Skip to main content
Log in

Effect of acetic acid on xylose conversion to ethanol by genetically engineeredE. coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient utilization of the pentosan fraction of hemicellulose from lignocellulosic feedstocks offers an opportunity to increase the yield and to reduce the cost of producing fuel ethanol. During prehydrolysis (acid hydrolysis or autohydrolysis of hemicellulose), acetic acid is formed as a consequence of the deacetylation of the acetylated moiety of hemicellulose. Recombinant Escherichia coli B (ATCC 11303), carrying the plasmid pLO1297 with pyruvate decarboxylase and alcohol dehydrogenase II genes from Zymomonas mobilis (CP4), converts xylose to ethanol with a product yield that approaches theoretical maximum. Although other pentose-utilizing microorganisms are inhibited by acetic acid, the recombinant E. coli displays a high tolerance for acetic acid. In xylose fermentations with a synthetic medium (Luria broth), where the pH was controlled at 7, neither yield nor productivity was affected by the addition of 10.7 g/L acetic acid. Nutrient-supplemented, hardwood (aspen) hemicellulose hydrolysate (40.7 g/L xylose) was completely fermented to ethanol (16.3 g/L) in 98 h. When the acetic acid concentration was reduced from 5.6 to 0.8 g/L, the fermentation time decreased to 58 h. Overliming, with Ca(OH)2 to pH 10, followed by neutralization to pH 7 with sulfuric acid and removal of insolubles, resulted in a twofold increase in volumetric productivity. The maximum productivity was 0.93 g/L/h. The xylose-to-ethanol conversion efficiency and productivity in Ca(OH)2-treated hardwood prehydrolysate, fortified with only mineral salts, were 94% and 0.26 g/L/h, respectively. The recombinant E. coli exhibits a xylose-to-ethanol conversion efficiency that is superior to that of other pentose-utilizing yeasts currently being investigated for the production of fuel ethanol from lignocellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keim, C. R. and Venkatasubramanian, K. (1989),Trends in Biotechnol. 7, 22–29.

    Article  Google Scholar 

  2. Murtagh, J. E. (1986),Proc. Biochem. 21, 61–65.

    Google Scholar 

  3. Wright, J. D. (1988),Chem. Eng. Progress 84, 62–68.

    CAS  Google Scholar 

  4. Wyman, C. E. and Hinman, N. D. (1990),Appl. Biochem. Biotechnol. 24/25, 735–753.

    Google Scholar 

  5. Bull, S. R. (1990),Energy from Biomass & Wastes XIV, Institute of Gas Technology, Chicago, IL, pp. 1–14.

    Google Scholar 

  6. Lynd, L. R. (1990),Appl. Biochem. Biotechnol. 24/25, 695–719.

    Google Scholar 

  7. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991),Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  8. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989),Appl. Biochem. Biotechnol. 20/21, 391–401.

    Google Scholar 

  9. Prior, B. A., Kilian, S. G., and du Preez, J. C. (1989),Proc. Biochem. 24, 21–32.

    CAS  Google Scholar 

  10. Skoog, K. and Hahn-Hägerdal, B. (1988),Enzyme Microbiol. Technol. 10, 66–88.

    Article  CAS  Google Scholar 

  11. Lynd, L. R. (1989),Adv. Biochem. Eng. Biotechnol. 38, 1–52.

    CAS  Google Scholar 

  12. Slapack, G. E., Russell, I., and Stewart, G. G. (eds.) (1987),Thermophilic Microbes in Ethanol Production, CRC Press, Boca Raton, FL, pp. 35–48.

    Google Scholar 

  13. Jefferies, T. W. (1981),Biotechnol. Bioeng. Symp. 11, 315–324.

    Google Scholar 

  14. Hahn-Hägerdahl, B., Berner, B., and Skoog, K. (1986),Appl. Microbiol. Biotechnol. 24(4), 287–293.

    Google Scholar 

  15. Gottschalk, G. (1985),Bacterial Metabolism, Springer-Verlag, New York, pp. 208–282.

    Google Scholar 

  16. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  17. Ingram, L. O. and Conway, T. (1988),Appl. Environ. Microbiol. 54, 397–404.

    CAS  Google Scholar 

  18. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S. (1990),Developments in Industrial Microbiology, vol. 31, Elsevier Science Publ., New York.

    Google Scholar 

  19. Alterthum, F. and Ingram, L. O. (1989),Appl. Environ. Microbiol. 55, 1943–948.

    CAS  Google Scholar 

  20. Ohta, K., Alterthum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  21. Ingram, L. O. (1990),Energy from Biomass & Wastes XIV, Institute of Gas Technology, Chicago, IL, pp. 1105–1126.

    Google Scholar 

  22. Neale, A. D., Scopes, R. K., and Kelly, J. M. (1988),Appl. Microbiol. Biotechnol. 29, 162–169.

    CAS  Google Scholar 

  23. Beck, M. J. (1986),Biotechnol. Bioeng. Symp. 17, 617–627.

    CAS  Google Scholar 

  24. Fein, J. E., Tallim, S. R., and Lawford, G. R. (1984),Can. J. Microbiol. 30, 682–690.

    Article  CAS  Google Scholar 

  25. Frazer, F. R. and McCaskey, T. A. (1989),Biomass 18, 31–42.

    Article  CAS  Google Scholar 

  26. Nishikawa, N. K., Sutcliffe, R., and Saddler, J. N. (1988),Appl. Microbiol. Biotechnol. 27, 549–552.

    CAS  Google Scholar 

  27. Ando, S., Arai, I., Kiyoto, K., and Hanai, S. (1986),J. Ferment. Technol. 64, 567–570.

    Article  CAS  Google Scholar 

  28. Stanek, D. A. (1958),Tappi J. 41, 601–609.

    CAS  Google Scholar 

  29. Johnson, M. C. and Harris, M. C. (1948),J. Am. Chem. Soc. 70, 2961–2963.

    Article  CAS  Google Scholar 

  30. Strickland, R. J. and Beck, M. J. (1984), Proc. 6th International Symp. on Alcohol Fuels, Ottawa, Canada, May 21–25, pp. 220–226.

  31. Luria, S. E. and Delbruck, M. (1943),Genetics 28, 491–511.

    CAS  Google Scholar 

  32. Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Google Scholar 

  33. Gans, I., Potts, D., Matsuo, A., Tse, T., Holysh, M., and Assarsson, P. (1989),Bioenergy, Hogan, E., ed., Proc. 7th Can. Bioenergy R&D Seminar, Canmet NRC Canada, pp. 419–423.

    Google Scholar 

  34. Kim, S. B. and Lee, Y. Y. (1987),Biotechnol. Bioeng. Symp. 17, 71–84.

    Google Scholar 

  35. Saddler, J. N., Brownell, H. H., Clermont, L. P., and Levintin, N. (1982),Biotechnol. Bioeng. 24, 1389–1396.

    Article  CAS  Google Scholar 

  36. Bungay, H. R., Garcia, M. A., and Foody, B. E. (1983),Biotechnol. Bioeng. Symp. 13, 121–128.

    CAS  Google Scholar 

  37. Freese, E., Sheu, C. W., and Galliers, E. (1973),Nature 241, 321.

    Article  CAS  Google Scholar 

  38. McCaskey, T. A., Rice, M. D., and Smith, R. C. (1985),Biomass Energy Development, Smith, W. H., ed., Plenum, New York, p. 573.

    Google Scholar 

  39. Van Zyl, C., Prior, B. A., and du Preez, J. C. (1988),Appl. Biochem. Biotechnol. 17, 357–369.

    Article  Google Scholar 

  40. Lee, Y. Y. and McCaskey, T. A. (1983),Tappi J. 66, 102–107.

    CAS  Google Scholar 

  41. Smirnova, G. V. and Oktyabr’skii, O. N. (1988),Microbiology (USSR) 57, 446–451.

    Google Scholar 

  42. Luli, G. W. and Strohl, W. R. (1990),Appl. Environ. Microbiol. 56, 1004- 1011.

    CAS  Google Scholar 

  43. Repaske, D. R. and Adler, J. (1981),J. Bacteriol. 145, 321–325.

    Google Scholar 

  44. Padan, E., Zilberstein, D., and Schuldiner, S. (1981),Biochim. Biophys. Acta 650, 131–156.

    Google Scholar 

  45. Mitchell, P. (1973),J. Bioenergetics 4, 63–91.

    Article  CAS  Google Scholar 

  46. Padan, E. D., Zilberstein, D., and Schuldiner, S. (1982),Biochim. Biophys. Acta 650, 131–156.

    Google Scholar 

  47. Booth, I. R. (1985),Microbiol. Rev. 49, 359–378.

    CAS  Google Scholar 

  48. Salmond, C. V., Kroll, R. G., and Booth, I. R. (1984),J. Gen. Microbiol. 130, 2845–2850.

    CAS  Google Scholar 

  49. Booth, I. R. and Kroll, R. G. (1983),Biochem. Soc. Trans. 11, 70–73.

    CAS  Google Scholar 

  50. Beck, M. J. (1989), 198th Am. Chem. Soc. Meeting, Miami Beach, FL.

  51. Beck, M. J., Johnson, R. D., and Baker, C. S. (1990),Appl. Biochem. Biotechnol. 24/25, 415–425.

    Article  Google Scholar 

  52. Perego, P., Converti, A., Palazzi, E., Del Borghi, M., and Ferraiolo, G. (1990),J. Ind. Microbiol. 6, 157–164.

    Article  CAS  Google Scholar 

  53. Strickland, R. J. and Beck, M. J. (1985), 9th Symp. on Energy from Biomass and Wood Wastes, Lake Buena Vista, FL.

  54. Parekh, S. R., Yu, S., and Wayman, M. (1986),Appl. Microbiol. Biotechnol. 25, 300–304.

    Article  CAS  Google Scholar 

  55. Parekh, S. R., Parekh, R. S., and Wayman, M. (1987),Proc. Biochem. 22, 85–91.

    CAS  Google Scholar 

  56. Lodics, T. A. and Gong, C-S. (1984),Biotechnol. Bioeng. Symp. 14, 303–307.

    CAS  Google Scholar 

  57. Roberto, I. C., Lacis, L. S., Barbosa, M. F. S., and de Mancilha, I. M. (1991),Proc. Biochem. 26, 15–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawford, H.G., Rousseau, J.D. Effect of acetic acid on xylose conversion to ethanol by genetically engineeredE. coli . Appl Biochem Biotechnol 34, 185–204 (1992). https://doi.org/10.1007/BF02920545

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02920545

Index Entries

Navigation