in corn breeding. American Breeders’ Association Reports 1909, 5, 51–59.Google Scholar
  101. 101.
    East, E. M., Heterosis. Genetics 1936, 21, 375–397.Google Scholar
  102. 102.
    United States Department of Agriculture National Agricultural Statistics Service, http://www.nass.usda.gov/ (4/7/05).Google Scholar
  103. 103.
    Hallauer, A. R., Russell, W. A., and Lamkey, K. R., Corn breeding. In Corn and Corn Improvement, 3rd ed.; Sprague, G. F. a. D., J.W., Ed. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI, 1988; pp. 463–564.Google Scholar
  104. 104.
    Peterson, P. A., Transposable elements in maize: Their role in creating plant genetic variability. Advances in Agronomy 1993, 51, 79–124.CrossRefGoogle Scholar
  105. 105.
    Alexander, D. E., Breeding special nutritional and industrial types. In Corn and Corn Improvement, 3rd ed.; Sprague, G. F. a. D., J.W, Ed. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.: Madison, WI, 1988; pp. 869–880.Google Scholar
  106. 106.
    Dudley, J. W., Seventy-six generations of selection for oil and protein in maize. In Proceedings of the International Conference on Qunatitative Genetics, E. Pollak, e. a., Ed. Iowa State University Press: Ames, 1977; pp. 459–473.Google Scholar
  107. 107.
    Dudley, J. W., and Lambert, R. J., 100 generations of selection for oil and protein content in corn. Plant Breeding Reviews 2004, 24(1).Google Scholar
  108. 108.
    Miller, R. L., Dudley, J. W., and Alexander, D. E., High intensity selection for percent oil in corn. Crop Science 1981, 21, 455–457.Google Scholar
  109. 109.
    Dudley, J. W., Dijkhuizen, A., Paul, C., Coates, S. T., and Rocheford, T. R., Effects of random mating on marker-QTL associations in the cross of the Illinois High Protein x Illinois Low Protein maize strains. Crop science 2004, 44, 1419–1428.Google Scholar
  110. 110.
    Seki, M. M. N., Kamiya, A., Ishida, J., Satou, M., Sakurai, T., Nakajima, M., et al., Functional annotation of a full-length Arabidopsis cDNA collection. Science 2002, 296, 141–145.CrossRefGoogle Scholar
  111. 111.
    Yu, J. S. H., Wang, J., Wong, G. K. S., Li, S., Liu, B., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296, 79–92.CrossRefGoogle Scholar
  112. 112.
    Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., et al., A draft sequence of the rice genome (Oryza sativa L. ssp. japonica. Science 2002, 296, 92–100.CrossRefGoogle Scholar
  113. 113.
    JGI, J. G. I. Populus trichocarpa v. 1.0. http://genome.jgi-psf.org/Poptrl/Poptrl.info.html (4/6/05).Google Scholar
  114. 114.
    TIGR TIGR Maize Gene Index. http://www.tigr.org/tigr-scripts/tgi/T_index.cgispecies=maize (4/5/05).Google Scholar
  115. 115.
    Carpita, N. C., Tierney, M., and Campbell, M., Molecular biology of the plant cell wall: Searching for the genes that define structure, architecture and dynamics. Plant Molecular Biology 2001, 47, 1–5.CrossRefGoogle Scholar
  116. 116.
    Carpita cellwallgenomics. http://cellwall.genomics.purdue.edu/ (4/6/05).Google Scholar
  117. 117.
    Keegstra WallBioNet. http://xyloglucan.prl.msu.edu/ (4/6/05).Google Scholar
  118. 118.
    Somerville Chris Somerville. http://www-ciwdpb.stanford.edu/research/research_csomerville.php (4/6/05).Google Scholar
  119. 119.
    Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., and Stalker, D. M., Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 1996, 93(22), 12637–42.CrossRefGoogle Scholar
  120. 120.
    Appenzeller, L., Doblin, M., Barreiro, R., Wang, H., Niu, X., et al., Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 2004, 11, 287–299.CrossRefGoogle Scholar
  121. 121.
    Liepman, A. H., Wilkerson, C. G., and Keegstra, K., Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. PNAS USA 2005, 102(6), 2221–2226.CrossRefGoogle Scholar
  122. 122.
    Reiter, W. D. and Vanzin, G. F., Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 2001, 47(1–2), 95–113.CrossRefGoogle Scholar
  123. 123.
    Gillmor, C. S., Lukowitz, W., Brininstool, G., Sedbrook, J. C., Hamann, T., et al., Glycosylphosphatidylinositolanchored proteins are required for cell wall synthesis and morphogenesis in arabidopsis. Plant Cell 2005, 17(4), 1128–1140.CrossRefGoogle Scholar
  124. 124.
    Milne, T. A., Chum, H. L., Agblevor, F., and Johnson, D. K. B. a. B., standardized analytical methods. Biomass Bioenergy 1992, 2(1–6), 341–366.CrossRefGoogle Scholar
  125. 125.
    Milne, T. A., Brennan, A. H., and Glenn, B. H., Sourcebook of Methods of Analysis for Biomass and Biomass Conversion Processes. Elsevier Science: New York, 1990; p. 341.Google Scholar
  126. 126.
    Tkachuk, R., Calculation of the nitrogen-to-protein conversion factor. In Nutritional Standards and Methods of Evaluation for Food Legume Breeders., J. H. Hulse, K. O. Rachie and L. W. Billingsley. Lanham, Bernan Associates: 1977; pp. 78–82.Google Scholar
  127. 127.
    Mossé, J., Nitrogen to protein conversion factor for 10 cereals and 6 legumes or oilseeds—a reappraisal of its definition and determination—Variation according to species and to seed protein content. Journal of Agriculture and Food Chemistry 1990, 38(1), 18–24.CrossRefGoogle Scholar
  128. 128.
    Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., and Templeton, D. W., Rapid biomass analysis: New tools for the compositional analysis of corn stover feedstocks and process intermedites from ethanol production. Applied Biochemistry and Biotechnology 2003, 105–108, Proceedings of the 24th International Symposium for the Biotechnology of Fuels and Chemicals, 1–12.Google Scholar
  129. 129.
    Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., and Templeton, D. W., Rapid biomass analysis. New tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Applied Biochemistry and Biotechnology 2003, 105–108, 5–16.Google Scholar
  130. 130.
    Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., et al., Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover; NREL Report No. TP-510-32438 available online at URL http://www.nrel.gov/publications/; National Renewable Energy Laboratory: Golden, CO, June, 2002, 2002; p. 154.Google Scholar
  131. 131.
    Laboratory, N. R. E. A calculator for theoretical ethanol yields form biomass. http://www.ott.doe.gov/biofuels/ ethanol_calculator.html (April 2005).Google Scholar
  132. 132.
    Satoh, H. N., A., Fujita, N., Kubo, A., Nakamura, Y., Kawasaki, T., and Okita, T. W., Isolation and characterization of starch mutants in rice. J Applied Glycoscience 2003, 50(2), 225–230.Google Scholar
  133. 133.
    Nelson, O. E., Mutant genes that change the composition of maize endosperm proteins. Federation Proceedings 1966, 25(6), 1676–1678.Google Scholar
  134. 134.
    Ohlrogge, J. B. B., J. and Somerville, C. R., The genetics of plant lipids. Biochimica et Biophysica Acta 1991, 1082(1), 1–26.Google Scholar
  135. 135.
    Reiter, W.-D. C., C., and Somerville, C. R., Mutants of arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 1997, 12(2), 335–345.CrossRefGoogle Scholar
  136. 136.
    Mouille, G. R., S., Lecomte, M., Pagant, S., and Hofte, H., Classification and identification of arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 2003, 35(3), 393–404.CrossRefGoogle Scholar
  137. 137.
    Yong, W. D., Link, B., O’Malley, R., Tewari, J., Hunter, C. T. III, et al., Genomics of plant cell wall biogenesis. Planta 2005, 221, 747–751.CrossRefGoogle Scholar
  138. 138.
    Baker, J. O., Thomas, S. R., Adney, W. S., Nieves, R. A., and Himmel, M. E., The cellulase synergistic effect—Binary and ternary-systems. Abstracts of Papers of the American Chemical Society 1994, 207, 50–AGFD.Google Scholar
  139. 139.
    Nidetzky, B., Steiner, W., Hayn, M., and Claeyssens, M., Cellulose hydrolysis by the cellulases from Trichoderma reesei: A new model for synergistic interaction. Biochem J 1994, 298 Pt 3, 705–10.Google Scholar
  140. 140.
    Gatenholm, P. and Tenkanen, M., Hemicelluloses: Science and Technology. American Chemical Society: Washington DC, 2004; Vol. 864, p. 388.Google Scholar
  141. 141.
    Galante, Y. and Formantici, C., Enzyme applications in detergency and in manufacturing industries. Current Organic Chemistry 2003, 7(13), 1399–1422.CrossRefGoogle Scholar
  142. 142.
    Hoondal, G., Tiwari, R., Tewari, R., Dahiya, N., and Beg, Q., Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 2002, 59(4–5), 409–418.Google Scholar
  143. 143.
    Kashyap, D. R., Vohra, P. K., Chopra, S., and Tewari, R., Applications of pectinases in the commercial sector: a review. Bioresource Technology 2001, 77(3), 215–227.CrossRefGoogle Scholar
  144. 144.
    Lebeda, A., Luhova, L., Sedlarova, M., and Jancova, D., The role of enzymes in plant-fungal pathogens interactions — Review. Zeitschrift fur pflanzenkrankheiten und pflanzenschutz-J Plant Diseases Protection 2001, 108(1), 89–111.Google Scholar
  145. 145.
    Naidu, G. and Panda, T., Production of pectolytic enzymes—A review. Bioprocess Eng. 1998, 19(5), 355–361.CrossRefGoogle Scholar
  146. 146.
    Burke, R. and Cairney, J., Laccases and other polyphenol oxidases in ecto-and ericoid mycorrhizal fungi. Mycorrhiza 2002, 12(3), 105–116.Google Scholar
  147. 147.
    Shah, V. and Nerud, F., Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canadian J Microbiol 2002, 48(10), 857–870.CrossRefGoogle Scholar
  148. 148.
    Tuomela, M., Vikman, M., Hatakka, A., and Itavaara, ML, Biodegradation of lignin in a compost environment: a review. Bioresource Technol 2000, 72(2), 169–183.CrossRefGoogle Scholar
  149. 149.
    Garg, S. and Modi, D., Decolorization of pulp-paper mill effluents by white-rot fungi. Critical Rev Biotechnol 1999, 19(2), 85–112.CrossRefGoogle Scholar
  150. 150.
    Cairney, J., and Burke, R., Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: Their likely roles in decomposition of dead plant tissue in soil. Plant Soil 1998, 205(2), 181–192.CrossRefGoogle Scholar
  151. 151.
    Cullen, D., Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 1997, 53(2–3), 273–289.CrossRefGoogle Scholar
  152. 152.
    Zadrazil, F., Kamra, D., Isikhuemhen, O., Schuchardt, F., and Flachowsky, G., Bioconversion of lignocellulose into ruminant feed with white rot fungi — Review of work done at the FAL, Braunschweig. J Appl Animal Res 1996, 10(2), 105–124.Google Scholar
  153. 153.
    Moss, G. P., Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzyme-Catalysed Reactions. In URL:http://www.chem.qmul.ac.uk/iubmb/enzyme/: 1992.Google Scholar
  154. 154.
    Eriksson, K.-E. L. and Cavaco-Paulo, A., Enzyme applications in fiber processing. In ACS Symposium Series, American Chemical Society: Washington DC, 1998; Vol. 687.Google Scholar
  155. 155.
    Saddler, J. N. and Penner, M. H., Enzymatic degradation of insoluble carbohydrates. In ACS Symposium Series, American Chemical Society: Washington DC, 1994; Vol. 618.Google Scholar
  156. 156.
    Mansfield, S. D. and Saddler, J. N., Applications of enzymes to lignocellulosics. In ACS Symposium Series, American Chemical Society: Washington DC, 2003; Vol. 855.Google Scholar
  157. 157.
    Leatham, G. F. and Himmel, M. E., Enzymes in biomass conversion. In ACS Symposium Series, American Chemical Society: Washington DC, 1991; Vol. 460.Google Scholar
  158. 158.
    Jeffries, T. W. and Viikari, L., Enzymes for pulp and paper processing. In ACS Symposium Series, American Chemical Society: Washington DC, 1996; Vol. 655.Google Scholar
  159. 159.
    Himmel, M. E., Baker, J. O., and Saddler, J. N., Glycosyl hydrolases for biomass conversion. In ACS Symposium Series, American Chemical Society: Washington DC, 2001; Vol. 769.Google Scholar
  160. 160.
    Himmel, M. E., Baker, J. O., and Overend, R. P., Enzymatic conversion of biomass for fuels production. In ACS Symposium Series, American Chemical Society: Washington DC, 1994; Vol. 566.Google Scholar
  161. 161.
    Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., et al., BRENDA, the enzyme database: Updates and major new developments. Nucleic Acids Research 2004, 32, Database issue: D431–3.CrossRefGoogle Scholar
  162. 162.
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., et al., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 2003, 31.Google Scholar
  163. 163.
    Coutinho, P. M. and Henrissat, B., CAZy — Carbohydrate active enZYmes URL:http://afmb.cnrs-mrs.fr/CAZY/. In 1999.Google Scholar
  164. 164.
    Bairoch, A., The ENZYME database in 2000. Nucleic Acids Research 2000, 28, 304–305.CrossRefGoogle Scholar
  165. 165.
    Mandels, M., G. L. Miller, and R. W. Slater, Separation of fungal carbohydrases by starch block zone electrophoresis. Arch. Biochem. Biophys. 1961, 93, 115–121.CrossRefGoogle Scholar
  166. 166.
    Pere, J., Puolakka, A., Nousiainen, P., and Buchert, J., Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. J Biotechnol 2001, 89(2–3), 247–255.CrossRefGoogle Scholar
  167. 167.
    Samejima, M., Sugiyama, J., Igarashi, K., and Eriksson, K.-E. L., Enzymatic hydrolysis of bacterial cellulose. Carbohydrate Res 1997, 305,(2), 281–288.CrossRefGoogle Scholar
  168. 168.
    Helbert, W., Sugiyama, J., Ishihara, M., and Yamanaka, S., Characterization of native crystalline cellulose in the cell walls of Oomycota. J Biotechnol 1997, 57,(1–3), 29–37.CrossRefGoogle Scholar
  169. 169.
    Zauscher, S. and Klingenberg, D. J., Normal forces between cellulose surfaces measured with colloidal probe microscopy. J Colloid Interface Sci 2000, 229(2), 497–510.CrossRefGoogle Scholar
  170. 170.
    Lee, I., Evans, B. R., and Woodward, J., The mechanism of cellulase action on cotton fibers: Evidence from atomic force microscopy. Ultramicroscopy 2000, 82(1–4), 213–221.CrossRefGoogle Scholar
  171. 171.
    Rutland, M. W., Carambassis, A., Willing, G. A., and Neuman, R. D., Surface force measurements between cellulose surfaces using scanning probe microscopy. Colloids Surfaces A: Physicochemical Engineering Aspects 1997, 123–124, 369–374.Google Scholar
  172. 172.
    Gustafsson, J., Ciovica, L., and Peltonen, J., The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 2003, 44(3), 661–670.CrossRefGoogle Scholar
  173. 173.
    Li, H., Rief, M., Oesterhelt, F., Gaub, H. E., Zhang, X., and Shen, J., Single-molecule force spectroscopy on polysaccharides by AFM — nanomechanical fingerprint of α-(l,4)-linked polysaccharides. Chem Phys Lett 1999, 305(3–4), 197–201.CrossRefGoogle Scholar
  174. 174.
    Ramos, L. P., Zandon, A., Filho, A., Deschamps, F. C., and Saddler, J. N., The effect of Trichoderma cellulases on the fine structure of a bleached softwood kraft pulp. Enzyme Microbial Technol 1999, 24(7), 371–380.CrossRefGoogle Scholar
  175. 175.
    Decker, S. R., Adney, W. S., Jennings, E., Vinzant, T. B., and Himmel, M. E., An automated filter paper assay for determination of cellulase activity. Appl. Biochem. Biotech. 2003, 105, 689–703.CrossRefGoogle Scholar
  176. 176.
    Grohmann, K., Torget, R., and Himmel, M. E., Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng. Symp. 1985, 15, 59–80.Google Scholar
  177. 177.
    Kong, F., C. R. Engler, and E. J. Soltes, Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic hydrolysis of aspen wood. Appl. Biochem. Biotech. 1992, 34/35, 23–35.CrossRefGoogle Scholar
  178. 178.
    Tenkanen, M. and Poutanen, K., Significance of esterases in the degradation of xylans. In Xylans and Xylanases, J., Visser, G. Beldman, M. A. Kusters-van Someren, and A. G. J. Voragen, Ed. Elsevier: New York, 1992; pp. 203–212.Google Scholar
  179. 179.
    Poutanen, K. and Sundberg, M., An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl. Microbiol. Biotechnol. 1988, 28, 419–424.CrossRefGoogle Scholar
  180. 180.
    Poutanen, K., M. Sundberg, H. Korte., and Puis, J., Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl. Microbiol. Biotechnol. 1990, 33, 506–510.CrossRefGoogle Scholar
  181. 181.
    Biely, P., Vrsanska, M., Kremnicky, L., Alfoldi, J., Tenkanen, M., et al., Family F and G endo-Beta-1,4-Xylanases — Differences in their performance on glucuronoxylan and rhodymenan. Abstracts of Papers of the American Chemical Society 1994, 207, 148–BTEC.Google Scholar
  182. 182.
    Coughlan, M. P. and Hazlewood, G. P., Hemicellulose and Hemicellulases. Portland: London, UK, 1993.Google Scholar
  183. 183.
    Reese, E. T., Siu, R. G. H., and Levinson, H. S., The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of celulose hydrolysis. J Bacteriol 1950, 59, 485–497.Google Scholar
  184. 184.
    Ryu, D. and Mandels, M., Cellulases: Biosynthesis and applications. In Reviews, 1980; pp. 1–12.Google Scholar
  185. 185.
    Himmel, M. E., Decker, S. R., Adney, W. S., and Baker, J. O., Cellulase Animation. Copyright DOE/MRIPAU2-568-354. In 2000; p 11 min.Google Scholar
  186. 186.
    Miller, G. L., Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428.CrossRefGoogle Scholar
  187. 187.
    Ghose, T. K., Measurement of cellulase activities. Pure Applied Chemistry 1987, 59(2), 257–268.CrossRefGoogle Scholar
  188. 188.
    Philippidis, G. P., Cellulase production technology — Evaluation of current status. Enzymatic Conversion of Biomass for Fuels Production 1994, 566, 188–217.CrossRefGoogle Scholar
  189. 189.
    Esterbauer, H., Steiner, W., Kreiner, W., Sattler, W., and Hayn, M., Comparison of enzymatic hydrolysis in a worldwide round robin assay. Bioresource Technol 1992, 39, 117–23.CrossRefGoogle Scholar
  190. 190.
    Adney, W. S., Mohagheghi, A., Thomas, S. R., and Himmel, M. E., Comparison of protein contents of cellulase preparations in a worldwide round-robin assay. In Enzymatic Degradation of Insoluble Carbohydrates, 1995; Vol. 618, pp. 256–271.CrossRefGoogle Scholar
  191. 191.
    Esterbauer, H., Steiner, L. I., Hermann, A., and Hayn, M., Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technol 1991, 36, 51–65.CrossRefGoogle Scholar
  192. 192.
    Irwin, D. C., Spezio, M., Walker, L. P., and Wilson, D. B., Activity studies of 8 purified cellulases — Specificity, synergism, and binding domain effects. Biotechnol Bioeng 1993, 42(8), 1002–1013.CrossRefGoogle Scholar
  193. 193.
    Ghose, T. K. and Bisaria, V. S., Measurement of hemicellulase activities. 1. Xylanases. Pure Appl Chem 1987, 59(12), 1739–1751.CrossRefGoogle Scholar
  194. 194.
    Mandels, M., Andreotti, R., and Roche, C., Measurement of saccharifying cellulase. Biotech. Bioeng. Symp. 1976, 6, 21–33.Google Scholar
  195. 195.
    Wood, T. M. and McCrae, S. I., Cellulase from Fusarium solani purification and properties of the C-l component. Carbohydr. Res. 1977, 57, 117–133.CrossRefGoogle Scholar
  196. 196.
    Ghose, T. K., Pathak, A.N., and Bisaria, V. S., In Proceedings of the Symposium on Enzymatic Hydrolysis of Cellulose, M. Bailey; T.-M. Enari; Linko, M., Eds. VTT: Aulanko, Finland, 1975; p. 111.Google Scholar
  197. 197.
    Shoemaker, S. P. and R.D. Brown, J., Characterization of endo-l,4-b-D-glucanases purified from Trichoderma viride. Biochim. Biophys. Acta 1978, 523, 147–161.Google Scholar
  198. 198.
    Sheir-Neiss, G. and Montenecourt, B. S., Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl. Microbiol. Biotechnol 1984, 20, 46–53.CrossRefGoogle Scholar
  199. 199.
    Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L., Saccharification of complex cellulosic substrates by the cellulase system from Clostridium thermocellum. Appl. Environ. Microbiol. 1982, 43, 1125–1132.Google Scholar
  200. 200.
    Somogyi, M., Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23.Google Scholar
  201. 201.
    Nelson, N., A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380.Google Scholar
  202. 202.
    Johnston, D. B., Shoemaker, S. P., Smith, G. M., and JR, W., Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate. J Food Biochem 1998, 22, 301–319.CrossRefGoogle Scholar
  203. 203.
    Vlasenko. E. Y., Ryan A. I., and Shoemaker, C. F., SP, S., The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-l,4-beta-D-glucanases on carboxymethylcellulose: A comparative evaluation of the three methods. Enzyme Microbial Technol 1998, 23, 350–359.CrossRefGoogle Scholar
  204. 204.
    Baker, J. O., Vinzant, T. B., Ehrman, C. I., Adney, W. S., and Himmel, M. E., Use of a new membrane-reactor saccharification assay to evaluate the performance of cellulases under simulated SSF conditions—Effect on enzyme quality of growing Trichoderma reesei in the presence of targeted lignocellulosic substrate. Appl. Biochem. Biotechnol. 1997, 63–5, 585–595.CrossRefGoogle Scholar
  205. 205.
    Rescigno, A., Rinaldi, A. C., Curreli, N., Olianas, A., and Sanjust, E., A dyed substrate for the assay of endo-1,4-beta-glucanases. J Biochem Biophys Methods 1994, 28(2), 123–9.CrossRefGoogle Scholar
  206. 206.
    Sharrock, K. R., Cellulase assay methods: A review. J. Biochem. Biophys. Methods 1988, 17, 81–106.CrossRefGoogle Scholar
  207. 207.
    Bartley, T. D., Murphy-Holland, K., and Eveleigh, D. E., A method for the detection and differentiation of cellulase components in polyacrylamide gels. Anal Biochem 1984, 140(1), 157–61.CrossRefGoogle Scholar
  208. 208.
    Carder, J. H., Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay. Anal Biochem 1986, 153(1), 75–9.CrossRefGoogle Scholar
  209. 209.
    Sattler, W., Esterbauer, H., and Glatter, Steiner, O., The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotech. Bioeng. Symp. 1989, 33, 1221–1234.CrossRefGoogle Scholar
  210. 210.
    Adney, W. S., Ehrman, C. I., Baker, J. O., Thomas, S. R., and Himmel, M. E., Cellulase assays—Methods from empirical mathematical-models. In Enzymatic Conversion of Biomass for Fuels Production, M. E. Himmel, J. O. Baker, and R. P. Overend, Eds. ACS, Washington DC, 1994; Vol. 566, pp. 218–235.CrossRefGoogle Scholar
  211. 211.
    Vlasenko, E. Y., Ryan, A. I., Shoemaker, C. F., and Shoemaker, S. P., The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-l,4-beta-d-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microbial Technol 1998, 23(6), 350–359.CrossRefGoogle Scholar
  212. 212.
    Sieben, A., Cellulase and other hydrolytic enzyme assays using an oscillating tube viscometer. Anal Biochem 1975, 63,(1), 214–9.CrossRefGoogle Scholar
  213. 213.
    Kim, C. H., Characterization and substrate specificity of an endo-beta-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl Environ Microbiol 1995, 61(3), 959–65.Google Scholar
  214. 214.
    Chee, K. K., Kinetic study of random chain scission by viscometry. J. Appl. Polymer Sci. 1990, 41, 985–994.CrossRefGoogle Scholar
  215. 215.
    Demeester, J., Bracke, M., and Lauwers, A., Absolute viscometric method for the determination of endocellulase (Cx) activities based upon light-scattering interpretations of gel chromatographic fractionation data. Adv. Chem. Ser. 1979, 181, 91–125.CrossRefGoogle Scholar
  216. 216.
    Manning, K., Improved viscometric assay for cellulase methods. J. Biochem. Biotechnol. 1981, 5, 189–202.Google Scholar
  217. 217.
    Gilkes, N. R., Kwan, E., Kilburn, D. G., Miller, R. C., and Warren, R. A. J., Attack of carboxymethylcellulose at opposite ends by two cellobiohydrolases from Cellulomonas fimi. J Biotechnol 1997, 57(1–3), 83–90.CrossRefGoogle Scholar
  218. 218.
    Limam, F., Chaabouni, S. E., Ghrir, R., and Marzouki, N., Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: Purification and properties. Enzyme Microbial Technol 1995, 17(4), 340–346.CrossRefGoogle Scholar
  219. 219.
    Hoshino, E., Shiroishi, M., Amano, Y., Nomura, M., and Kanda, T., Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J Fermentation Bioeng 1997, 84(4), 300–306.CrossRefGoogle Scholar
  220. 220.
    Sadana, J. C. and Patil, R. V., Synergism between enzymes of Sclerotium rolfsii involved in the solubilization of crystalline cellulose. Carbohydrate Res 1985, 140(1), 111–120.CrossRefGoogle Scholar
  221. 221.
    van Tilbeurgh, H., M. Claeyssens, and DeBruyne, C. K., The use of 4-Methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett. 1982, 149, 152–156.CrossRefGoogle Scholar
  222. 222.
    Vrsanska, M. and Biely, P., The cellobiohydrolase I from Trichoderma reesei QM 9414: Action on cellooligosaccharides. Carbohydrate Res 1992, 227, 19–27.CrossRefGoogle Scholar
  223. 223.
    Konstantinidis, A. K., Marsden, I., and Sinnott, M. L., Hydrolyses of alpha-and beta-cellobiosyl fluorides by cellobiohydrolases of Trichoderma reesei. Biochem J 1993, 291 (Pt 3), 883–8.Google Scholar
  224. 224.
    Claeyssens, M., van Tilbeurgh, H., Tomme, P., Wood, T.M., and McCrae, S. I., Fungal cellulase systems: Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J. 1989, 261, 819–826.Google Scholar
  225. 225.
    Beldman, G., Searle-Van Leeuwen, M., Rombouts, F., and Voragen, F., The cellulase of Trichoderma viride; Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and B-glucosidases. Eur J. Biochem 1985, 146, 301–8.CrossRefGoogle Scholar
  226. 226.
    Karlsson, J., Siika-aho, M, Tenkanen, M., and Tjerneld, F., Enzymatic properties of the low molecular mass endoglucanases Cell2A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 2002, 99(1), 63–78.CrossRefGoogle Scholar
  227. 227.
    Tuohy, M. G., Walsh, D. J., Murray, P. G., Claeyssens, M., Cuffe, M. M., et al, Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochimica et Biophysica Acta (BBA)/Protein Structure Molecular Enzymol 2002, 1596(2), 366–380.CrossRefGoogle Scholar
  228. 228.
    Lemos, M. A., Teixeira, J. A., Domingues, M. R. M., Mota, M., and Gama, F. M., The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme Microbial Technol 2003, 32,(1), 35–40.CrossRefGoogle Scholar
  229. 229.
    Levy, I., and Shoseyov, O., Cellulose-binding domains: Biotechnological applications. Biotechnol Advances 2002, 20(3–4), 191–213.CrossRefGoogle Scholar
  230. 230.
    Linder, M., and Teeri, T. T., The roles and function of cellulose-binding domains. J Biotechnol 1997, 57(1–3), 15–28.CrossRefGoogle Scholar
  231. 231.
    Wood, T. M., The cellulase of Fusarium solani: Purification and specificity of the b-(164)-glucanase and the β-D-glucosidase components. Biochem. J. 1971, 121, 353–362.Google Scholar
  232. 232.
    Deshpande, M. V., K.-E. Eriksson, and Pettersson, L. G., β-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 1984, 138, 481–487.CrossRefGoogle Scholar
  233. 233.
    Adney, W. S., Baker, J. O., Vinzant, T. B., Thomas, S. R., and Himmel, M. E., Kinetic comparison of beta-D-glucosidases of industrial Importance. Abstracts of Papers of the American Chemical Society 1995, 209, 119–BTEC.Google Scholar
  234. 234.
    Biely, P., Mislovicova, D., and Toman, R., Soluble chromogenic substrates for the assay of endo-l,4-beta-xylanases and endo-l,4-beta-glucanases. Analytical Biochem 1985, 144(1), 142–146.CrossRefGoogle Scholar
  235. 235.
    Biely, P., Detection and differentiation of cellulases and xylanases. Abstracts of Papers of the American Chemical Society 1988, 195, 202–CELL.Google Scholar
  236. 236.
    Prade, R. A., Xylanases: From biology to biotechnology. Biotechnol Genet Eng Rev 1996, 13, 101–31.Google Scholar
  237. 237.
    Gielkens, M. M., Visser, J., and de Graaff, L. H., Arabinoxylan degradation by fungi: Characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 1997, 31(1), 22–9.CrossRefGoogle Scholar
  238. 238.
    Tenkanen, M., Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 1998, 27, 19–24.Google Scholar
  239. 239.
    Fillingham, I. J., Kroon, P. A., Williamson, G., Gilbert, H. J., and Hazlewood, G. P., A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multi-protein cellulose-binding cellulase-hemicellulase complex. Biochem J 1999, 343 Pt 1, 215–24.CrossRefGoogle Scholar
  240. 240.
    Borneman, W. S., Ljungdahl, L. G., Hartley, R. D., and Akin, D. E., Isolation and characterization of pcoumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2. Appl Environ Microbiol 1991, 57(8), 2337–44.Google Scholar
  241. 241.
    Cybinski, D. H., Layton, I., Lowry, J. B., and Dalrymple, B. P., An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 1999, 52(2), 221–5.CrossRefGoogle Scholar
  242. 242.
    de Vries, R. P., Kester, H. C., Poulsen, C. H., Benen, J. A., and Visser, J., Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 2000, 327(4), 401–10.CrossRefGoogle Scholar
  243. 243.
    Saha, B. C., α-1-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Advances 2000, 18(5), 403–423.CrossRefGoogle Scholar
  244. 244.
    Christov, L. P., and Prior, B. A., Esterases of xylan-degrading microorganisms: Production, properties, and significance. Enzyme Microb Technol 1993, 15(6), 460–75.CrossRefGoogle Scholar
  245. 245.
    Wood, T. M. and McCrae, S. I., Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an alpha-L-arabinofuranosidase. Appl Microbiol Biotechnol 1996, 45(4), 538–45.Google Scholar
  246. 246.
    Sakamoto, T. and Sakai, T., Analysis of structure of sugar-beet pectin by enzymatic methods. Phytochemistry 1995, 39(4), 821–3.CrossRefGoogle Scholar
  247. 247.
    McKie, V. A., and Black, G. W., Millward-Sadler, S. J., Hazlewood, G. P., Laurie, J. I., and Gilbert, H. J., Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo-and an exo-mode of action. Biochem J 1997, 323(Pt 2), 547–55.Google Scholar
  248. 248.
    Matsuo, N., and Kaneko, S., Kuno, A., Kobayashi, H., and Kusakabe, I., Purification, characterization and gene cloning of two alpha-L-arabinofuranosidases from streptomyces chartreusis GS901. Biochem 346Pt 1, 9–15.Google Scholar
  249. 249.
    Yanai, T. and Sato, M., Purification and characterization of a novel alpha-L-arabinofuranosidase from Pichia capsulata X91. Biosci Biotechnol Biochem 2000, 64(6), 1181–8.CrossRefGoogle Scholar
  250. 250.
    Degrassi, G., Vindigni, A., and Venturi, V., A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J Biotechnol 2003, 101(1), 69–79.CrossRefGoogle Scholar
  251. 251.
    Gomes, J., Gomes, I., Terler, K., Gubala, N., Ditzelm; A. G., and Steiner, W., Optimisation of culture medium and conditions for α-l-Arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microbial Technol 2000, 27(6), 414–422.CrossRefGoogle Scholar
  252. 252.
    Lee, R. C., Burton, R. A., Hrmova, M., and Fincher, G. B., Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones. Biochem J 2001, 356 (Pt 1), 181–9.CrossRefGoogle Scholar
  253. 253.
    Blum, D. L., Li, X. L., Chen, H., and Ljungdahl, L. G., Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 1999, 65(9), 3990–5.Google Scholar
  254. 254.
    Castanares, A., and Wood, T. M., Purification and characterization of a feruloyl/p-coumaroyl esterase from solid-state cultures of the aerobic fungus Penicillium pinophilum. Biochem Soc Trans 1992, 20(3), 275S.Google Scholar
  255. 255.
    McDermid, K. P., Forsberg, C. W., and MacKenzie, C. R., Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 1990, 56(12), 3805–10.Google Scholar
  256. 256.
    Khandke, K. M., Vithayathil, P. J., and Murthy, S. K., Purification and characterization of an alpha-D-glucuronidase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 1989, 274(2), 511–7.CrossRefGoogle Scholar
  257. 257.
    Tenkanen, M. and Siika-aho, M., An α-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 2000}, 78(2)}, 149–1CrossRefGoogle Scholar
  258. 258.
    Nagy, T., Nurizzo, D., Davies, G. J., Biely, P., Lakey, J. H., Bolam, D. N., and Gilbert, H. J., The a-glucuronidase, GlcA67A, of Cellvibrio japonicus utilises the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 2003.Google Scholar
  259. 259.
    Jeffries, T. W., Biochemistry and genetics of microbial xylanases. Current Opinion in Biotechnology 1996, 7(3), 337–342.CrossRefGoogle Scholar
  260. 260.
    de Vries, R. P., Kester, H. C., Poulsen, C. H., Benen, J. A., and Visser, J., Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 2000, 327(4), 401–10.CrossRefGoogle Scholar
  261. 261.
    Choi, I. D., Kim, H. Y., and Choi, Y. J., Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236. Biosci Biotechnol Biochem 2000, 64(12), 2530–7.CrossRefGoogle Scholar
  262. 262.
    Saraswat, V. and Bisaria, V. S., Biosynthesis of xylanolytic and xylan-debranching enzymes in Melanocarpus albomyces IIS 68. J Fermentation Bioeng 1997, 83(4), 352–357.CrossRefGoogle Scholar
  263. 263.
    Nagy, T., Emami, K., Fontes, C. M., Ferreira, L. M., Humphry, D. R., and Gilbert, H. J., The membrane-bound alpha-glucuronidase from Pseudomonas cellulosa hydrolyzes 4-O-methyl-D-glucuronoxylooligosaccharides but not 4-O-methyl-D-glucuronoxylan. J Bacteriol 2002, 184(17), 4925–9.CrossRefGoogle Scholar
  264. 264.
    de Vries, R. P., Poulsen, C. H., Madrid, S., and Visser, J., aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 1998, 180(2), 243–9.Google Scholar
  265. 265.
    Castanares, A., Hay, A. J., Gordon, A. H., McCrae, S. I., and Wood, T. M., D-xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an alpha-(4-0-methyl)-D-glucuronidase. J Biotechnol 1995, 43(3), 183–94.CrossRefGoogle Scholar
  266. 266.
    Nishitani, K. and Nevins, D. J., Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 1991, 266(10), 6539–43.Google Scholar
  267. 267.
    Christov, L., Biely, P., Kalogeris, E., Christakopoulos, P., Prior, B. A., and Bhat, M. K., Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp. J Biotechnol 2000, 83(3), 231–244.CrossRefGoogle Scholar
  268. 268.
    Jeffries, T. W., Biochemistry and genetics of microbial xylanases. Curr Opin Biotechnol 1996, 7(3), 337–42.CrossRefGoogle Scholar
  269. 269.
    Biely, P., Vrsanska, M., Tenkanen, M., and Kluepfel, D., Endo-beta-l,4-xylanase families: Differences in catalytic properties. J Biotechnol 1997, 57(1–3), 151–66.CrossRefGoogle Scholar
  270. 270.
    Schwarz, W. H., Bronnenmeier, K., Krause, B., Lottspeich, F., and Staudenbauer, W. L., Debranching of arabinoxylan: properties of the thermoactive recombinant alpha-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 1995, 43(5), 856–60.CrossRefGoogle Scholar
  271. 271.
    Bailey, M. J. and Poutanen, K., Production of xylanolytic enzymes by strains of Aspergillus. Appl Microbiol Biotechnol 1989, 30(1), 5–10.CrossRefGoogle Scholar
  272. 272.
    Bronnenmeier, K., Kern, A., Liebl, W., and Staudenbauer, W. L., Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 1995, 61(4), 1399–407.Google Scholar
  273. 273.
    Dupont, C., Daigneault, N., Shareck, F, Morosoli, R., and Kluepfel, D., Purification and characterization of an acetyl xylan esterase produced by Streptomyces lividans. Biochem J 1996, 319 (Pt 3), 881–6.Google Scholar
  274. 274.
    Green, F, 3rd, Clausen, C. A., and Highley, T. L., Adaptation of the Nelson-Somogyi reducing-sugar assay to a microassay using microtiter plates. Anal Biochem 1989, 182(2), 197–9.CrossRefGoogle Scholar
  275. 275.
    Lin, J., Ndlovu, L. M., Singh, S., and Pillay, B., Purification and biochemical characteristics of beta-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 1999, 30 (Pt 1), 73–9.Google Scholar
  276. 276.
    Ruiz-Arribas, A., Fernandez-Abalos, J. M., Sanchez, P., Garda, A. L., and Santamaria, R. I., Overproduction, purification, and biochemical characterization of a xylanase (Xysl) from Streptomyces halstedii JM8. Appl Environ Microbiol 1995, 61(6), 2414–9.Google Scholar
  277. 277.
    Taguchi, H., Hamasaki, T., Akamatsu, T., and Okada, H., A simple assay for xylanase using o-nitrophenyl-beta-D-xylobioside. Biosci Biotechnol Biochem 1996, 60,(6), 983–5.CrossRefGoogle Scholar
  278. 278.
    Milagres, A. M. F., and Sales, R. M., Evaluating the basidiomycetes Poria medula-panis and Wolfiporia cocos for xylanase production. Enzyme Microbial Technolo 2001, 28(6), 522–526.CrossRefGoogle Scholar
  279. 279.
    Bronnenmeier, K., Kern, A., Liebl, W., and Staudenbauer, W. L., Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 1995, 61(4), 1399–407.Google Scholar
  280. 280.
    Lin, L. L., and Thomson, J. A., An analysis of the extracellular xylanases and cellulases of Butyrivibrio fibrisolvens H17c. FEMS Microbiol Lett 1991, 68(2), 197–203.CrossRefGoogle Scholar
  281. 281.
    Bray, M. R. and Clarke, A. J., Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 1992, 204(1), 191–6.CrossRefGoogle Scholar
  282. 282.
    Christakopoulos, P., Nerinckx, W., Kekos, D., Macris, B., and Claeyssens, M., The alkaline xylanase III from Fusarium oxysporum F3 belongs to family F/10. Carbohydr Res 1997, 302,(3–4), 191–5.CrossRefGoogle Scholar
  283. 283.
    Debeire, P., Priem, B., Strecker, G., and Vignon, M., Purification and properties of an endo-l,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum. A proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem 1990, 187(3), 573–80.CrossRefGoogle Scholar
  284. 284.
    Suzuki, T., Kitagawa, E., Sakakibara, F., Ibata, K., Usui, K., and Kawai, K., Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 2001, 65(3), 487–94.CrossRefGoogle Scholar
  285. 285.
    Saluzzi, L., Flint, H. J., and Stewart, C. S., Adaptation of Ruminococcus flavefaciens resulting in increased degradation of ryegrass cell walls. FEMS Microbiol Ecol 2001, 36(2–3), 131–137.Google Scholar
  286. 286.
    La Grange, D. C., Pretorius, I. S., Claeyssens, M., and van Zyl, W. H., Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 2001, 67(12), 5512–9.CrossRefGoogle Scholar
  287. 287.
    Ratanakhanokchai, K., Kyu, K. L., and Tanticharoen, M., Purification and properties of a xylan-binding endoxylanase from alkaliphilic bacillus sp. Strain K-l. Appl Environ Microbiol 1999, 65(2), 694–7.Google Scholar
  288. 288.
    York, W. S., Kumar Kolli, V. S., Orlando, R., Albersheim, P., and Darvill, A. G., The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 1996, 285, 99–128.Google Scholar
  289. 289.
    Vanzin, G. F., Madson, M., Carpita, N. C., Raikhel, N. V., Keegstra, K., and Reiter, W. D., The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUTl. Proc Natl AcadSci U S A 2002, 99(5), 3340–5.CrossRefGoogle Scholar
  290. 290.
    Dunand, C., Gautier, C., Chambat, G., and Lienart, Y., Characterization of the binding of alpha-L-Fuc (l->2)-beta-D-Gal (l->), a xyloglucan signal, in blackberry protoplasts. Plant Sci 2000, 151(2), 183–192.CrossRefGoogle Scholar
  291. 291.
    Watt, D. K., Brasch, D. J., Larsen, D. S., Melton, L. D., and Simpson, J., Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl 2-0-(alpha-L-fucopyranosyl)-beta-D-galactopyranoside. Carbohydr Res 1996, 285, 1–15.Google Scholar
  292. 292.
    Watt, D. K., Brasch, D. J., Larsen, D. S., Melton, L. D., and Simpson, J., Oligosaccharides related to xyloglucan: synthesis and X-ray crystal structure of methyl alpha-L-fucopyranosyl-(l->2)-beta-D-galactopyranosyl-(l->2)-alpha-D-x ylopyranoside and the synthesis of methyl alpha-L-fucopyranosyl-(l->2)-beta-D-galactopy-ranosyl-(l->2)-beta-D-xy lopyranoside. Carbohydr Res 2000, 325(4), 300–12.CrossRefGoogle Scholar
  293. 293.
    Busato, A. P., Vargas-Rechia, C. G., and Reicher, F., Xyloglucan from the leaves of Hymenaea courbaril. Phytochemistry 2001, 58(3), 525–31.CrossRefGoogle Scholar
  294. 294.
    Vierhuis, E., York, W. S., Kolli, V. S., Vincken, J., Schols, H. A., Van Alebeek, G. W., and Voragen, A. G., Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 2001, 332(3), 285–97.CrossRefGoogle Scholar
  295. 295.
    Maruyama, K., Goto, C., Numata, M., Suzuki, T., Nakagawa, Y., et al., O-acetylated xyloglucan in extracellular polysaccharides from cell-suspension cultures of Mentha. Phytochemistry 1996, 41(5), 1309–14.CrossRefGoogle Scholar
  296. 296.
    Wu, C. T., Leubner-Metzger, G., Meins, F., Jr., and Bradford, K. J., Class I beta-l,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 2001, 126(3), 1299–313.CrossRefGoogle Scholar
  297. 297.
    Hrmova, M., and Fincher, G. B., Structure-function relationships of beta-D-glucan endo-and exohydrolases from higher plants. Plant Mol Biol 2001, 47(1–2), 73–91.CrossRefGoogle Scholar
  298. 298.
    Hu, G. and Rijkenberg, F. H., Subcellular localization of beta-l,3-glucanase in Puccinia recondita f. sp. Tritici-infected wheat leaves. Planta 1998, 204(3), 324–34.CrossRefGoogle Scholar
  299. 299.
    Kotake, T., Nakagawa, N., Takeda, K., and Sakurai, N., Purification and characterization of wall-bound exo-1,3-beta-D-glucanase from barley (Hordeum vulgare L.) seedlings. Plant Cell Physiol 1997, 38(2), 194-200.Google Scholar
  300. 300.
    Brummell, D. A., Catala, C., Lashbrook, C. C., and Bennett, A. B., A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci U S A 1997, 94(9), 4794–9.CrossRefGoogle Scholar
  301. 301.
    Keitel, T., Thomsen, K. K., and Heinemann, U., Crystallization of barley (l-3,l-4)-beta-glucanase, isoenzyme II. J Mol Biol 1993, 232(3), 1003–4.CrossRefGoogle Scholar
  302. 302.
    Wang, G., Marquardt, R. R., Xiao, H., and Zhang, Z., Development of a 96-well enzyme-linked solid-phase assay for beta-glucanase and xylanase. J Agric Food Chem 1999, 47(3), 1262–7.CrossRefGoogle Scholar
  303. 303.
    Mestechkina, N. M., Anulov, O. V., Smirnova, N. I., and Shcherbukhin, V. D., Composition and structure of a galactomannan macromolecule from seeds of Astragalus lehmannianus Bunge. Applied Biochemistry and Microbiology 2000, 36(5)), 502–506.CrossRefGoogle Scholar
  304. 304.
    Chaubey, M. and Kapoor, V. P., Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydrate Research 2001, 332(4)), 439–444.CrossRefGoogle Scholar
  305. 305.
    Teramoto, A. and Fuchigami, M., Changes in temperature, texture, and structure of konnyaku (konjac glucomannan gel) during high-pressure-freezing. J Food Sci 2000, 65(3)), 491–497.CrossRefGoogle Scholar
  306. 306.
    Zhang, H., Yoshimura, M., Nishinari, K., Williams, M. A. K., Foster, T. I, and Norton, I. T., Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 2001, 59(1)), 38–50.CrossRefGoogle Scholar
  307. 307.
    Zhang, H. S., Yang, J. G., and Zhao, Y., The glucomannan from ramie. Carbohydrate Polymers 2002, 47(1), 83–86.CrossRefGoogle Scholar
  308. 308.
    Smirnova, N. L, Mestechkina, N. M., and Shcherbukhin, V. D., The structure and characteristics of glucomannans from Eremurus iae and E-zangezuricus: Assignment of acetyl group localization in macromolecules. Applied Biochemistry and Microbiology 2001, 37,(3) 287–291.CrossRefGoogle Scholar
  309. 309.
    Petkowicz, C. L. D., Reicher, F, Chanzy, H., Taravel, F. R., and Vuong, R., Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydrate Polymers 2001, 44(2), 107–112.CrossRefGoogle Scholar
  310. 310.
    Parker, K. N., Chhabra, S. R., Lam, D., Callen, W., Duffaud, G. D., et al., Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 2001, 75(3), 322–33.CrossRefGoogle Scholar
  311. 311.
    Parker, K. N., Chhabra, S., Lam, D., Snead, M. A., Mathur, E. J., and Kelly, R. M., Beta-Mannosidase from Thermotoga species. Methods Enzymol 2001, 330, 238–46.CrossRefGoogle Scholar
  312. 312.
    Chhabra, S., Parker, K. N., Lam, D., Callen, W., Snead, M. A., Mathur, E. J., et al., Beta-mannanases from Thermotoga species. Methods Enzymol 2001, 330, 224–38.CrossRefGoogle Scholar
  313. 313.
    Ganter, J. L., Sabbi, J. C., and Reed, W. F, Real-time monitoring of enzymatic hydrolysis of galactomannans. Biopolymers 2001, 59(4), 226–42.CrossRefGoogle Scholar
  314. 314.
    Ademark, P., de Vries, R. P., Hagglund, P., Stalbrand, H., and Visser, J., Cloning and characterization of Aspergillus niger genes encoding an alpha-galactosidase and a beta-mannosidase involved in galactomannan degradation. Eur J Biochem 2001, 268(10), 2982–90.CrossRefGoogle Scholar
  315. 315.
    Tenkanen, M., Puls, J., Ratto, M., and Viikari, L., Enzymatic Deacetylation of Galactoglucomannans. Appl Microbiol Biotechnol 1993, 39(2), 159–165.CrossRefGoogle Scholar
  316. 316.
    Tenkanen, M., Thornton, J., and Viikari, L., An acetylglucomannan esterase of aspergillus-oryzae-purification, characterization and role in the hydrolysis of O-acetyl-galactoglucomannan. J Biotechnol 1995, 42(3), 197–206.CrossRefGoogle Scholar
  317. 317.
    Berens, S., Kaspari, H., and Klemme, J. H., Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie Van Leeuwenhoek 1996, 69(3), 235–41.CrossRefGoogle Scholar
  318. 318.
    Bolam, D. N., Hughes, N., Virden, R., Lakey, J. H., Hazlewood, G. P., et al., Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues. Biochemistry 1996, 35(50), 16195–204.CrossRefGoogle Scholar
  319. 319.
    Ghangas, G. S., Hu, Y. J., and Wilson, D. B., Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J Bacteriol 1989, 171(6), 2963–9.Google Scholar
  320. 320.
    McKie, V. A., Vincken, J. P., Voragen, A. G., van den Broek, L. A., Stimson, E., and Gilbert, H. J., A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 2001, 355 (Pt 1), 167–77.CrossRefGoogle Scholar
  321. 321.
    Braithwaite, K. L., Black, G. W., Hazlewood, G. P., Ali, B. R., and Gilbert, H. J., A non-modular endo-beta-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 1995, 305 (Pt 3), 1005–10.Google Scholar
  322. 322.
    Sipat, A., Taylor, K. A., Lo, R. Y., Forsberg, C. W., and Krell, P. J., Molecular cloning of a xylanase gene from Bacteroides succinogenes and its expression in Escherichia coli. Appl Environ Microbiol 1987, 53(3), 477–81.Google Scholar
  323. 323.
    Takahashi, R., Mizumoto, K., Tajika, K., and Takano, R., Production of oligosaccharides from hemicellulose of woody biomass by enzymatic-hydrolysis. 1. A simple method for isolating beta-D-mannanase-producing microorganisms. Mokuzai Gakkaishi 1992, 38(12), 1126–1135.Google Scholar
  324. 324.
    Whitehead, T. R. and Hespell, R. B., Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl Environ Microbiol 1989, 55(4), 893–6.Google Scholar
  325. 325.
    Markovic, O., Mislovicov, A. D., Biely, P., and Heinrichov, K., Chromogenic substrate for endo-polygalacturonase detection in gels. J Chromatography A 1992, 603(1–2), 243–246.CrossRefGoogle Scholar
  326. 326.
    Zantinge, J. L., Huang, H. C., and Cheng, K. J., Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 2002, 33(4), 798–ff.Google Scholar
  327. 327.
    Skjot, M., Kauppinen, S., Kofod, L. V., Fuglsang, C., Pauly, M., et al, Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A-oryzae and tobacco. Molecular Genetics Genomics 2001, 265(5), 913–921.CrossRefGoogle Scholar
  328. 328.
    Zantinge, J. L., Huang, H. C., and Cheng, K. J., Microplate diffusion assay for screening of beta-glucanase-producing microorganisms. Biotechniques 2002, 33(4), 798, 800, 802 passim.Google Scholar
  329. 329.
    Ridley, B. L., O’Neill, M. A., and Mohnen, D., Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57(6), 929–67.CrossRefGoogle Scholar
  330. 330.
    de Vries, R. P. and Visser, J., Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001, 65(4), 497–522, table of contents.CrossRefGoogle Scholar
  331. 331.
    Cardoso, S. M., Silva, A. M., and Coimbra, M. A., Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains. Carbohydr Res 2002, 337(10), 917–24.CrossRefGoogle Scholar
  332. 332.
    McCartney, L., Ormerod, A. P., Gidley, M. J., and Knox, J. P., Temporal and spatial regulation of pectic (l->4)-beta-D-galactan in cell walls of developing pea cotyledons: Implications for mechanical properties. Plant J 2000, 22(2), 105–13.CrossRefGoogle Scholar
  333. 333.
    Willats, W. G., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G. I, et al., Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 2001, 276(22), 19404–13.CrossRefGoogle Scholar
  334. 334.
    Fransen, C. T., Haseley, S. R., Huisman, M. M., Schols, H. A., Voragen, A. G., et al., Studies on the structure of a lithium-treated soybean pectin: characteristics of the fragments and determination of the carbohydrate substituents of galacturonic acid. Carbohydr Res 2000, 328(4), 539–47.CrossRefGoogle Scholar
  335. 335.
    Mazeau, K. and Perez, S., The preferred conformations of the four oligomeric fragments of Rhamnogalacturonan II. Carbohydr Res 1998, 311(4), 203–17.CrossRefGoogle Scholar
  336. 336.
    Gainvors, A., Nedjaoum, N., Gognies, S., Muzart, M., Nedjma, M., and Belarbi, A., Purification and characterization of acidic endo-polygalacturonase encoded by the PGL1-1 gene from Saccharomyces cerevisiae. FEMS Microbiol Lett 2000, 183(1), 131–135.CrossRefGoogle Scholar
  337. 337.
    Kennedy, J. F. and Methacanon, P., Enzymes for carbohydrate engineering, in Carbohydrate Polymers 1999, 39(3), 292. K.-H. Park, J.F. Robyt, Y.-D. Choi (Eds.), Elsevier Science BV., Amsterdam, The Netherlands, 1996, pp. Vii + 215.CrossRefGoogle Scholar
  338. 338.
    Mutter, M., Renard, C. M., Beldman, G., Schols, H. A., and Voragen, A. G., Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 1998, 311(3), 155–64.CrossRefGoogle Scholar
  339. 339.
    Antov, M. G., Pericin, D. M., and Dimic, G. R., Cultivation of Polyporus squamosus for pectinase production in aqueous two-phase system containing sugar beet extraction waste. Journal of Biotechnology 2001, 91(1), 83–87.CrossRefGoogle Scholar
  340. 340.
    Bhattacharya, S. and Rastogi, N. K., Rheological properties of enzyme-treated mango pulp. J Food Eng 1998, 36(3), 249–262.CrossRefGoogle Scholar
  341. 341.
    Castilho, L. R., Alves, T. L. M., and Medronho, R. A., Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochem 1999, 34(2), 181–186.CrossRefGoogle Scholar
  342. 342.
    Fanta, N., Quaas, A., Zulueta, P., and Rez, L. M., Release of reducing sugars from Citrus seedlings, leaves and fruits. Effect of treatment with pectinase and cellulase from Alternaria and Trichoderma. Phytochemistry 1992, 31(10), 3359–3364.CrossRefGoogle Scholar
  343. 343.
    Kapoor, M., Khalil, B., Qasim, Bhushan, Bharat, et al., Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochemistry 2000, 36(5), 467–473.CrossRefGoogle Scholar
  344. 344.
    Hadj-Taieb, N., Ayadi, M., Trigui, S., Bouabdallah, F., and Gargouri, A., Hyperproduction of pectinase activities by a fully constitutive mutant (CT1) of Penicillium occitanis. Enzyme Microbial Technol 2002, 30(5), 662–666.CrossRefGoogle Scholar
  345. 345.
    Weissermel, K. and Arpe, H.-J., Industrial Organic Chemistry. 3rd ed.; VCH: New York, 1997.Google Scholar
  346. 346.
    Murphy, D. J., Designer Oil Crops: Breeding, Processing and Biotechnology. VCH: Weinheim, 1994.Google Scholar
  347. 347.
    Robbelen, G., Downey, R. K., and Ashri, A., Oil Crops of the World: Their Breeding and Utilization. McGraw-Hill: New York, 1989.Google Scholar
  348. 348.
    Scott, D. S., Piskorz, J., Radlein, D., Production of Levoglucosan as an Industrial Chemical. In Levoglucosenone and Levoglucosans. Chemistry and Applications, Witczak, Z. J., Ed. ATL Press Science Publishers: Mt. Prospect, IL, 1994; pp. 179–188.Google Scholar
  349. 349.
    Eggersdorfer, M., Meyer, J., and Eckes, P., Use of renewable resources for nonfood materials. Ferns Microbiology Reviews 1992, 103(2—4), 355–364.Google Scholar
  350. 350.
    Donaldson, T. L. and Culberson, O. L., An industry model of commodity chemicals from renewable resources. Energy 1984, 9(8), 693–707.CrossRefGoogle Scholar
  351. 351.
    Hanselmann, K. W., Lignochemicals. Experientia 1982, 38(2), 176–188.CrossRefGoogle Scholar
  352. 352.
    Lipinsky, E. S., Chemicals from biomass — Petrochemical substitution options. Science 1981, 212,(4502), 1465–1471.CrossRefGoogle Scholar
  353. 353.
    Indergaard, M., Johansson, A., and Crawford, B., Biomass technologies. Chimia 1989, 43(7–8), 230–232.Google Scholar
  354. 354.
    Kirk-Othmer Encyclopedia of Chemical Technology. 4th edition ed.; John Wiley: New York, 1994; Vol. 12.Google Scholar
  355. 355.
    Goldstein, I. S., Chemicals from biomass — Present status. Forest Products 1981, 31(10), 63–68.Google Scholar
  356. 356.
    Goldstein, I. S., Organic Chemicals from Biomass. CRC Press: Boca Raton, FL, 1981.Google Scholar
  357. 357.
    Kuhad, R. C. and Singh, A., Lignocellulose biotechnology — Current and future-prospects. Critical Revi Biotechnol 1993, 13(2), 151–172.CrossRefGoogle Scholar
  358. 358.
    Kerr, R. A., The next oil crisis looms large—and perhaps close. Science 1998, 281(5380), 1128–1131.CrossRefGoogle Scholar
  359. 359.
    Campbell, C. J. and Laherrere, J. H., Preventing the next oil crunch—The end of cheap oil. Sci Am 1998, 278(3), 77–83.CrossRefGoogle Scholar
  360. 360.
    Energy Information Administration, Annual Energy Review. U. S. Department of Energy: Washington, DC, 1997; Vol. DOE/EIA-0384(97).Google Scholar
  361. 361.
    Holderich, W. F., Roseler, J., Heitmann, G., and Liebens, A. T., The use of zeolites in the synthesis of fine and intermediate chemicals. Catalysis Today 1997, 37(4), 353–366.CrossRefGoogle Scholar
  362. 362.
    Donnini, G. P., Blain, T. J., Holton, H. H., and Kutney, G. W., 300 Alkaline pulping additives — structure-activity-relationships. Pulp & Paper-Canada 1983, 84(11), R134–R140.Google Scholar
  363. 363.
    McMillan, J. D., Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production, M. E. Himmel, J. O., Baker, and R. P. Overend, Eds. ACS, Washington DC, 1994; Vol. 566, pp. 292–324.CrossRefGoogle Scholar
  364. 364.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 2005, 96(6), 673–686.CrossRefGoogle Scholar
  365. 365.
    Torget, R., Walter, P., Himmel, M., and Grohmann, K., Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 1991, 28-9, 75–86.CrossRefGoogle Scholar
  366. 366.
    Torget, R., Werdene, P., Himmel, M., and Grohmann, K., Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl Biochem Biotechnol 1990, 24-5, 115–126.CrossRefGoogle Scholar
  367. 367.
    Singh, A., Das, K., and Sharma, D. K., Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues. J Chem Technol Biotechnol A-Chem Technol 1984, 34(2), 51–61.CrossRefGoogle Scholar
  368. 368.
    Singh, A., Das, K., and Sharma, D. K., Integrated process for production of xylose, furfural, and glucose from bagasse by 2-step acid-hydrolysis. Industrial Eng Chem Product Res Dev 1984, 23(2), 257–262.CrossRefGoogle Scholar
  369. 369.
    Vila, C., Santos, V., and Parajo, J. C., Recovery of lignin and furfural from acetic acid-water-HCl pulping liquors. Bioresource Technol 2003, 90(3), 339–344.CrossRefGoogle Scholar
  370. 370.
    Lehnen, R., Saake, B., and Nimz, H. H., Furfural and hydroxymethylfurfural as by-products of FORMACELL pulping. Holzforschung 2001, 55(2), 199–204.CrossRefGoogle Scholar
  371. 371.
    Lignosulfonates, Chemical Economics Handbook. SRI Consulting: Menlo Park, CA.Google Scholar
  372. 372.
    Ward, O. P. and Singh, A., Bioethanol technology: Developments and perspectives. In Advances In Applied Microbiology, Laskin, A. I., Bennett, J. W., and Gadd, G. M., Eds., Academic Press, Amsterdam, 2002, Vol. 51, pp. 53–80.Google Scholar
  373. 373.
    Sun, Y. and Cheng, J. Y., Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 2002, 83(1), 1–11.CrossRefGoogle Scholar
  374. 374.
    Galbe, M. and Zacchi, G., A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 2002, 59(6), 618–628.CrossRefGoogle Scholar
  375. 375.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P., Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 2000, 84-6, 561–576.CrossRefGoogle Scholar
  376. 376.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P., Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 1999, 77-9, 133–142.CrossRefGoogle Scholar
  377. 377.
    Garrote, G., Dominguez, H., and Parajo, J. C., Hydrothermal processing of lignocellulosic materials. Holz Als Roh-Und Werkstoff 1999, 57(3), 191–202.CrossRefGoogle Scholar
  378. 378.
    Schell, D. J., Torget, R., Power, A., Walter, P. J., Grohmann, K., and Hinman, N. D., A technical and economic-analysis of acid-catalyzed steam explosion and dilute sulfuric-acid pretreatments using wheat straw or aspen wood chips. Appl Biochem Biotechnol 1991, 28-9, 87–97.CrossRefGoogle Scholar
  379. 379.
    Aziz, S. and Sarkanen, K., Organosolv pulping — A review. Tappi Journal 1989, 72(3), 169–175.Google Scholar
  380. 380.
    Johansson, A., Aaltonen, O., and Ylinen, P., Organosolv pulping — Methods and pulp properties. Biomass 1987, 13(1), 45–65.CrossRefGoogle Scholar
  381. 381.
    Kleinert, T. N., Organosolvent pulping with aqueous alcohol. Tappi 1974, 57(8), 99–102.Google Scholar
  382. 382.
    Lora, J. H. and Aziz, S., Organosolv pulping — A versatile approach to wood refining. Tappi J 1985, 68(8), 94–97.Google Scholar
  383. 383.
    McDonough, T. J., The chemistry of organosolv delignification. Tappi J 1993, 76(8), 186–193.Google Scholar
  384. 384.
    Sarkanen, K. V., Chemistry of solvent pulping. Tappi J 1990, 73(10), 215–219.Google Scholar
  385. 385.
    Stockburger, P., An overview of near-commercial and commercial solvent-based pulping processes. Tappi J 1993, 76(6), 71–74.Google Scholar
  386. 386.
    Kishimoto, T. and Sano, Y., Delignification mechanism during high-boiling solvent pulping Part 1. Reaction of guaiacylglycerol-beta-guaiacyl ether. Holzforschung 2001, 55(6), 611–616.CrossRefGoogle Scholar
  387. 387.
    Thring, R. W., Chornet, E., and Overend, R. P., Thermolysis of glycol lignin in the presence of tetralin. Canadian J Chem Eng 1993, 71(1), 107–115.CrossRefGoogle Scholar
  388. 388.
    Demirbas, A., Aqueous glycerol delignification of wood chips and ground wood. Bioresource Technol 1998, 63(2), 179–185.CrossRefGoogle Scholar
  389. 389.
    Jimenez, L., delaTorre, M. J., Maestre, F., Ferrer, J. L., and Perez, I., Organosolv pulping of wheat straw by use of phenol. Bioresource Technol 1997, 60(3), 199–205.CrossRefGoogle Scholar
  390. 390.
    Nimz, H. H., Berg, A., Granzow, C., Casten, R., and Muladi, S., Pulping and bleaching by the acetosolv process. Papier 1989, 43(10A, V102–V108.Google Scholar
  391. 391.
    Nimz, H. H., Granzow, C., and Berg, A., Acetosolv pulping. Holz Als Roh-Und Werkstoff 1986, 44(9), 362–362.CrossRefGoogle Scholar
  392. 392.
    Parajo, J. C., Alonso, J. L., Vazquez, D., and Santos, V., Optimization of catalyzed acetosolv fractionation of pine wood. Holzforschung 1993, 47(3), 188–196.CrossRefGoogle Scholar
  393. 393.
    Saake, B., Lummitsch, S., Mormanee, R., Lehnen, R., and Nimz, H. H., production of pulps using the Formacell process. Papier 1995, 49,(10A), V1–V7.Google Scholar
  394. 394.
    Sundquist, J., Chemical pulping based on formic acid — Summary of Milox research. Paperi Ja Puu-Paper Timber 1996, 78(3), 92–95.Google Scholar
  395. 395.
    Poppius-Levlin, K., Mustonen, R., Huovila, T., and Sundquist, J., Milox pulping with acetic-acid peroxyacetic acid. Paperi Ja Puu-Paper Timber 1991, 73(2), 154–158.Google Scholar
  396. 396.
    Dahlmann, G., and Schroeter, M. C., The organocell process — Pulping with the environment in mind. Tappi J 1990, 73(4), 237–240.Google Scholar
  397. 397.
    Pye, E. K. and Lora, J. H., The Alcell process — A proven alternative to kraft pulping. Tappi J 1991, 74(3), 113–118.Google Scholar
  398. 398.
    Schroeter, M. C., Possible lignin reactions in the organocell pulping process. Tappi J 1991, 74(10), 197–200.Google Scholar
  399. 399.
    Black, N. P., ASAM Alkaline sulfite pulping process shows potential for large-scale application. Tappi J 1991, 74(4), 87–93.Google Scholar
  400. 400.
    Kirci, H., Bostanci, S., and Yalinkilic, M. K., A new modified pulping process alternative to sulfate method alkali-sulfite-antraquinone-ethanol (Asae). Wood Sci Technol 1994, 28(2), 89–99.CrossRefGoogle Scholar
  401. 401.
    Part, R., Knoblauch, J., Faix, O., Kordsachia, O., and Puls, J., Lignin and carbohydrate reactions in alkaline sulfite, anthraquinone, methanol (ASAM) pulping. Papier 1991, 45(7), 389–396.Google Scholar
  402. 402.
    Schubert, H. L., Fuchs, K., Part, R., Kordsachia, O., and Bobik, M., The ASAM-process — A pulp technology ready for industry — Experiences gained through 3 years operation of the pilot-plant. Papier 1993, 47(10A), V6–V15.Google Scholar
  403. 403.
    Yawalata, D. and Paszner, L., Cationic effect in high concentration alcohol organosolv pulping: The next generation biorefinery. Holzforschung 2004, 58(1), 7–13.CrossRefGoogle Scholar
  404. 404.
    Oliet, M., Garcia, J., Rodriguez, F., and Gilarrranz, M. A., Solvent effects in autocatalyzed alcohol-water pulping comparative study between ethanol and methanol as delignifying agents. Chem Eng J 2002, 87(2), 157–162.CrossRefGoogle Scholar
  405. 405.
    Goyal, G. C., Lora, J. H., and Pye, E. K., Autocatalyzed organosolv pulping of hardwoods — Effect of pulping conditions on pulp properties and characteristics of soluble and residual lignin. Tappi J 1992, 75(2), 110–116.Google Scholar
  406. 406.
    Oliet, M., Rodriguez, F., Garcia, J., and Gilarranz, M. A., The effect of autocatalyzed ethanol pulping on lignin characteristics. J Wood Chem Technol 2001, 21(1), 81–95.CrossRefGoogle Scholar
  407. 407.
    Yawalata, D., and Paszner, L., Anionic effect in high concentration alcohol organosolv pulping. Holzforschung 2004, 58(1), 1–6.CrossRefGoogle Scholar
  408. 408.
    Paszner, L. and Cho, H. J., Organosolv pulping — Acidic catalysis options and their effect on fiber quality and delignification. Tappi J 1989, 72(2), 135–142.Google Scholar
  409. 409.
    Paszner, L. and Behera, N. C., Topochemistry of softwood delignification by alkali earth metal salt catalyzed organosolv pulping. Holzforschung 1989, 43(3), 159–168.CrossRefGoogle Scholar
  410. 410.
    Black, S. K., Hames, B. R., and Myers, M. D. US 5,730,837, 1998.Google Scholar
  411. 411.
    Ibrahim, M. and Glasser, W. G., Steam-assisted biomass fractionation. Part III: A quantitative evaluation of the “clean fractionation” concept. Bioresource Technol 1999, 70(2), 181–192.CrossRefGoogle Scholar
  412. 412.
    Avellar, B. K. and Glasser, W. G., Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenergy 1998, 14(3), 205–218.CrossRefGoogle Scholar
  413. 413.
    Heitz, M., Capekmenard, E., Koeberle, P. G., Gagne, J., Chornet, E., et al., Fractionation of populus-tremuloides at the pilot-plant scale — optimization of steam pretreatment conditions using the stake-Ii technology. Bioresource Technol 1991, 35(1), 23–32.CrossRefGoogle Scholar
  414. 414.
    Schultz, T. P., Blermann, C. J., and McGinnis, G. D., Steam explosion of mixed hardwood chips as a biomass pretreatment. Industrial Engineering Chem Product Res Dev 1983, 22(2), 344–348.CrossRefGoogle Scholar
  415. 415.
    Sun, X. F., Xu, F., Sun, R. C., Wang, Y. X., Fowler, P., and Baird, M. S., Characteristics of degraded lignins obtained from steam exploded wheat straw. Polymer Degradation Stability 2004, 86(2), 245–256.CrossRefGoogle Scholar
  416. 416.
    Shevchenko, S. M., Chang, K., Dick, D. G., Gregg, D. J., and Saddler, J. N., Structure and properties of lignin in softwoods after S02-catalyzed steam explosion and enzymatic hydrolysis. Cellulose Chem Technol 2001, 35(5–6), 487–502.Google Scholar
  417. 417.
    Shevchenko, S. M., Beatson, R. P., and Saddler, J. N., The nature of lignin from steam explosion enzymatic hydrolysis of softwood — Structural features and possible uses. Appl Biochem Biotechnol 1999, 77–9, 867–876.CrossRefGoogle Scholar
  418. 418.
    Ramos, L. P., Mathias, A. L., Silva, F. T., Cotrim, A. R., Ferraz, A. L., and Chen, C. L., Characterization of residual lignin after S02-catalyzed steam explosion and enzymatic hydrolysis of Eucalyptus viminalis wood chips. J Agricult Food Chem 1999, 47(6), 2295–2302.CrossRefGoogle Scholar
  419. 419.
    Fernandez-Bolanos, J., Felizon, B., Heredia, A., Guillen, R., and Jimenez, A., Characterization of the lignin obtained by alkaline delignification and of the cellulose residue from steam-exploded olive stones. Bioresource Technol 1999, 68(2), 121–132.CrossRefGoogle Scholar
  420. 420.
    Emmel, A., Mathias, A. L., Wypych, F., and Ramos, L. P., Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresource Technol 2003, 86(2), 105–115.CrossRefGoogle Scholar
  421. 421.
    Schell, D., Nguyen, Q., Tucker, M., and Boynton, B., Pretreatment of softwood by acid-catalyzed steam explosion followed by alkali extraction. Appl Biochem Biotechnol 1998, 70–2, 17–24.CrossRefGoogle Scholar
  422. 422.
    Bura, R., Bothast, R. J., Mansfield, S. D., and Saddler, J. N., Optimization of S02-catalyzed steam pretreatment of corn fiber for ethanol production. Appl Biochem Biotechnol 2003, 105, 319–335.CrossRefGoogle Scholar
  423. 423.
    Bura, R., Mansfield, S. D., Saddler, J. N., and Bothast, R. J., S02-catalyzed steam explosion of corn fiber for ethanol production. Appl Biochem Biotechnol 2002, 98, 59–72.CrossRefGoogle Scholar
  424. 424.
    McDonald, A. G. and Clark, T. A., Characterization of oligosaccharides released by steam explosion of sulfur-dioxide impregnated pinus-radiata. J Wood Chem Technol 1992, 12(1), 53–78.CrossRefGoogle Scholar
  425. 425.
    Gellerstedt, G. and Lindfors, E. L., Structural-changes in lignin during kraft pulping. Holzforschung 1984, 38(3), 151–158.CrossRefGoogle Scholar
  426. 426.
    Gierer, J., Chemical aspects of kraft pulping. Wood Sci Technol 1980, 14(4), 241–266.CrossRefGoogle Scholar
  427. 427.
    Kleppe, P. J., Kraft pulping. Tappi 1970, 53(1), 35ff.Google Scholar
  428. 428.
    Holton, H., Soda additive softwood pulping — Major new process. Pulp Paper-Canada 1977, 78(10), 19–24.Google Scholar
  429. 429.
    Holton, H. H. and Chapman, F. L., Kraft pulping with anthraquinone — Laboratory and full-scale mill trials. Tappi 1977, 60(11), 121–125.Google Scholar
  430. 430.
    Dimmel, D. R., Electron-transfer reactions in pulping systems. 1. Theory and Applicability to Anthraquinone Pulping. J Wood Chem Technol 1985, 5(1), 1–14.CrossRefGoogle Scholar
  431. 431.
    Dimmel, D. R., Perry, L. F., Palasz, P. D., and Chum, H. L., Electron-transfer reactions in pulping systems. 2. Electrochemistry of anthraquinone lignin model quinone methides. J Wood Chem Technol 1985, 5(1), 15–36.CrossRefGoogle Scholar
  432. 432.
    Saeman, J. F., Industrial and Engineering Chemistry 1945, 37, 43.CrossRefGoogle Scholar
  433. 433.
    Mosier, N. S., Sarikaya, A., Ladisch, C. M., and Ladisch, M. R., Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Progress 2001, 17(3), 474–480.CrossRefGoogle Scholar
  434. 434.
    Torget, R. W., Kim, J. S., and Lee, Y. Y., Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Industrial Eng Chem Res 2000, 39(8), 2817–2825.CrossRefGoogle Scholar
  435. 435.
    Witczak, Z. J., ed., Levoglucosenone and Levoglucosans. Chemistry and Applications. ATL: Mt. Prospect, IL, 1994.Google Scholar
  436. 436.
    Trahanovsky, W. S., Ochaoda, J. M., Wang, C., Revell, K. D., Arvidson, K. B., et al., A convenient procedure for the preparation of levoglucosenone and its conversion to novel chiral derivatives. In Carbohydrate Synthons in Natural Products Chemistry: Synthesis, Functionalization And Applications, 2003; Vol. 841, pp. 21–31.CrossRefGoogle Scholar
  437. 437.
    Shibagaki, M., Takahashi, K., Kuno, H., Honda, I., and Matsushita, H., Synthesis of levoglucosenone. Chem Lett 1990 (2), 307–310.Google Scholar
  438. 438.
    Fung, D. P. C., Further investigation on effect of H3po4 on pyrolysis of cellulose. Wood Sci 1976, 9(1), 55–57.Google Scholar
  439. 439.
    Halpern, Y., Riffer, R., and Broido, A., Levoglucosenone (l,6-Anhydro-3,4-Dideoxy-Delta3-Beta-D-Pyranosen-2-One) — Major product of acid-catalyzed pyrolysis of cellulose and related carbohydrates. J Organic Chem 1973, 38(2), 204–209.CrossRefGoogle Scholar
  440. 440.
    Shafizadeh, F., Furneaux, R. H., Cochran, T. G., Scholl, J. P., and Sakai, Y., Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J Appl Polymer Sci 1979, 23(12), 3525–3539.CrossRefGoogle Scholar
  441. 441.
    Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Mier, D., Radtke, S., and Faix, O., Pre-treatment of bio-mass with phosphoric acid prior to fast pyrolysis — A promising method for obtaining 1,6-anhydrosaccharides in high yields. Analytical Appl Pyrolysis 2003, 68–9, 197–211.CrossRefGoogle Scholar
  442. 442.
    Dobele, G., Rossinskaja, G., Telysheva, G., Meier, D., and Faix, O., Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J Analytical Appl Pyrolysis 1999, 49(1–2), 307–317.CrossRefGoogle Scholar
  443. 443.
    Edye, L. A., Richards, G. N., and Zheng, G., Transition-metals as catalysts for pyrolysis and gasification of bio-mass. ACS Symposium Series 1993, 515, 90–101.CrossRefGoogle Scholar
  444. 444.
    Kleen, M. and Gellerstedt, G., Influence of inorganic species on the formation of polysaccharide and lignin degradation products in the analytical pyrolysis of pulps. J Analytical Appl Pyrolysis 1995, 35(1), 15–41.CrossRefGoogle Scholar
  445. 445.
    Richards, G. N. and Zheng, G. C., Influence of metal-ions and of salts on products from pyrolysis of wood — Applications to thermochemical processing of newsprint and biomass. J Analytical Appl Pyrolysis 1991, 21(1–2), 133–146.CrossRefGoogle Scholar
  446. 446.
    Denooy, A. E. J., Besemer, A. C., and Vanbekkum, H., Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous-solution — Kinetics and mechanism. Tetrahedron 1995, 51(29), 8023–8032.CrossRefGoogle Scholar
  447. 447.
    Denooy, A. E. J., Besemer, A. C., and Vanbekkum, H., Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Res 1995, 269(1), 89–98.CrossRefGoogle Scholar
  448. 448.
    Bragd, P. L., van Bekkum, H., and Besemer, A. C., TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Topics Catalysis 2004, 27(1–4), 49–66.CrossRefGoogle Scholar
  449. 449.
    Kato, Y., Matsuo, R., and Isogai, A., Oxidation process of water-soluble starch in TEMPO-mediated system. Carbohydrate Polymers 2003, 51(1), 69–75.CrossRefGoogle Scholar
  450. 450.
    Saito, T. and Isogai, A., TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 2004, 5(5), 1983–1989.CrossRefGoogle Scholar
  451. 451.
    Perez, D. D., Montanari, S., and Vignon, M. R., TEMPO-mediated oxidation of cellulose III. Biomacromolecules 2003, 4(5), 1417–1425.CrossRefGoogle Scholar
  452. 452.
    Tahiri, C. and Vignon, M. R., TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuro nans. Cellulose 2000, 7(2), 177–188.CrossRefGoogle Scholar
  453. 453.
    Gomez-Bujedo, S., Fleury, E., and Vignon, M. R., Preparation of cellouronic acids and partially acetylated cellouronic acids by TEMPO/NaCIO oxidation of water-soluble cellulose acetate. Biomacromolecules 2004, 5(2), 565–571.CrossRefGoogle Scholar
  454. 454.
    Montanari, S., Rountani, M., Heux, L., and Vignon, M. R., Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 2005, 38(5), 1665–1671.CrossRefGoogle Scholar
  455. 455.
    Kato, Y., Kaminaga, J., Matsuo, R., and Isogai, A., TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydrate Polymers 2004, 58(4), 421–426.CrossRefGoogle Scholar
  456. 456.
    Koga, T. and Taniguchi, I., Electrochemical oxidation of glucose to glucarate using TEMPO as a mediator in an alkaline solution. Electrochemistry 2004, 72(12), 858–860.Google Scholar
  457. 457.
    Schamann, M. and Schafer, H. J., TEMPO-mediated anodic oxidation of methyl glycosides and 1-methyl and 1-azido disaccharides. European Organic Chem 2003 (2), 351–358.Google Scholar
  458. 458.
    Thaburet, J. F., Merbouh, N., Ibert, M., Marsais, F., and Queguiner, G., TEMPO-mediated oxidation of maltodextrins and D-glucose: effect of pH on the selectivity and sequestering ability of the resulting polycarboxylates. Carbohydrate Res 2001, 330(1), 21–29.CrossRefGoogle Scholar
  459. 459.
    Merbouh, N., Thaburet, J. F., Ibert, M., Marsais, F., and Bobbitt, J. M., Facile nitroxide-mediated oxidations of D-glucose to D-glucaric acid. Carbohydrate Res 2001, 336(1), 75–78.CrossRefGoogle Scholar
  460. 460.
    Bozell, J. J., ed., Chemicals and Materials from Renewable Resources. American Chemical Society: Washington, DC, 2001; Vol. 784, p. 64.Google Scholar
  461. 461.
    Trombotto, S., Violet-Courtens, E., Cottier, L., and Queneau, Y., Oxidation of two major disaccharides: sucrose and isomaltulose. Topics Catalysis 2004, 27(1–4), 31–37.CrossRefGoogle Scholar
  462. 462.
    Antal, M. J., Leesomboon, T., Mok, W. S., and Richards, G. N., Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature. 3. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Res 1991, 217, 71–85.CrossRefGoogle Scholar
  463. 463.
    Ahmad, T., Kenne, L., Olsson, K., and Theander, O., The formation of 2-furaldehyde and formic-acid from pentoses in slightly acidic deuterium-oxide studied by H-l-Nmr spectroscopy. Carbohydrate Res 1995, 276(2), 309–320.CrossRefGoogle Scholar
  464. 464.
    Oefner, P. J., Lanziner, A. H., Bonn, G., and Bobleter, O., Quantitative studies on furfural and organic-acid formation during hydrothermal, Acidic and alkaline-degradation of deuterium-xylose. Monatshefte Fur Chemie 1992, 123(6–7), 547–556.CrossRefGoogle Scholar
  465. 465.
    Montane, D., Salvado, J., Torras, C., and Farriol, X., High-temperature dilute-acid hydrolysis of olive stones for furfural production. Biomass Bioenergy 2002, 22(4), 295–304.CrossRefGoogle Scholar
  466. 466.
    Mansilla, H. D., Baeza, J., Urzua, S., Maturana, G., Villasenor, J., and Duran, N., Acid-catalysed hydrolysis of rice hull: Evaluation of furfural production. Bioresource Technol 1998, 66(3), 189–193.CrossRefGoogle Scholar
  467. 467.
    Carrasco, F., Production of furfural by dilute-acid hydrolysis of wood — Methods for calculating furfural yield. Wood Fiber Sci 1993, 25(1), 91–102.Google Scholar
  468. 468.
    Riera, F. A., Alvarez, R., and Coca, J., Production of furfural by acid-hydrolysis of corncobs. J Chem Technol Biotechnol 1991, 50(2), 149–155.CrossRefGoogle Scholar
  469. 469.
    Zeitsch, K. J., Furfural production needs chemical innovation. Chem Innovation 2000, 30(4), 29–32.Google Scholar
  470. 470.
    Basta, A. H. and El-Saied, H., Furfural production and kinetics of pentosans hydrolysis in corn cobs. Cellulose Chem Technol 2003, 37(1–2), 79–94.Google Scholar
  471. 471.
    Zeitsch, K. J., Gaseous acid catalysis: An intriguing new process. Chem Innovation 2001, 31(1), 41–44.Google Scholar
  472. 472.
    Dias, A. S., Pillinger, M., and Valente, A. A., Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catalysis 2005, 229(2), 414–423.CrossRefGoogle Scholar
  473. 473.
    Gamse, T., Marr, R., Froschl, F., and Siebenhofer, M., Extraction of furfural with carbon dioxide. Separation Sci Technol 1997, 32(1–4), 355–371.CrossRefGoogle Scholar
  474. 474.
    Sako, T., Sugeta, T., Nakazawa, N., Okubo, T., Sato, M., et al., Kinetic study of furfural formation accompanying supercritical carbon-dioxide extraction. J Chem Eng Japan 1992, 25(4), 372–377.CrossRefGoogle Scholar
  475. 475.
    Kim, Y. C. and Lee, H. S., Selective synthesis of furfural from xylose with supercritical carbon dioxide and solid acid catalyst. J Industrial Eng Chem 2001, 7(6), 424–429.Google Scholar
  476. 476.
    Moreau, C., Durand, R., Peyron, D., Duhamet, J., and Rivalier, P., Selective preparation of furfural from xylose over microporous solid acid catalysts. Industrial Crops Products 1998, 7(2–3), 95–99.CrossRefGoogle Scholar
  477. 477.
    Schraufnagel, R. A. and Rase, H. F., Levulinic acid from sucrose using acidic ion-exchange resins. Industrial Eng Chem Product Res Dev 1975, 14(1), 40–44.CrossRefGoogle Scholar
  478. 478.
    Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., et al., Production of levulinic acid and use as a platform chemical for derived products. Resources Conservation Recycling 2000, 28(3–4), 227–239.CrossRefGoogle Scholar
  479. 479.
    Horvat, J., Klaic, B., Metelko, B., and Sunjic, V., Mechanism of levulinic acid formation. Tetrahedron Lett 1985, 26(17), 2111–2114.CrossRefGoogle Scholar
  480. 480.
    Lourvanij, K. and Rorrer, G. L., Dehydration of glucose to organic-acids in microporous pillared clay catalysts. Appl Catalysis A-General 1994, 109(1), 147–165.CrossRefGoogle Scholar
  481. 481.
    Dahlmann, J., Hydrolytic method for the production of levulinic acid and its derivatives from biomass and sugars. Chemische Berichte 1968, 101, 4251–4253.CrossRefGoogle Scholar
  482. 482.
    Farone, W. A. and Cuzens, J. E., Method for the production of levulinic acid, U.S. Patent No. 5,892,107. April 6, 1999.Google Scholar
  483. 483.
    Jow, J., Rorrer, G. L., Hawley, M. C., and Lamport, D. T. A., Dehydration of D-fructose to levulinic acid over Lzy zeolite catalyst. Biomass 1987, 14(3), 185–194.CrossRefGoogle Scholar
  484. 484.
    Bozell, J. J., L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, and J. L. Jarnefeld. Production of levulinic acid and use as a platform chemical for derived products. Resources Conservation and Recycling, 2000, 28, 227–239.Google Scholar
  485. 485.
    Fitzpatrick, S. W., The Biofine technology A “bio-refinery” concept based on thermochemical conversion of cellulosic biomass. Feedstocks for the Future: Renewables for the Production of Chemicals and Materials, 2006, 921, 271–287.Google Scholar
  486. 486.
    Kuster, B. F. M., 5-Hydroxymethylfurfural (HMF) — A review focusing on its manufacture. Starch-Starke 1990, 42(8), 314–321.CrossRefGoogle Scholar
  487. 487.
    Moreau, C., Belgacem, M. N., and Gandini, A., Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Topics Catalysis 2004, 27(1–4), 11–30.CrossRefGoogle Scholar
  488. 488.
    Kroger, M., Prusse, U., and Vorlop, K. D., A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Topics Catalysis 2000, 13(3), 237–242.CrossRefGoogle Scholar
  489. 489.
    Seri, K., Sakaki, T., Shibata, M., Inoue, Y., and Ishida, H., Lanthanum(III)-catalyzed degradation of cellulose at 250 degrees C. Bioresource Technol 2002, 81(3), 257–260.CrossRefGoogle Scholar
  490. 490.
    Seri, K., Inoue, Y., and Ishida, H., Catalytic activity of Lanthanide(III) ions for the dehydration of hexose to 5-hydroxymethyl-2-furaldehyde in water. Bull Chem Soc Japan 2001, 74(6), 1145–1150.CrossRefGoogle Scholar
  491. 491.
    Ishida, H. and Seri, K., Catalytic activity of lanthanoide(III)) ions for dehydration of D-glucose to 5-(hydrox-ymethyl)furfural. J Molecular Catalysis A-Chem 1996, 112(2), L163–L165.CrossRefGoogle Scholar
  492. 492.
    Seri, K., Inoue, Y., and Ishida, H., Highly efficient catalytic activity of lanthanide(III) ions for conversion of saccharides to 5-hydroxymethyl-2-furfural in organic solvents. Chem Lett 2000 (1), 22–23.Google Scholar
  493. 493.
    Vinke, P. and Vanbekkum, H., The dehydration of fructose towards 5-hydroxymethylfurfural using activated carbon as adsorbent. Starch-Starke 1992, 44(3), 90–96.CrossRefGoogle Scholar
  494. 494.
    Vandam, H. E., Kieboom, A. P. G., and Vanbekkum, H., The conversion of fructose and glucose in acidic media — Formation of hydroxymethylfurfural. Starch-Starke 1986, 38(3), 95–101.CrossRefGoogle Scholar
  495. 495.
    Kuster, B. F. M. and Vanderbaan, H. S., Dehydration of D-fructose (formation of 5-hydroxymethyl-2-furalde-hyde and levulinic acid). 2. Influence of initial and catalyst concentrations on dehydration of D-fructose. Carbohydrate Res 1977, 54(2), 165–176.CrossRefGoogle Scholar
  496. 496.
    Kuster, B. F. M. and Temmink, H. M. G., Dehydration Of D-fructose (formation of 5-hydroxymethyl-2-furalde-hyde and levulinic acid). 4. Influence of PH and weak-acid anions on dehydration of D-fructose. Carbohydrate Res 1977, 54(2), 185–191.CrossRefGoogle Scholar
  497. 497.
    Rigal, L., Gaset, A., and Gorrichon, J. P., Selective conversion of D-fructose to 5-hydroxymethyl-2-furancar-boxaldehyde using a water-solvent-ion-exchange resin triphasic system. Industrial Eng Chem Product Res Dev 1981, 20(4), 719–721.CrossRefGoogle Scholar
  498. 498.
    Elhajj, T., Masroua, A., Martin, J. C., and Descotes, G., Synthesis of 5-hydroxymethylfuran-2-carboxaldehyde and its derivatives by acidic treatment of sugars on ion-exchange resins. Bulletin De La Societe Chimique De France 1987 (5), 855–860.Google Scholar
  499. 499.
    Mercadier, D., Rigal, L., Gaset, A., and Gorrichon, J. P., Synthesis of 5-hydroxymethyl-2-furancarboxaldehyde catalyzed by cationic exchange resins. 1. Choice of the catalyst and the characteristics of the reaction medium. Chem Technol Biotechnol 1981, 31(8), 489–496.Google Scholar
  500. 500.
    Bicker, M., Hirth, J., and Vogel, H., Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chem 2003, 5(2), 280–284.CrossRefGoogle Scholar
  501. 501.
    Lansalot-Matras, C. and Moreau, C., Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catalysis Commun 2003, 4(10), 517–520.CrossRefGoogle Scholar
  502. 502.
    Carlini, C., Patrono, P., Galletti, A. M. R., and Sbrana, G., Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Appl Catalysis A-General 2004, 275(1–2), 111–118.CrossRefGoogle Scholar
  503. 503.
    Armaroli, T., Busca, G., Carlini, C., Giuttari, M., Galletti, A. M. R., and Sbrana, G., Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. J Molecular Catalysis A-Chem 2000, 151(1–2), 233–243.CrossRefGoogle Scholar
  504. 504.
    Carlini, C., Giuttari, M., Galletti, A. M. R., Sbrana, G., Armaroli, T., and Busca, G., Selective saccharides dehydration to 5-hydroxymethyl-2-furaldehyde by heterogeneous niobium catalysts. Appl Catalysis A-General 1999, 183(2), 295–302.CrossRefGoogle Scholar
  505. 505.
    Moreau, C., Durand, R., Razigade, S., Duhamet, J., Faugeras, P., et al., Dehydration of fructose to 5-hydrox-ymethylfurfural over H-mordenites. Appl Catalysis A-General 1996, 145(1–2), 211–224.CrossRefGoogle Scholar
  506. 506.
    Lourvanij, K. and Rorrer, G. L., Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110–160 Degrees-C. Industrial Eng Chem Res 1993, 32(1), 11–19.CrossRefGoogle Scholar
  507. 507.
    Koda, K., Goto, H., Shintani, H., Matsumoto, Y., and Meshitsuka, G., Oxidative cleavage of lignin aromatics during chlorine bleaching of kraft pulp. J Wood Sci 2001, 47(5), 362–367.CrossRefGoogle Scholar
  508. 508.
    Gaspar, A. R., Evtuguin, D. V., and Neto, C. P., Polyoxometalate-catalyzed oxygen delignification of kraft pulp: A pilot-plant experience. Industrial Eng Chem Res 2004, 43(24), 7754–7761.CrossRefGoogle Scholar
  509. 509.
    Gaspar, A., Evtuguin, D. V., and Neto, C. P., Lignin reactions in oxygen delignification catalysed by Mn(II)-sub-stituted molybdovanadophosphate polyanion. Holzforschung 2004, 58(6), 640–649.CrossRefGoogle Scholar
  510. 510.
    Crestini, C., Pastorini, A., and Tagliatesta, P., Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. Molecular Catalysis A-Chemical 2004, 208(1–2), 195–202.CrossRefGoogle Scholar
  511. 511.
    Gaspar, A., Evtuguin, D. V., and Neto, C. P., Oxygen bleaching of kraft pulp catalysed by Mn(III)-substituted polyoxometalates. Appl Catalysis A-General 2003, 239(1–2), 157–168.CrossRefGoogle Scholar
  512. 512.
    Chen, C. L., Capanema, E. A., and Gracz, H. S., Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agricultural Food Chem 2003, 51(7), 1932–1941.CrossRefGoogle Scholar
  513. 513.
    Chen, C. L., Capanema, E. A., and Gracz, H. S., Comparative studies on the delignification of pine kraftanthraquinone pulp with hydrogen peroxide by binucleus Mn(IV) complex catalysis. J Agricultural Food Chem 2003, 51(21), 6223–6232.CrossRefGoogle Scholar
  514. 514.
    Alves, V., Capanema, E., Chen, C. L., and Gratzl, J., Comparative studies on oxidation of lignin model compounds with hydrogen peroxide using Mn(IV)-Me(3)TACN and Mn(IV)-Me4DTNE as catalyst. J Molecular Catalysis A-Chemical 2003, 206(1–2), 37–51.CrossRefGoogle Scholar
  515. 515.
    Balakshin, M. Y., Evtuguin, D. V., Neto, C. P., and Cavaco-Paulo, A., Polyoxometalates as mediators in the laccase catalyzed delignification. J Molecular Catalysis B-Enzymatic 2001, 16(3–4), 131–140.CrossRefGoogle Scholar
  516. 516.
    Evtuguin, D. V., Neto, C. P., and Rocha, J., Lignin degradation in oxygen delignification catalysed by [PMo7V5O40](8-) polyanion. Part I. Study on wood lignin. Holzforschung 2000, 54,(4) 381–389.CrossRefGoogle Scholar
  517. 517.
    Cui, Y., Puthson, P., Chen, C. L., Gratzl, J. S., and Kirkman, A. G., Kinetic study on delignification of kraft-AQ pine pulp with hydrogen peroxide catalyzed by Mn(IV)-Me4DTNE. Holzforschung 2000, 54(4), 413–419.CrossRefGoogle Scholar
  518. 518.
    Crestini, C., Saladino, R., Tagliatesta, P., and Boschi, T., Biomimetic degradation of lignin and lignin model compounds by synthetic anionic and cationic water soluble manganese and iron porphyrins. Bioorganic Medicinal Chem 1999, 7(9), 1897–1905.CrossRefGoogle Scholar
  519. 519.
    Glasser, W. G., Northey, R. A., and Schultz, T. P., Lignin: Historical, Biological and Material Perspectives. American Chemical Society: Washington, DC, 1999; Vol. 740.CrossRefGoogle Scholar
  520. 520.
    Sippola, V., Krause, O., and Vuorinen, T., Oxidation of lignin model compounds with cobalt-sulphosalen catalyst in the presence and absence of carbohydrate model compound. Journal Of Wood Chemistry And Technology 2004, 24(4), 323–340.CrossRefGoogle Scholar
  521. 521.
    Sippola, V. O. and Krause, A. O. I., Oxidation activity and stability of homogeneous cobalt-sulphosalen catalyst — Studies with a phenolic and a non-phenolic lignin model compound in aqueous alkaline medium. J Molecular Catalysis A-Chemical 2003, 194(1–2), 89–97.CrossRefGoogle Scholar
  522. 522.
    Xiang, Q. and Lee, Y. Y., Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 2001, 91–3, 71–80.CrossRefGoogle Scholar
  523. 523.
    Villar, J. C., Caperos, A., and Garcia-Ochoa, F., Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 2001, 35(3), 245–255.CrossRefGoogle Scholar
  524. 524.
    Embree, H. D., Chen, T. H., and Payne, G. F., Oxygenated aromatic compounds from renewable resources: motivation, opportunities, and adsorptive separations. Chem Eng J 2001, 84(2), 133–147.Google Scholar
  525. 525.
    Koehler, J. A., Brune, B. J., Chen, T. H., Glemza, A. J., Vishwanath, P., et al., Potential approach for fractionating oxygenated aromatic compounds from renewable resources. Industrial Eng Chem Res 2000, 39(9), 3347–3355.CrossRefGoogle Scholar
  526. 526.
    Bozell, J. J., Hames, B. R., and Dimmel, D. R., Cobalt-Schiff base complex-catalyzed oxidation of parasubstituted phenolics — Preparation of benzoquinones. J Organic Chem 1995, 60(8), 2398–2404.CrossRefGoogle Scholar
  527. 527.
    Bozell, J. J., Hoberg, J. O., and Dimmel, D. R., Heteropolyacid catalyzed oxidation of lignin and lignin models to benzoquinones. J Wood Chem Technol 2000, 20(1), 19–41.CrossRefGoogle Scholar
  528. 528.
    Dimmel, D. R., Althen, E., Savidakis, M., Courchene, C., and Bozell, J. J., New quinone-based pulping catalysts. Tappi J 1999, 82(12), 83–89.Google Scholar
  529. 529.
    Bozell, J. J., Hoberg, J. O., and Dimmel, D. R., Catalytic oxidation of para-substituted phenols with nitrogen dioxide and oxygen. Tetrahedron Lett 1998, 39(16), 2261–2264.CrossRefGoogle Scholar
  530. 530.
    Shore, S. G., Ding, E., Park, C., and Keane, M. A., The application of {(DMF)(10)Yb-2[TM(CN)(4)](3)}(infinity) (TM = Ni, Pd) supported on silica to promote gas phase phenol hydrogenation. J Molecular Catalysis A-Chemical 2004, 212(1–2), 291–300.CrossRefGoogle Scholar
  531. 531.
    Shore, S. G., Ding, E. R., Park, C., and Keane, M. A., Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catalysis Commun 2002, 3(2), 77–84.CrossRefGoogle Scholar
  532. 532.
    Scire, S., Minico, S., and Crisafulli, C., Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors. Appl Catalysis A-General 2002, 235(1–2), 21–31.CrossRefGoogle Scholar
  533. 533.
    Mahata, N. and Vishwanathan, V., Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catalysis 2000, 196(2), 262–270.CrossRefGoogle Scholar
  534. 534.
    Claus, P., Berndt, H., Mohr, C., Radnik, J., Shin, E. J., and Keane, M. A., Pd/MgO: Catalyst characterization and phenol hydrogenation activity. J Catalysis 2000, 192(1), 88–97.CrossRefGoogle Scholar
  535. 535.
    Mahata, N., Raghavan, K. V., and Vishwanathan, V., Influence of alkali promotion on phenol hydrogenation activity of palladium alumina catalysts. Appl Catalysis A-General 1999, 182(1), 183–187.CrossRefGoogle Scholar
  536. 536.
    Mathias, A. L. and Rodrigues, A. E., Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 1995, 49(3), 273–278.CrossRefGoogle Scholar
  537. 537.
    Wu, G. X., Heitz, M., and Chornet, E., Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion Hardwood Lignin. Industrial Eng Chem Res 1994, 33(3), 718–723.CrossRefGoogle Scholar
  538. 538.
    Tarabanko, V. E., Petukhov, D. V., and Selyutin, G. E., New mechanism for the catalytic oxidation of lignin to vanillin. Kinetics Catalysis 2004, 45(4), 569–577.CrossRefGoogle Scholar
  539. 539.
    Fargues, C., Mathias, A., Silva, J., and Rodrigues, A., Kinetics of vanillin oxidation. Chem Eng Technol 1996, 19(2), 127–136.CrossRefGoogle Scholar
  540. 540.
    Fargues, C., Mathias, A., and Rodrigues, A., Kinetics of vanillin production from om Kraft lignin oxidation. Industrial Eng Chem Res 1996, 35(1), 28–36.CrossRefGoogle Scholar
  541. 541.
    Wu, G. X. and Heitz, M., Catalytic mechanism of Cu2 + and Fe3 + in alkaline 0–2 oxidation of lignin. J Wood Chem Technol 1995, 15(2), 189–202.CrossRefGoogle Scholar
  542. 542.
    Tarabanko, V. E., Fomova, N. A., Kuznetsov, B. N., Ivanchenko, N. M., and Kudryashev, A. V., On the mechanism of vanillin formation in the catalytic-oxidation of lignin with oxygen. Reaction Kinetics Catalysis Lett 1995, 55(1), 161–170.CrossRefGoogle Scholar
  543. 543.
    McKendry, P., Energy production from biomass (part 1): Overview of biomass. Bioresource Technol 2002, 83(1), 37–46.CrossRefGoogle Scholar
  544. 544.
    McKendry, P., Energy production from biomass (part 2): Conversion technologies. Bioresource Technol 2002, 83(1), 47–54.CrossRefGoogle Scholar
  545. 545.
    McKendry, P., Energy production from biomass (part 3): Gasification technologies. Bioresource Technol 2002, 83(1), 55–63.CrossRefGoogle Scholar
  546. 546.
    Bridgwater, A. V., Principles and practice of biomass fast pyrolysis processes for liquids. J Analytical Appl Pyrolysis 1999, 51(1–2), 3–22.CrossRefGoogle Scholar
  547. 547.
    Bridgwater, A. V. and Peacocke, G. V. C., Fast pyrolysis processes for biomass. Renewable Sustainable Energy Rev 2000, 4(1), 1–73.CrossRefGoogle Scholar
  548. 548.
    Czernik, S. and Bridgwater, A. V., Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18(2), 590–598.CrossRefGoogle Scholar
  549. 549.
    Yaman, S., Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion Manage 2004, 45(5), 651–671.CrossRefGoogle Scholar
  550. 550.
    Antal, M. J. and Gronli, M., The art, science, and technology of charcoal production. Industrial Eng Chem Res 2003, 42(8), 1619–1640.CrossRefGoogle Scholar
  551. 551.
    Balci, S., Dogu, T., and Yucel, H., Pyrolysis kinetics of lignocellulosic materials. Industrial Eng Chem Res 1993, 32(11), 2573–2579.CrossRefGoogle Scholar
  552. 552.
    Branca, C. and Di Blasi, C., Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J Analytical Appl Pyrolysis 2003, 67(2), 207–219.CrossRefGoogle Scholar
  553. 553.
    Brown, A. L., Dayton, D. C., and Daily, J. W., A study of cellulose pyrolysis chemistry and global kinetics at high heating rates. Energy Fuels 2001, 15(5), 1286–1294.CrossRefGoogle Scholar
  554. 554.
    Di Blasi, C. and Branca, C., Global degradation kinetics of wood and agricultural residues in air. Canadian J Chem Eng 1999, 77(3), 555–561.CrossRefGoogle Scholar
  555. 555.
    Fisher, T., Hajaligol, M., Waymack, B., and Kellogg, D., Pyrolysis behavior and kinetics of biomass derived materials. J Analytical Appl Pyrolysis 2002, 62(2), 331–349.CrossRefGoogle Scholar
  556. 556.
    Koufopanos, C. A., Papayannakos, N., Maschio, G., and Lucchesi, A., Modeling of the pyrolysis of biomass particles — Studies on kinetics, thermal and heat-transfer effects. Canadian J Chem Eng 1991, 69(4), 907–915.CrossRefGoogle Scholar
  557. 557.
    Manya, J. J., Velo, E., and Puigjaner, L., Kinetics of biomass pyrolysis: A reformulated three-parallel-reactions model. Industrial Eng Chem Res 2003, 42(3), 434–441.CrossRefGoogle Scholar
  558. 558.
    Miller, R. S. and Bellan, J., A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Sci Technol 1997, 126(1–6), 97–137.Google Scholar
  559. 559.
    Diebold, J. P., A unified, global-model for the pyrolysis of cellulose. Biomass Bioenergy 1994, 7(1–6), 75–85.CrossRefGoogle Scholar
  560. 560.
    Bradbury, A. G. W., Sakai, Y., and Shafizadeh, F., Kinetic-model for pyrolysis of cellulose. J Appl Polymer Sci 1979, 23(11), 3271–3280.CrossRefGoogle Scholar
  561. 561.
    Antal, M. J., Mok, W. S. L., Varhegyi, G., and Szekely, T., Review of methods for improving the yield of charcoal from biomass. Energy Fuels 1990, 4(3), 221–225.CrossRefGoogle Scholar
  562. 562.
    Wenzl, H. J. A., Chemical Technology of Wood. Academic Press; Elsevier Science & Technology: Saint Louis, MO.Google Scholar
  563. 563.
    Bridgwater, A. V., Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 2003, 91(2–3), 87–102.CrossRefGoogle Scholar
  564. 564.
    Bridgwater, A. V., and Cottam, M. L., Opportunities for biomass pyrolysis liquids production and upgrading. Energy Fuels 1992, 6(2), 113–120.CrossRefGoogle Scholar
  565. 565.
    Elliott, D. C., Beckman, D., Bridgwater, A. V., Diebold, J. P., Gevert, S. B., and Solantausta, Y., Developments in direct thermochemical liquefaction of biomass — 1983–1990. Energy Fuels 1991, 5(3), 399–410.CrossRefGoogle Scholar
  566. 566.
    Demirbas, A. and Arin, G., An overview of biomass pyrolysis. Energy Sources 2002, 24(5), 471–482.CrossRefGoogle Scholar
  567. 567.
    Shafizadeh, F., The chemistry of pyrolysis and combustion. Advances Chem Series 1984 (207), 491–529.Google Scholar
  568. 568.
    Shafizadeh, F., Introduction to pyrolysis of biomass. J Analytical Applied Pyrolysis 1982, 3(4), 283–305.CrossRefGoogle Scholar
  569. 569.
    Bridgwater, A. E., Fast Pyrolysis of Biomass: Vol. 2: A Handbook. CPL Scientific, Newbury, Berks, 2002.Google Scholar
  570. 570.
    Bridgwater, A. A., Czernik, S. A., Diebold, J. A., Meier, D. A., Oasmaa, A. A., Peacocke, C. A., and Piskorz, J. A., Fast Pyrolysis of Biomass: A Handbook. CPL Scientific, Newbury Berks: Newbury, Berks, 1999.Google Scholar
  571. 571.
    Oasmaa, A. and Czernik, S., Fuel oil quality of biomass pyrolysis oils — State of the art for the end user. Energy Fuels 1999, 13(4), 914–921.CrossRefGoogle Scholar
  572. 572.
    Boucher, M. E., Chaala, A., and Roy, C., Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 2000, 19(5), 337–350.CrossRefGoogle Scholar
  573. 573.
    Chiaramonti, D., Bonini, A., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., et al., Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines — Part 2: Tests in diesel engines. Biomass Bioenergy 2003, 25(1), 101–111.CrossRefGoogle Scholar
  574. 574.
    Czernik, S., Scahill, J., and Diebold, J., The production of liquid fuel by fast pyrolysis of biomass. J Solar Energy Eng-Trans ASME 1995, 117(1), 2–6.CrossRefGoogle Scholar
  575. 575.
    Ganesh, A. and Banerjee, R., Biomass pyrolysis for power generation—A potential technology. Renewable Energy 2001, 22(1–3), 9–14.CrossRefGoogle Scholar
  576. 576.
    Gayubo, A. G., Aguayo, A. T., Atutxa, A., Aguado, R., and Bilbao, J., Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Industrial Eng Chem Res 2004, 43(11), 2610–2618.CrossRefGoogle Scholar
  577. 577.
    Gayubo, A. G., Aguayo, A. T., Atutxa, A., Aguado, R., Olazar, M., and Bilbao, J., Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. H. Aldehydes, ketones, and acids. Industrial Eng Chem Res 2004, 43(11), 2619–2626.CrossRefGoogle Scholar
  578. 578.
    Grassi, G. and Bridgwater, A. V., The opportunities for electricity production from biomass by advanced thermal-conversion technologies. Biomass Bioenergy 1993, 4(5), 339–345.CrossRefGoogle Scholar
  579. 579.
    Peacocke, G. V. C. and Bridgwater, A. V., Ablative plate pyrolysis of biomass for liquids. Biomass Bioenergy 1994, 7(1–6), 147–154.CrossRefGoogle Scholar
  580. 580.
    Shihadeh, A. and Hochgreb, S., Diesel engine combustion of biomass pyrolysis oils. Energy Fuels 2000, 14(2), 260–274.CrossRefGoogle Scholar
  581. 581.
    Solantausta, Y., Beckman, D., Bridgwater, A. V., Diebold, J. P., and Elliott, D. C., Assessment of liquefaction and pyrolysis systems. Biomass Bioenergy 1992, 2(1–6), 279–297.CrossRefGoogle Scholar
  582. 582.
    Solantausta, Y., Bridgwater, A. T., and Beckman, D., Feasibility of power production with pyrolysis and gasification systems. Biomass Bioenergy 1995, 9(1–5), 257–269.CrossRefGoogle Scholar
  583. 583.
    Vitolo, S., Bresci, B., Seggiani, M., and Gallo, M. G., Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel 2001, 80(1), 17–26.CrossRefGoogle Scholar
  584. 584.
    Wornat, M. J., Porter, B. G., and Yang, N. Y. C., Single droplet combustion of biomass pyrolysis oils. Energy Fuels 1994, 8(5), 1131–1142.CrossRefGoogle Scholar
  585. 585.
    Cottam, M. L. and Bridgwater, A. V., Technoeconomic modeling of biomass flash pyrolysis and upgrading systems. Biomass Bioenergy 1994, 7(1–6), 267–273.CrossRefGoogle Scholar
  586. 586.
    Home, P. A. and Williams, P. T., Upgrading of biomass-derived pyrolytic vapours over zeolite ZSM-5 catalyst: Effect of catalyst dilution on product yields. Fuel 1996, 75,(9) 1043–1050.CrossRefGoogle Scholar
  587. 587.
    Williams, P. T. and Home, P. A., The influence of catalyst regeneration on the composition of zeolite-upgraded biomass pyrolysis oils. Fuel 1995, 74(12), 1839–1851.CrossRefGoogle Scholar
  588. 588.
    Williams, P. T. and Home, P. A., The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. J Analytical Appl Pyrolysis 1995, 31, 39–61.CrossRefGoogle Scholar
  589. 589.
    Radlein, D., The production of chemicals from fast pyrolysis bio-oils. In Fast Pyrolysis of Biomass: A Handbook, Bridgwater, A., Ed. CPL Press: Newbury, UK, 1999; pp. 164–188.Google Scholar
  590. 590.
    Tabatabaieraissi, A. and Trezek, G. J., Parameters governing biomass gasification. Industrial Eng Chem Res 1987, 26(2), 221–228.CrossRefGoogle Scholar
  591. 591.
    Beenackers, A. A. C. M. and Van Swaaij, W. P. M., Gasification of biomass, a state of the art review. In Thermochemical Processing of Biomass, Bridgwater, A. V., Ed. Butterworths: London, UK, 1984; pp. 91–136.Google Scholar
  592. 592.
    Hos, J. J. and Groeneveld, M. J., Biomass gasification. In Biomass, Hall, D. O. and Overend, R. P., Eds. John Wiley & Sons: Chichester, UK, 1987; pp. 237–255.Google Scholar
  593. 593.
    Beenackers, A., Biomass gasification in moving beds, a review of European technologies. Renewable Energy 1999, 16(1–4), 1180–1186.CrossRefGoogle Scholar
  594. 594.
    Li, X. T., Grace, J. R., Lim, C. J., Watkinson, A. P., Chen, H. P., and Kim, J. R., Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 2004, 26(2), 171–193.CrossRefGoogle Scholar
  595. 595.
    Scala, F. and Chirone, R., Fluidized bed combustion of alternative solid fuels. Exper Thermal Fluid Sci 2004, 28(7), 691–699.CrossRefGoogle Scholar
  596. 596.
    Scala, F. and Salatino, P., Modelling fluidized bed combustion of high-volatile solid fuels. Chemical Engineering Science 2002, 57(7), 1175–1196.CrossRefGoogle Scholar
  597. 597.
    Lanauze, R. D., A review of the fluidized-bed combustion of biomass. J Institute Energy 1987, 60(443), 66–76.Google Scholar
  598. 598.
    Asif, M. and Ibrahim, A. A., Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidized beds. Powder Technol 2002, 126(3), 241–254.CrossRefGoogle Scholar
  599. 599.
    Stultz, S. C., Kitto, J. B., and Rahn, C. H., Chapter 16: Atmospheric pressure fluidized-bed boilers. In Steam: Its Generation and Use, Babcock Wilcox Co: Barberton, OH, 1992; Vol. 40th, p. 1064.Google Scholar
  600. 600.
    Maschio, G., Lucchesi, A., and Stoppato, G., Production of syngas from biomass. Bioresource Technol 1994, 48(2), 119–126.CrossRefGoogle Scholar
  601. 601.
    Littlewood, K., Gasification — Theory and application. Progress Energy Combustion Sci 1977, 3(1), 35–71.CrossRefGoogle Scholar
  602. 602.
    De Bari, I., Barisano, D., Cardinale, M., Matera, D., Nanna, F., and Viggiano, D., Air gasification of biomass in a downdraft fixed bed: A comparative study of the inorganic and organic products distribution. Energy Fuels 2000, 14(4), 889–898.CrossRefGoogle Scholar
  603. 603.
    Wyman, C. E., Hinman, N. D., Bain, R. L., Stevens, D. J. (1993). Ethanol and Methanol from Cellulosic Materials, Chapter 21. Johansson, T. B., Kelly, H., Reddy, A. K. N., Williams, R. H., eds. Renewable Energy, Sources for Fuels and Electricity. Washington, DC: Island Press pp. 865–923. Acc No. 12161.Google Scholar
  604. 604.
    Milne, T. A., Abatzoglou, N., and Evans, R. J. Biomass Gasifier “Tars”: Their Nature, Formation, and Conversion; NREL Report No. TP-570-25357; National Renewable Energy Laboratory: Golden, CO, November 1998, 1998; p. 202.Google Scholar
  605. 605.
    Simell, P., Stahlberg, P., Kurkela, E., Albrecht, J., Deutsch, S., and Sjostrom, K., Provisional protocol for the sampling and anlaysis of tar and particulates in the gas from large-scale biomass gasifiers. Version 1998. Biomass Bioenergy 2000, 18(1), 19–38.CrossRefGoogle Scholar
  606. 606.
    Knoef, H. A. M., and Koele, H. J., Survey of tar measurement protocols. Biomass Bioenergy 2000, 18(1), 55–59.CrossRefGoogle Scholar
  607. 607.
    Maniatis, K. and Beenackers, A., Tar Protocols. IEA Bioenergy Gasification Task. Biomass Bioenergy 2000, 18(1), 1–4.CrossRefGoogle Scholar
  608. 608.
    Caballero, M. A., Corella, J., Aznar, M. P., and Gil, J., Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Industrial Eng Chem Res 2000, 39(5), 1143–1154.CrossRefGoogle Scholar
  609. 609.
    Cummer, K. R. and Brown, R. C., Ancillary equipment for biomass gasification. Biomass Bioenergy 2002, 23(2), 113–128.CrossRefGoogle Scholar
  610. 610.
    Devi, L., Ptasinski, K. J., and Janssen, F, A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003, 24(2), 125–140.CrossRefGoogle Scholar
  611. 611.
    Simell, P. A., Hepola, J. O., and Krause, A. O. I., Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 1997, 76(12), 1117–1127.CrossRefGoogle Scholar
  612. 612.
    Consonni, S. and Larson, E. D., Biomass-gasifier/aeroderivative gas turbine combined cycles. A. Technologies and performance modeling. J Eng Gas Turbines Power-Trans ASME 1996, 118(3), 507–515.CrossRefGoogle Scholar
  613. 613.
    Consonni, S. and Larson, E. D., Biomass-gasifier/aeroderivative gas turbine combined cycles. B. Performance calculations and economic assessment. J Eng Gas Turbines Power-Trans ASME 1996, 118(3), 516–525.CrossRefGoogle Scholar
  614. 614.
    Jurado, F, Ortega, M., Cano, A., and Carpio, J., Biomass gasification, gas turbine, and diesel engine. Energy Sources 2001, 23(10), 897–905.CrossRefGoogle Scholar
  615. 615.
    Kinoshita, C. M., Turn, S. Q., Overend, R. P., and Bain, R. L., Power generation potential of biomass gasification systems. J Energy Eng-ASCE 1997, 123(3), 88–99.CrossRefGoogle Scholar
  616. 616.
    Abu El-Rub, Z., Bramer, E. A., and Brem, G., Review of catalysts for tar elimination in Biomass gasification processes. Industrial Eng Chem Res 2004, 43(22), 6911–6919.CrossRefGoogle Scholar
  617. 617.
    Gerhard, S. C., Wang, D. N., Overend, R. P., and Paisley, M. A., Catalytic conditioning of synthesis gas produced by biomass gasification. Biomass Bioenergy 1994, 7(1–6), 307–313.CrossRefGoogle Scholar
  618. 618.
    Kinoshita, C. M., Wang, Y., and Zhou, J., Tar formation under different biomass gasification conditions. J Analytical Appl Pyrolysis 1994, 29(2), 169–181.CrossRefGoogle Scholar
  619. 619.
    Marsak, J. and Skoblja, S., Role of catalysts in tar removal from biomass gasification. Chemicke Listy 2002, 96(10), 813–820.Google Scholar
  620. 620.
    Simell, P., Kurkela, E., Stahlberg, P., and Hepola, J., Catalytic hot gas cleaning of gasification gas. Catalysis Today 1996, 27(1–2), 55–62.CrossRefGoogle Scholar
  621. 621.
    Sutton, D., Kelleher, B., and Ross, J. R. H., Review of literature on catalysts for biomass gasification. Fuel Process Technol 2001, 73(3), 155–173.CrossRefGoogle Scholar
  622. 622.
    Baker, E. G., Mudge, L. K., and Brown, M. D., Steam gasification of biomass with nickel secondary catalysts. Industrial Eng Chem Res 1987, 26(7), 1335–1339.CrossRefGoogle Scholar
  623. 623.
    Brown, M. D., Mudge, L. K., and Baker, E. G., Catalysts for gasification of biomass. Biotechnol Bioeng 1984, 125–136.Google Scholar
  624. 624.
    Mudge, L. K., Sealock, L. J., and Weber, S. L., Catalyzed steam gasification of biomass. Analytical Appl Pyrolysis 1979, 1(2), 165–175.CrossRefGoogle Scholar
  625. 625.
    Stevens, D. J. Hot Gas Conditioning: Recent Progress With Larger-Scale Biomass Gasification Systems; NREL/SR-510-29952; Department of Energy, National Renewable Energy Laboratory: Golden, CO, August 2001; p. 88.Google Scholar
  626. 626.
    Corella, J., Aznar, M. P., Gil, J., and Caballero, M. A., Biomass gasification in fluidized bed: Where to locate the dolomite to improve gasification? Energy Fuels 1999, 13(6), 1122–1127.CrossRefGoogle Scholar
  627. 627.
    Corella, J., Toledo, J. M., and Padilla, R., Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better? Energy Fuels 2004, 18(3), 713–720.CrossRefGoogle Scholar
  628. 628.
    Delgado, J., Aznar, M. P., and Corella, J., Biomass gasification with steam in fluidized bed: Effectiveness of CaO, MgO, and CaO-MgO for hot raw gas cleaning. Industrial Eng Chem Res 1997, 36(5), 1535–1543.CrossRefGoogle Scholar
  629. 629.
    Devi, L., Ptasinski, K. J., Janssen, F., van Paasen, S. V. B., Bergman, P. C. A., and Kiel, J. H. A., Catalytic decomposition of biomass tars: use of dolomite and untreated olivine. Renewable Energy 2005, 30(4), 565–587.CrossRefGoogle Scholar
  630. 630.
    Orio, A., Corella, J., and Narvaez, I., Performance of different dolomites on hot raw gas cleaning from biomass gasification with air. Industrial Eng Chem Res 1997, 36(9), 3800–3808.CrossRefGoogle Scholar
  631. 631.
    Simell, P. A., Leppalahti, J. K., and Kurkela, E. A., Tar-decomposing activity of carbonate rocks under high Co2 partial-pressure. Fuel 1995, 74(6), 938–945.CrossRefGoogle Scholar
  632. 632.
    Aznar, M. P., Caballero, M. A., Gil, J., Martin, J. A., and Corella, J., Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 2. Catalytic tar removal. Industrial Eng Chem Res 1998, 37(7), 2668–2680.CrossRefGoogle Scholar
  633. 633.
    Caballero, M. A., Aznar, M. P., Gil, J., Martin, J. A., Frances, E., and Corella, J., Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures. 1. Hot gas upgrading by the catalytic reactor. Industrial Eng Chem Res 1997, 36(12), 5227–5239.CrossRefGoogle Scholar
  634. 634.
    Courson, C., Makaga, E., Petit, C., and Kiennemann, A., Development of Ni catalysts for gas production from biomass gasification. Reactivity in steam-and dry-reforming. Catalysis Today 2000, 63(2–4), 427–437.CrossRefGoogle Scholar
  635. 635.
    Bridgwater, A. V., The technical and economic-feasibility of biomass gasification for power-generation. Fuel 1995, 74(5), 631–653.CrossRefGoogle Scholar
  636. 636.
    Stahl, K. and Neergaard, M., IGCC power plant for biomass utilisation, Varnamo, Sweden. Biomass Bioenergy 1998, 15(3), 205–211.CrossRefGoogle Scholar
  637. 637.
    Lundqvist, R. G., The IGCC demonstration plant at Varnamo. Biores Technol 1993, 46(1–2), 49–53.CrossRefGoogle Scholar
  638. 638.
    Dasappa, S., Paul, P. J., Mukunda, H. S., Rajan, N. K. S., Sridhar, G., and Sridhar, H. V., Biomass gasification technology—A route to meet energy needs. Curr Sci 2004, 87(7), 908–916.Google Scholar
  639. 639.
    Dasappa, S., Sridhar, H. V., Sridhar, G., Paul, P. J., and Mukunda, H. S., Biomass gasification — A substitute to fossil fuel for heat application. Biomass Bioenergy 2003, 25(6), 637–649.CrossRefGoogle Scholar
  640. 640.
    Fuel Cell Handbook Corp Author(s): E G and G Services Staff, Author; Parsons, Inc. Staff, Author; SA/C Staff, Author. 5th ed.; Business/Technology (B/T): Orinda, 2000; p. 292.Google Scholar
  641. 641.
    Appleby, A. J., Fuel cell technology: Status and future prospects. Energy 1996, 21(7–8), 521–653.CrossRefGoogle Scholar
  642. 642.
    Cappadonia, M., Stimming, U., Kordesch, K. V., and de Oliveira, J. C. T., Fuel cells. In Ullmann’s Encyclopedia of Industrial Chemistry 7th edition, Wiley-Vch, E., Ed. Audel [Imprint]; John Wiley & Sons: Hoboken, 2005; p. 400.Google Scholar
  643. 643.
    Kordesch, K. V. A. and Simader, G. A., Fuel Cells and Their Applications. John Wiley & Sons: Hoboken, NJ, 2000; p. 375.Google Scholar
  644. 644.
    Larminie, J., Fuel cells. In Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 12, 5th ed.; John Wiley & Sons: Hoboken, NJ, 2002; p. 850.Google Scholar
  645. 645.
    Eichenberger, P. H., The 2 MW Santa Clara project. J Power Sources 1998, 71(1–2), 95–99.CrossRefGoogle Scholar
  646. 646.
    Figueroa, R. A. and Otahal, J., Utility experience with a 250-kW molten carbonate fuel cell cogeneration power plant at NAS Miramar, San Diego. J Power Sources 1998, 71(1–2), 100–104.CrossRefGoogle Scholar
  647. 647.
    Huijsmans, J. P. P., Kraaij, G. J., Makkus, R. C., Rietveld, G., Sitters, E. F., and Reijers, H. T. J., An analysis of endurance issues for MCFC. J Power Sources 2000, 86(1–2), 117–121.CrossRefGoogle Scholar
  648. 648.
    Huijsmans, J. P. P., van Berkel, F. P. F., and Christie, G. M., Intermediate temperature SOFC-A promise for the 21st century. J Power Sources 1998, 71(1–2), 107–110.CrossRefGoogle Scholar
  649. 649.
    Lobachyov, K. V. and Richter, H. J., An advanced integrated biomass gasification and molten fuel cell power system. Energy Conversion Manage 1998, 39(16–18), 1931–1943.CrossRefGoogle Scholar
  650. 650.
    Gesser, H. D. and Hunter, N. R., A review of C-1 conversion chemistry. Catalysis Today 1998, 42(3), 183–189.CrossRefGoogle Scholar
  651. 651.
    Green, A. E. S., Overview of fuel conversion. FACT (American Society of Mechanical Engineers) 1991, 12 (Solid Fuel Conversion for the Transportation Sector), 3–15.Google Scholar
  652. 652.
    Keim, W., C1 chemistry: present status and aspects for the future. Chem. Future, Proc. IUPAC Congr, 29th 1984, 53–62.Google Scholar
  653. 653.
    Rostrup-Nielsen, J. R., Syngas in perspective. Catalysis Today 2002, 71(3–4), 243–247.CrossRefGoogle Scholar
  654. 654.
    Wender, I., Reactions of synthesis gas. Fuel Processing Technol 1996, 48(3), 189–297.CrossRefGoogle Scholar
  655. 655.
    Spath, P. L. and Dayton, D. C. Preliminary Screening-Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas; TP-510-34929; National Renewable Energy Laboratory: Golden, CO, 2003; p. 160.Google Scholar
  656. 656.
    Werther, J., Saenger, M., Hartge, E. U., Ogada, T., and Siagi, Z., Combustion of agricultural residues. Progress In Energy And Combustion Science 2000, 26(1), 1–27.CrossRefGoogle Scholar
  657. 657.
    vandenBroek, R., Faaij, A., and van Wijk, A., Biomass combustion for power generation. Biomass & Bioenergy 1996, 11(4) 271–281.CrossRefGoogle Scholar
  658. 658.
    Prasad, S. B., Biomass-fired steam power cogeneration system — A theoretical-study. Energy Conversion Manage 1995, 36(1), 65–77.CrossRefGoogle Scholar
  659. 659.
    Baxter, L. L., Miles, T. R., Miles, T. R., Jenkins, B. M., Milne, T., et al., The behavior of inorganic material in biomass-fired power boilers: Field and laboratory experiences. Fuel Process Technol 1998, 54(1–3), 47–78.CrossRefGoogle Scholar
  660. 660.
    Nussbaumer, T., Combustion and co-combustion of biomass: Fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 2003, 17(6), 1510–1521.CrossRefGoogle Scholar
  661. 661.
    Demirbas, A., Toxic air emissions from biomass combustion. Energy Sources 2003, 25(5), 419–427.CrossRefGoogle Scholar
  662. 662.
    Hubbard, A. J., Hazardous air emissions potential from a wood-fired furnace. Combustion Sci Technol 1995, 108(4–6), 297–309.CrossRefGoogle Scholar
  663. 663.
    Baxter, L. L., Ash deposition during biomass and coal combustion — A mechanistic approach. Biomass Bioenergy 1993, 4(2), 85–102.CrossRefGoogle Scholar
  664. 664.
    Blander, M., Milne, T. A., Dayton, D. C., Backman, R., Blake, D., et al., Equilibrium chemistry of biomass combustion: A round-robin set of calculations using available computer programs and databases. Energy Fuels 2001, 15(2), 344–349.CrossRefGoogle Scholar
  665. 665.
    Dayton, D. C. and Frederick, W. J., Direct observation of alkali vapor release during biomass combustion and gasification.2. Black liquor combustion at 1100 degrees C. Energy Fuels 1996, 10(2), 284–292.CrossRefGoogle Scholar
  666. 666.
    Dayton, D. C., French, R. J., and Milne, T. A., Direct observation of alkali vapor release during biomass combustion and gasification. 1. application of molecular-beam mass-spectrometry to switchgrass combustion. Energy Fuels 1995, 9(5), 855–865.CrossRefGoogle Scholar
  667. 667.
    Glarborg, P., Jensen, A. D., and Johnsson, J. E., Fuel nitrogen conversion in solid fuel fired systems. Progress Energy Combustion Sci 2003, 29(2), 89–113.CrossRefGoogle Scholar
  668. 668.
    Bakker, R. R., Jenkins, B. M., and Williams, R. B., Fluidized bed combustion of leached rice straw. Energy Fuels 2002, 16(2), 356–365.CrossRefGoogle Scholar
  669. 669.
    Nordin, A., Chemical elemental characteristics of biomass fuels. Biomass Bioenergy 1994, 6(5), 339–347.CrossRefGoogle Scholar
  670. 670.
    Brouwer, J., Owens, W. D., Harding, N. S., Heap, M. P., and Pershing, D. W., Cofiring waste biofuels and coal for emissions reduction. Abstracts of Papers of the American Chemical Society 1995, 209, 32–FUEL.Google Scholar
  671. 671.
    Demirbas, A., Sustainable cofiring of biomass with coal. Energy Conversion Manage 2003, 44(9), 1465–1479.CrossRefGoogle Scholar
  672. 672.
    Harding, N. S. and Adams, B. R., Biomass as a reburning fuel: A specialized cofiring application. Biomass Bioenergy 2000, 19(6), 429–445.CrossRefGoogle Scholar
  673. 673.
    Niksa, S., Liu, G. S., Felix, L., Bushy, P. V., and Boylan, D. M., Predicting NOX emissions from biomass cofiring. Abstracts of Papers of the American Chemical Society 2003, 226, U540–U540.Google Scholar
  674. 674.
    Hughes, E. E. and Tillman, D. A., Biomass cofiring: status and prospects 1996. Fuel Process Technol 1998, 54(1–3), 127–142.CrossRefGoogle Scholar
  675. 675.
    Boylan, D., Bush, V., and Bransby, D. I., Switchgrass cofiring: pilot scale and field evaluation. Biomass Bioenergy 2000, 19(6), 411–417.CrossRefGoogle Scholar
  676. 676.
    Boylan, D. M. Southern company tests of wood/coal cofiring in pulverized coal units. Biomass Bioenergy 1996, 10(2–3), 139–147.CrossRefGoogle Scholar
  677. 677.
    Gold, B. A. and Tillman, D. A., Wood cofiring evaluation at TVA power plants. Biomass Bioenergy 1996, 10(2–3), 71–78.CrossRefGoogle Scholar
  678. 678.
    Tillman, D. A., Biomass cofiring: The technology, the experience, the combustion consequences. Biomass Bioenergy 2000, 19(6), 365–384.CrossRefGoogle Scholar
  679. 679.
    Tillman, D. A. and Stahl, R. W., Wood cofiring experience in cyclone boilers. Abstracts of Papers of the American Chemical Society 1995, 209, 31-FUEL.Google Scholar
  680. 680.
    Tillman, D. A. Biomass Cofiring Guidelines; EPRITR-108952; Foster Wheeler Environmental Corporation for the Electric Power Research Institute: Sacramento, CA, 1997; p. 107.Google Scholar
  681. 681.
    Nieves, R. A., Ehrman, C. I., Adney, W. S., Elander, R. T., and Himmel, M. E., Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microbiol Biotechnol 1998, 14(2), 301–304.CrossRefGoogle Scholar
  682. 682.
    Shoemaker, S., Raymond, J., and Bruner, R., Cellulases: Diversity amongst improved Trichoderma strains. Trends in the Biology of Fermentations for Fuels and Chemicals 1981, A. Hollander, editor, 89–129.Google Scholar
  683. 683.
    Enari., T. M., Microbial Cellulases. 1st ed.; Applied Science: London, UK, 1983; p. 183–223.Google Scholar
  684. 684.
    Mandels, M. and Reese, E. T., Fungal cellulases and the microbial decomposition of cellulosic fabric. Dev Industrial Microbiol 1964, 5, 5–20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stephen R. Decker
  • John Sheehan
  • David C. Dayton
  • Joseph J. Bozell
  • William S. Adney
  • Bonnie Hames
  • Steven R. Thomas
  • Richard L. Bain
  • Stefan Czernik
  • Min Zhang
  • Michael E. Himmel

There are no affiliations available

Personalised recommendations