Skip to main content

Protein Labeling and Structure Determination by NMR Spectroscopy

  • Chapter
  • First Online:
Biophysical and Computational Tools in Drug Discovery

Abstract

NMR spectroscopy has proven itself to be invaluable in probing the structures of proteins that are not amenable to crystallization. In addition, NMR spectroscopy is of great value in characterizing the weak interactions that form the basis of drug-like action of potential hits. While 2D NMR methods for the characterization of small molecules were developed in the 1970s, in recent times, there has been a significant growth in the macromolecular NMR field, which has potentiated structure determination of several drug target proteins and protein–ligand complexes and discovery of inhibitors through NMR-based screening methods. In this chapter, our aim will be to describe the state-of-the-art methods adopted for isotope labeling of proteins, which will be followed by description of the multidimensional NMR experiments and their utilization for determination of solution structure of the proteins. NMR-based structure determination begins with suitable isotope labeling of proteins using many innovative methods. Once a double or triple isotopically labeled sample has been made, a series of multidimensional NMR experiments are carried out for the assignment of chemical shifts of the backbone and side-chain resonances and for measuring the NOE between identified protons. An ensemble of structures can then be calculated by incorporating the experimentally derived dihedral angle and distance constraints. Refinement of structural quality is done through additional constraints derived from Residual Dipolar Couplings and Paramagnetic Relaxation Enhancements. Using this technique and protocols, structures of several drug target proteins have been successfully determined with high precision. Further, NMR has been used to screen the small molecules that bind to the target protein and to study the structural and dynamics aspects of protein-ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CBP:

Cellulose binding protein

COSY :

Correlation spectroscopy

CSI:

Chemical shift index

DOSY :

Diffusion ordered spectroscopy

FBDD:

Fragment-based drug discovery

GST :

Glutathione S-transferase

HMQC :

Heteronuclear multiple quantum coherence

HSQC:

Heteronuclear single quantum coherence

IDP:

Intrinsically disordered protein

ILOE :

Inter-ligand nuclear Overhauser effect

INPHARMA :

Inter-ligand NOEs for pharmacophore mapping

IPTG:

Isopropyl-β-D-1-thiogalactopyranoside

LBT :

Lanthanide-binding peptide tag

MBP:

Maltose binding protein

MTSL:

(1-Oxyl-2,2,5,5-tetramethyl-D3-pyrroline-3-methyl) methanethiosulfonate

NMR:

Nuclear magnetic resonance

NOE :

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser effect spectroscopy

PCS :

Pseudo-contact shift

PRE:

Paramagnetic relaxation enhancement

RDC:

Residual dipolar couplings

SAIL:

Stereo-array isotope labeling

SBDD:

Structure-based drug discovery

Tg:

Toxoplasma gondii

TOCSY :

Total correlation spectroscopy

TROSY :

Transverse relaxation-optimized spectroscopy

References

  1. Nerli S, McShan AC, Sgourakis NG (2018) Chemical shift-based methods in NMR structure determination. Prog Nucl Magn Reson Spectrosc 106–107:1–25. https://doi.org/10.1016/j.pnmrs.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wüthrich K (1995) NMR assignments as a basis for structural characterization of denatured states of globular proteins. NMR Struct Biol 1995:710–716. https://doi.org/10.1142/9789812795830_0066

    Article  Google Scholar 

  3. Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K (1997) NMR characterization of the full-length recombinant murine prion protein. mPrP (23–231). FEBS Lett 413(2):282–288. https://doi.org/10.1016/S0014-5793(97)00920-4

    Article  CAS  PubMed  Google Scholar 

  4. Liang B, Tamm LK (2007) Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 104:16140–16145. https://doi.org/10.1073/pnas.0705466104

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. https://doi.org/10.1126/science.1161302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476(7358):109–113. https://doi.org/10.1038/nature10257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908. https://doi.org/10.1016/j.molcel.2008.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD et al (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324(5935):1726–1729. https://doi.org/10.1126/science.1171716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6):768–774. https://doi.org/10.1038/nsmb.1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R (2007) Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14(11):1089–1095. https://doi.org/10.1038/nsmb1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M et al (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50(50):11942–11946. https://doi.org/10.1002/anie.201105648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418(6894):207–211. https://doi.org/10.1038/nature00860

    Article  CAS  PubMed  Google Scholar 

  13. Yagi-Utsumi M, Kunihara T, Nakamura T, Uekusa Y, Makabe K, Kuwajima K, Kato K (2013) NMR characterization of the interaction of GroEL with amyloid b as a model ligand. FEBS Lett 587:1605–1609. https://doi.org/10.1016/j.febslet.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  14. Gardner KH, Zhang X, Gehring K, Kay LE (1998) Solution NMR studies of a 42 kDa Escherichia coli maltose binding protein/β-cyclodextrin complex: chemical shift assignments and analysis. J Am Chem Soc 45:11738–11748. https://doi.org/10.1021/ja982019w

    Article  Google Scholar 

  15. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel like architecture in membranes. Proc Natl Acad Sci U S A 102:10870–10875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grishaev A, Tugarinov V, Kay LE, Trewhella J, Bax A (2008) Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J Biomol NMR 40:95–106. https://doi.org/10.1007/s10858-007-9211-5

    Article  CAS  PubMed  Google Scholar 

  17. Maity S, Gundampati RK, Suresh Kumar TK (2019) NMR methods to characterize protein-ligand interactions. Nat Prod Commun 14:5. https://doi.org/10.1177/1934578X19849296

    Article  Google Scholar 

  18. Huang J, Grzesiek S (2010) Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc 132:694–705. https://doi.org/10.1021/ja907974m

    Article  CAS  PubMed  Google Scholar 

  19. Sugiki T, Furuita K, Fujiwara T, Kojima C (2018) Current NMR techniques for structure-based drug discovery. Molecules 23(1):148. https://doi.org/10.3390/molecules23010148

    Article  CAS  PubMed Central  Google Scholar 

  20. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:9.9.1–9.9.23. https://doi.org/10.1002/0471140864.ps0909s73

    Article  Google Scholar 

  22. Stadlbauer M, Fahrner M, Müller N (2018) Rapid NMR-scale purification of 15N,13C isotope-labeled recombinant human STIM1 coiled coil fragments. Protein Expr Purif 146:45–50. https://doi.org/10.1016/j.pep.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  23. Maheshwari D, Yadav R, Rastogi R, Jain A, Tripathi S, Mukhopadhyay A, Arora A (2018) Structural and biophysical characterization of Rab5a from Leishmania donovani. Biophys J 115(7):1217–1230. https://doi.org/10.1016/j.bpj.2018.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egorov MV, Tigerström A, Pestov NB, Korneenko TV, Kostina MB, Shakhparonov MI, Rydström J (2004) Purification of a recombinant membrane protein tagged with a calmodulin-binding domain: properties of chimeras of the Escherichia coli nicotinamide nucleotide transhydrogenase and the C-terminus of human plasma membrane Ca2+-ATPase. Protein Expr Purif 36(1):31–39. https://doi.org/10.1016/j.pep.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  25. Puthenveetil R, Vinogradova O (2019) Solution NMR: a powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem 294(44):15914–15931. https://doi.org/10.1074/jbc.REV119.009178

    Article  PubMed  PubMed Central  Google Scholar 

  26. Opitz C, Ahrné E, Goldie KN, Schmidt A, Grzesiek S (2019) Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. J Biol Chem 294(7):2279–2292. https://doi.org/10.1074/jbc.RA118.006914

    Article  CAS  PubMed  Google Scholar 

  27. Cai M, Huang Y, Yang R, Craigie R, Clore GM (2016) A simple and robust protocol for high-yield expression of perdeuterated proteins in Escherichia coli grown in shaker flasks. J Biomol NMR 66(2):85–91. https://doi.org/10.1007/s10858-016-0052-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8(4):334–338. https://doi.org/10.1038/86214

    Article  CAS  PubMed  Google Scholar 

  29. Venters RA, Farmer 2nd BT, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264(5):1101–1116. https://doi.org/10.1006/jmbi.1996.0699

    Article  CAS  PubMed  Google Scholar 

  30. Venters RA, Huang CC, Farmer BT, Trolard R, Spicer LD, Fierke CA (1995) High-level 2H/13C/15N labeling of proteins for NMR studies. J Biomol NMR 5:339–344. https://doi.org/10.1007/BF00182275

    Article  CAS  PubMed  Google Scholar 

  31. Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263(5):627–636. https://doi.org/10.1006/jmbi.1996.0603

    Article  CAS  PubMed  Google Scholar 

  32. Kerfah R (2014) Development of strategies for the isotopic labeling of methyl groups for the NMR study of large protein assemblies. Biomolecules [q-bio.BM]. Université de Grenoble, 2014. English. ffNNT: 2014GRENV043ff. fftel-01343865f

    Google Scholar 

  33. Gardner K, Kay L (1997) Production and incorporation of N-15, C-13, H-2 (H-1-delta 1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600

    Article  CAS  Google Scholar 

  34. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  CAS  PubMed  Google Scholar 

  35. Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  CAS  PubMed  Google Scholar 

  36. Gans P, Hamelin O, Sounier R, Ayala I, Durá M, Amero C et al (2010) Stereospecific isotopic labeling of methyl groups for NMR spectroscopic studies of high-molecular-weight proteins. Angew Chem Int Ed Engl 49:1958–1962

    Article  CAS  PubMed  Google Scholar 

  37. Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing C-13-labeled methyl groups. J Am Chem Soc 122:7898–7904

    Article  CAS  Google Scholar 

  38. Tugarinov V, Sprangers R, Kay LE (2004) Line narrowing in methyl-TROSY using zero-quantum 1H-13C NMR spectroscopy. J Am Chem Soc 126:4921–4925

    Article  CAS  PubMed  Google Scholar 

  39. Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 102:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ollerenshaw JE, Tugarinov V, Skrynnikov NR, Kay LE (2005) Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins. J Biomol NMR 33:25–41

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi H, Miyazawa M, Ina Y, Fukunishi Y, Mizukoshi Y, Nakamura H, Shimada I (2006) Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein-protein complexes. J Biomol NMR 34:167–177

    Article  CAS  PubMed  Google Scholar 

  42. Gill ML, Palmer AG (2011) Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins. J Biomol NMR 51:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tokunaga Y, Takeuchi K, Takahashi H, Shimada I (2014) Allosteric enhancement of MAP kinasep 38α’s activity and substrate selectivity by docking interactions. Nat Struct Mol Biol 21:704–711

    Article  CAS  PubMed  Google Scholar 

  44. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J (2015) Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Curr Opin Struct Biol 32:113–122

    Article  CAS  PubMed  Google Scholar 

  45. Mueller GA, Choy WY, Yang D, Forman-Kay JD, Venters RA, Kay LE (2000) Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol 300:197–212. https://doi.org/10.1006/jmbi.2000.3842

    Article  CAS  PubMed  Google Scholar 

  46. Kanelis, Forman-Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB Life 52:291–302. https://doi.org/10.1080/152165401317291147

    Article  CAS  PubMed  Google Scholar 

  47. Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G et al (1999) Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli. Nat Struct Biol 6(4):313–318. https://doi.org/10.1038/7545

    Article  CAS  PubMed  Google Scholar 

  48. Newby FN, De Simone A, Yagi-Utsumi M, Salvatella X, Dobson CM, Vendruscolo M (2015) Structure-free validation of residual dipolar coupling and paramagnetic relaxation enhancement measurements of disordered proteins. Biochemistry 54(46):6876–6886. https://doi.org/10.1021/acs.biochem.5b00670

    Article  CAS  PubMed  Google Scholar 

  49. Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL et al (2008) Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol 380:608–622

    Article  CAS  PubMed  Google Scholar 

  50. Takeda M, Ono AM, Terauchi T, Kainosho M (2010) Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. J Biomol NMR 46:45. https://doi.org/10.1007/s10858-009-9360-9

    Article  CAS  PubMed  Google Scholar 

  51. Kainosho M, Torizawa T, Iwashita Y, Terauch T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57. https://doi.org/10.1038/nature04525

    Article  CAS  PubMed  Google Scholar 

  52. Smolskaya S, Logashina YA, Andreev YA (2020) Escherichia coli extract-based cell-free expression system as an alternative for difficult-to-obtain protein biosynthesis. Int J Mol Sci 21(3):928. https://doi.org/10.3390/ijms21030928

    Article  CAS  PubMed Central  Google Scholar 

  53. Takeda M, Kainosho M (2012) Cell-free protein production for NMR studies. Methods Mol Biol 831:71–84. https://doi.org/10.1007/978-1-61779-480-3_5

    Article  CAS  PubMed  Google Scholar 

  54. Takeda M, Kainosho M (2012) 1.12 labeling techniques. comprehensive. Biophysics 199–215. https://doi.org/10.1016/B978-0-12-374920-8.00116-8

  55. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  CAS  PubMed  Google Scholar 

  56. Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M (2013) Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. J Biomol NMR 57:237–249

    Article  CAS  PubMed  Google Scholar 

  57. Miyanoiri Y, Ishida Y, Takeda M, Terauchi T, Inouye M, Kainosho M (2016) Highly efficient residue-selective labeling with isotope-labeled Ile, Leu, and Val using a new auxotrophic E. coli strain. J Biomol NMR 65:109–119

    Article  CAS  PubMed  Google Scholar 

  58. Skrisovska L, Schubert M, Allain FHT (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46(1):51–65. https://doi.org/10.1007/s10858-009-9362-7

    Article  CAS  PubMed  Google Scholar 

  59. Liu D, Xu R, Cowburn D (2009) Segmental isotopic labeling of proteins for nuclear magnetic resonance. Methods Enzymol 462:151–175. https://doi.org/10.1016/S0076-6879(09)62008-5

    Article  CAS  PubMed  Google Scholar 

  60. Aranko AS, Volkmann G (2011) Protein trans-splicing as a protein ligation tool to study protein structure and function. Bio Mol Concepts 2:183–198. https://doi.org/10.1515/BMC.2011.014

    Article  CAS  Google Scholar 

  61. Mills KV, Johnson MA, Perler FB (2014) Protein splicing: how inteins escape from precursor proteins. J Biol Chem 289(21):14498–14505. https://doi.org/10.1074/jbc.R113.540310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein nmr using peptide splicing. J Am Chem Soc 120:5591–5592. https://doi.org/10.1021/ja980776o

    Article  CAS  Google Scholar 

  63. Mikula KM, Tascón I, Tommila JJ, Iwaï H (2017) Segmental isotopic labeling of a single-domain globular protein without any refolding step by an asparaginyl endopeptidase. FEBS Lett 591(9):1285–1294. https://doi.org/10.1002/1873-3468.12640

    Article  CAS  PubMed  Google Scholar 

  64. Camarero JA, Shekhtman A, Campbell EA, Chlenov M, Gruber TM, Bryant DA et al (2002) Autoregulation of a bacterial σ factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci U S A 99(13):8536–8541. https://doi.org/10.1073/pnas.132033899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dias DM, Ciulli A (2014) NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes. Prog Biophys Mol Biol 116(2-3):101–112. https://doi.org/10.1016/j.pbiomolbio.2014.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fernández C, Wider G (2006) NMR spectroscopy of large biological macromolecules in solution. In: Arrondo JLR, Alonso A (eds) Advanced techniques in biophysics. Springer series in biophysics, vol 10. Springer, Berlin. https://doi.org/10.1007/3-540-30786-9_5

    Chapter  Google Scholar 

  67. Göbl C, Madl T, Simon B, Sattler M (2014) NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog Nucl Magn Reson Spectrosc 80:26–63. https://doi.org/10.1016/j.pnmrs.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  68. Züger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23(6):736–740. https://doi.org/10.1038/nbt1097

    Article  CAS  PubMed  Google Scholar 

  69. Minato Y, Ueda T, Machiyama A, Shimada I, Iwaï H (2012) Segmental isotopic labeling of a 140 kDa dimeric multi-domain protein CheA from Escherichia coli by expressed protein ligation and protein trans-splicing. J Biomol NMR 53(3):191–207. https://doi.org/10.1007/s10858-012-9628-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F (2011) Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci U S A 108(51):20579–20584. https://doi.org/10.1073/pnas.1110712108

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43(3):145–150. https://doi.org/10.1007/s10858-008-9296-5

    Article  CAS  PubMed  Google Scholar 

  72. Durst FG, Ou HD, Löhr F, Dötsch V, Straub WE (2008) The better tag remains unseen. J Am Chem Soc 130(45):14932–14933. https://doi.org/10.1021/ja806212j

    Article  CAS  PubMed  Google Scholar 

  73. Muona M, Aranko AS, Raulinaitis V, Iwaï H (2010) Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc 5(3):574–587. https://doi.org/10.1038/nprot.2009.240

    Article  CAS  PubMed  Google Scholar 

  74. Mund M, Overbeck JH, Ullmann J, Sprangers R (2013) LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Angew Chem Int Ed Engl 52(43):11401–11405. https://doi.org/10.1002/anie.201304914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Senn H, Werner B, Messerle BA, Weber C, Traber R, Wiithrich K (1989) Stereospecific assignment of the methyl lH NMR lines of valine and leucine in polypeptides by nonrandom 13C labelling. FEBS Lett 249:113–118

    Article  CAS  Google Scholar 

  76. Hiroaki H, Umetsu Y, Nabeshima Y, Hoshi M, Kohda D (2011) A simplified recipe for assigning amide NMR signals using combinatorial 14N amino acid inverse-labeling. J Struct Funct Genomics 12(3):167–174. https://doi.org/10.1007/s10969-011-9116-0

    Article  CAS  PubMed  Google Scholar 

  77. Tripsianes K, Schütz U, Emmanouilidis L, Gemmecker G, Sattler M (2019) Selective isotope labeling for NMR structure determination of proteins in complex with unlabeled ligands. J Biomol NMR 73:183–189. https://doi.org/10.1007/s10858-019-00241-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Igarashi S, Osawa M, Takeuchi K, Ozawa S, Shimada I (2008) Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein-protein complex. J Am Chem Soc 130:12168–12176

    Article  CAS  PubMed  Google Scholar 

  79. Kodama Y, Takeuchi K, Shimba N, Ishikawa K, Suzuki E, Shimada I, Takahashi H (2013) Rapid identification of ligand-binding sites by using an assignment-free NMR approach. J Med Chem 56:9342–9350. https://doi.org/10.1021/jm4014357

    Article  CAS  PubMed  Google Scholar 

  80. Shortle D (1994) Assignment of amino acid type in 1H-15N correlation spectra by labeling with 14N-amino acids. J Magn Reson Series B105(1):88–90. https://doi.org/10.1006/jmrb.1994.1106

    Article  Google Scholar 

  81. Krishnarjuna B, Jaipuria G, Thakur A, D'Silva P, Atreya HS (2010) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49(1):39–51. https://doi.org/10.1007/s10858-010-9459-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS (2012) Amino acid selective labeling and unlabeling for protein resonance assignments. Adv Exp Med Biol 992:95–118. https://doi.org/10.1007/978-94-007-4954-2_6

    Article  CAS  PubMed  Google Scholar 

  83. Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J (2012) An optimized isotopic labelling strategy of isoleucine-gamma (2) methyl groups for solution NMR studies of high molecular weight proteins. Chem Commun 48:1434–1436. https://doi.org/10.1039/C1CC12932E

    Article  CAS  Google Scholar 

  84. Kerfah R, Plevin MJ, Pessey O, Hamelin O, Gans P, Boisbouvier J (2015) Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs. J Biomol NMR 61(1):73–82. https://doi.org/10.1007/s10858-014-9887-2

    Article  CAS  PubMed  Google Scholar 

  85. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131(4):756–769. https://doi.org/10.1016/j.cell.2007.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fischer M, Kloiber K, Häusler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chem Bio Chem 8:610–612. https://doi.org/10.1002/cbic.200600551

    Article  CAS  PubMed  Google Scholar 

  87. Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Mizumura T, Suzuki S, Shimada I (2014) Functional dynamics of deuterated β2 -adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed Engl 53:13376–13379. https://doi.org/10.1002/ange.201406603

    Article  CAS  PubMed  Google Scholar 

  88. Ayala I, Sounier R, Usé N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43(2):111–119. https://doi.org/10.1007/s10858-008-9294-7

    Article  CAS  PubMed  Google Scholar 

  89. Velyvis A, Ruschak AM, Kay LE (2012) An economical method for production of 2H, 13CH3-threonine for solution NMR studies of large protein complexes: Application to the 670 kDa proteasome. PLoS One 7:e43725. https://doi.org/10.1371/journal.pone.0043725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129(50):15428–15429. https://doi.org/10.1021/ja0761784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Teilum K, Brath U, Lundström P, Akke M (2006) Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507. https://doi.org/10.1021/ja055660o

    Article  CAS  PubMed  Google Scholar 

  92. Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen DF et al (2007) Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Calpha and side-chain methyl positions in proteins. J Biomol NMR 38:199–212. https://doi.org/10.1007/s10858-007-9158-6

    Article  CAS  PubMed  Google Scholar 

  93. LeMaster D, Kushlan D (1996) Dynamical mapping of E. coli thioredoxin via C-13 NMR relaxation analysis. J Am Chem Soc 118:9255–9264. https://doi.org/10.1021/ja960877r

    Article  Google Scholar 

  94. Takeuchi K, Frueh DP, Sun ZY, Hiller S, Wagner G (2010) CACA-TOCSY with alternate 13C-12C labeling: a 13C alpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification. J Biomol NMR 47(1):55–63. https://doi.org/10.1007/s10858-010-9410-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ishima R, Louis J, Torchia D (1999) Transverse 13C relaxation of CHD2 methyl isotopomers to detect slow conformational changes of protein side chains. J Am Chem Soc 121:11589–11590. https://doi.org/10.1021/ja992836b

    Article  CAS  Google Scholar 

  96. Verardi R, Traaseth NJ, Masterson LR, Vostrikov VV, Veglia G (2012) Isotope labeling for solution and solid-state NMR spectroscopy of membrane proteins. Adv Exp Med Biol 992:35–62. https://doi.org/10.1007/978-94-007-4954-2_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eddy MT, Belenky M, Sivertsen AC, Griffin RG, Herzfeld J (2013) Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J Biomol NMR 57:129–139. https://doi.org/10.1007/s10858-013-9773-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weininger U (2017) Site-selective 13C labeling of proteins using erythrose. J Biomol NMR 67(3):191–200. https://doi.org/10.1007/s10858-017-0096-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46(1):75–87. https://doi.org/10.1007/s10858-009-9376-1

    Article  CAS  PubMed  Google Scholar 

  100. Furuita K, Kataoka S, Sugiki T, Hattori Y, Kobayashi N, Ikegami T et al (2015) Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints. J Biomol NMR 61(1):55–64. https://doi.org/10.1007/s10858-014-9882-7

    Article  CAS  PubMed  Google Scholar 

  101. Jahnke W (2002) Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. ChemBioChem 3(2-3):167–173. https://doi.org/10.1002/1439-7633(20020301)3:2/3<167::AID-CBIC167>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  102. Liu W, Overhand M, Ubbink M (2014) The application of paramagnetic lanthanoid ions in NMR spectroscopy on proteins. Coord Chem Rev 273:2–12. https://doi.org/10.1016/j.ccr.2013.10.018

    Article  CAS  Google Scholar 

  103. Rodriguez-Castañeda F, Haberz P, Leonov A, Griesinger C (2006) Paramagnetic tagging of diamagnetic proteins for solution NMR. Magn Reson Chem 44:S10–S16. https://doi.org/10.1002/mrc.1811

    Article  CAS  PubMed  Google Scholar 

  104. Keizers PH, Ubbink M (2011) Paramagnetic tagging for protein structure and dynamics analysis. Prog Nucl Magn Reson Spectrosc 58(1–2):88–96. https://doi.org/10.1016/j.pnmrs.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  105. Prudêncio M, Rohovec J, Peters JA, Tocheva E, Boulanger MJ, Murphy ME et al (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chemistry 10(13):3252–3260. https://doi.org/10.1002/chem.200306019

    Article  CAS  PubMed  Google Scholar 

  106. Saio T, Ogura K, Yokochi M, Kobashigawa Y, Inagaki F (2009) Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J Biomol NMR 44(3):157–166. https://doi.org/10.1007/s10858-009-9325-z

    Article  CAS  PubMed  Google Scholar 

  107. Kobashigawa Y, Saio T, Ushio M et al (2012) Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein-protein complex structure determination. J Biomol NMR 53(1):53–63. https://doi.org/10.1007/s10858-012-9623-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Saio T, Ogura K, Shimizu K, Yokochi M, Burke Jr TR, Inagaki F (2011) An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. J Biomol NMR 51(3):395–408. https://doi.org/10.1007/s10858-011-9566-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jahnke W, Perez L, Paris C, Strauss A, Fendrich G, Nalin C (2000) Second-site NMR screening with a spin-labeled first ligand. J Am Chem Soc 122:7394–7395. https://doi.org/10.1021/ja001241+

    Article  CAS  Google Scholar 

  110. Ferentz AE, Wagner G (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33(1):29–65. https://doi.org/10.1017/s0033583500003589

    Article  CAS  PubMed  Google Scholar 

  111. Güntert P (1998) Structure calculation of biological macromolecules from NMR data. Q Rev Biophys 31(2):145–237. https://doi.org/10.1017/s0033583598003436

    Article  PubMed  Google Scholar 

  112. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York. ISBN: 978-0-471-82893-8

    Book  Google Scholar 

  113. Wuthrich K (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243(4887):45–50

    Article  CAS  PubMed  Google Scholar 

  114. Yadav R, Pathak PP, Shukla VK, Jain A, Srivastava S, Tripathi S, Krishna Pulavarti SV, Mehta S, Sibley LD, Arora A (2011) Solution structure and dynamics of ADF from Toxoplasma gondii. J Struct Biol 176(1):97–111. https://doi.org/10.1016/j.jsb.2011.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mehta S, Sibley LD (2010) Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 285:6835–6847

    Article  CAS  PubMed  Google Scholar 

  116. Grzesiek S, Bax A (1992) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson B 99:201–207

    CAS  Google Scholar 

  117. Cavanagh J, Skelton N, Fairbrother W, Rance M, Palmer A (2006) Protein NMR spectroscopy.2nd edn. Academic Press

    Google Scholar 

  118. Wüthrich K, Billeter M, Braun W (1984) Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. J Mol Biol 180:715–740

    Article  PubMed  Google Scholar 

  119. Guntert P, Qian YQ, Otting G, Muller M, Gehring W, Wuthrich K (1991) Structure determination of the Antp (C39–S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. J Mol Biol 217:531–540

    Article  CAS  PubMed  Google Scholar 

  120. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666

    Article  CAS  Google Scholar 

  121. Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 95(23):13585–13590. https://doi.org/10.1073/pnas.95.23.13585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  CAS  PubMed  Google Scholar 

  123. Tugarinov V, Kay LE (2003) Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol 327(5):1121–1133. https://doi.org/10.1016/s0022-2836(03)00238-9

    Article  CAS  PubMed  Google Scholar 

  124. Hansen DF, Neudecker P, Kay LE (2010) Determination of isoleucine side-chain conformations in ground and excited states of proteins from chemical shifts. J Am Chem Soc 132:7589–7591

    Article  CAS  PubMed  Google Scholar 

  125. Hansen DF, Kay LE (2011) Determining valine side-chain rotamer conformations in proteins from methyl 13C chemical shifts: application to the 360 kDa half-proteasome. J Am Chem Soc 133:8272–8281

    Article  CAS  PubMed  Google Scholar 

  126. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  CAS  PubMed  Google Scholar 

  127. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB–DnaK interaction. Science 339:1080–1083

    Article  CAS  PubMed  Google Scholar 

  128. Pritišanac I, Degiacomi MT, Alderson TR, Carneiro MG, Eiso AB, Siegal G, Baldwin AJ (2017) Automatic assignment of methyl-NMR spectra of supramolecular machines using graph theory. J Am Chem Soc 139:9523–9533

    Article  PubMed  Google Scholar 

  129. Monneau YR, Rossi P, Bhaumik A, Huang C, Jiang Y, Saleh T, Xie T, Xing Q, Kalodimos CG (2017) Automatic methyl assignment in large proteins by the MAGIC algorithm. J Biomol NMR 69:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A (2015) Structure-based assignment of Ile, Leu, and Val methyl groups in the active and inactive forms of the mitogen-activated protein kinase extracellular signal-regulated kinase 2. Biochemistry 54:4307–4319

    Article  CAS  PubMed  Google Scholar 

  131. Siemons L, Mackenzie HW, Shukla VK, Hansen DF (2019) Intra-residue methyl–methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. J Biomol NMR 73:749–757. https://doi.org/10.1007/s10858-019-00287-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tjandra N, Omichinski JG, Gronenborn AM, Clore GM, Bax A (1997) Useofdipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution. Nat Struct Biol 4:732–738

    Article  CAS  PubMed  Google Scholar 

  133. Farrow NA, Muhandiram R, Singer AU, Pasca M, Kay CM, Gish G et al (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003. https://doi.org/10.1021/bi00185a040

    Article  CAS  PubMed  Google Scholar 

  134. Lieni SF, Bremi T, Brutscher B, Brüschweiler R, Ernst RR (1998) Anisotropic intramolecular backbone dynamics of ubiquitin characterized by NMR relaxation and MD computer simulation. J Am Chem Soc 120:9870–9879. https://doi.org/10.1021/ja9810179

    Article  Google Scholar 

  135. Peng JW, Wagner G (1992) Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J Magn Reson 98:308–332. https://doi.org/10.1016/0022-2364(92)90135-T

    Article  CAS  Google Scholar 

  136. Farrow NA, Zhang O, Szabo A, Torchia DA, Kay LE (1995) Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6:153–162. https://doi.org/10.1007/BF00211779

    Article  CAS  PubMed  Google Scholar 

  137. Mandel AM, Akke M, Palmer III AG (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163. https://doi.org/10.1006/jmbi.1994.0073

    Article  CAS  PubMed  Google Scholar 

  138. d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40:107–119. https://doi.org/10.1007/s10858-007-9214-2

    Article  CAS  PubMed  Google Scholar 

  139. d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J Biomol NMR 40:121–133. https://doi.org/10.1007/s10858-007-9213-3

    Article  CAS  PubMed  Google Scholar 

  140. Bieri M, d’Auvergne EJ, Gooley PR (2011) relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins. J Biomol NMR 50:147–155. https://doi.org/10.1007/s10858-011-9509-1

    Article  CAS  PubMed  Google Scholar 

  141. Mulder FAA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (μs–ms) time scale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975. https://doi.org/10.1021/ja003447g

    Article  CAS  PubMed  Google Scholar 

  142. Millet O, Loria JP, Kroenke CD, Pons M, Palmer AG (2000) The static magnetic field dependence of chemical exchange line broadening defines the NMR chemical shift time scale. J Am Chem Soc 122:2867–2877. https://doi.org/10.1021/ja993511y

    Article  CAS  Google Scholar 

  143. Montelione GT, Wagner G (1989) 2D chemical exchange NMR spectroscopy by proton-detected heteronuclear correlation. J Am Chem Soc 111:3096–3098. https://doi.org/10.1021/ja00190a072

    Article  CAS  Google Scholar 

  144. Li Y, Palmer III AG (2009) TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins. J Biomol NMR 45:357–360. https://doi.org/10.1007/s10858-009-9385-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vallurupalli P, Bouvignies G, Kay LE (2012) Studying ‘invisible’ excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161. https://doi.org/10.1021/ja3001419

    Article  CAS  PubMed  Google Scholar 

  146. Fawzi NL, Ying J, Ghirlando R, Torchia DA, Clore GM (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480:268–272. https://doi.org/10.1038/nature10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Oschkinat H (2008) SAR-by-NMR. In: Offermanns S, Rosenthal W (eds) Encyclopedia of molecular pharmacology. Springer, Berlin, pp 1107–1109. ISBN 978-3-540-38918-7

    Chapter  Google Scholar 

  148. Barile E, Pellecchia M (2014) NMR-based approaches for the identification and optimization of inhibitors of protein–protein interactions. Chem Rev 114:4749–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shortridge MD, Hage DS, Harbison GS, Powers R (2008) Estimating protein−ligand binding affinity using high-throughput screening by NMR. J Comb Chem 10:948–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Emwas A-H, Szczepski K, Poulson BG, Chandra K, Mckay RT, Dhahri M et al (2020) NMR as a “Gold Standard” method in drug design and discovery. Molecules 25:4597. https://doi.org/10.3390/molecules25204597

    Article  CAS  PubMed Central  Google Scholar 

  151. Hajduk PJ (2006) SAR by NMR: putting the pieces together. Mol Interv 6:266

    Article  CAS  PubMed  Google Scholar 

  152. Blundell TL (2017) Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry. IUCrJ 4:308–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619

    Article  CAS  PubMed  Google Scholar 

  154. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K et al (2012) Vemurafenib: the first drug approved for BRAF -mutant cancer. Nat Rev Drug Discov 11:873–886

    Article  CAS  PubMed  Google Scholar 

  155. Juárez-Salcedo LM, Desai V, Dalia S (2019) Venetoclax: evidence to date and clinical potential. Drugs Context 2019:8

    Google Scholar 

  156. Keseru GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD (2016) Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. J Med Chem 59:8189–8206

    Article  CAS  PubMed  Google Scholar 

  157. Kobayashi M, Retra K, Figaroa F, Hollander JG, Ab E, Heetebrij RJ et al (2010) Target immobilization as a strategy for NMR-based fragment screening: comparison of TINS, STD, and SPR for fragment hit identification. J Biomol Screen 15:978–989

    Article  CAS  PubMed  Google Scholar 

  158. Singh M, Tam B, Akabayov B (2018) NMR-fragment based virtual screening: a brief overview. Molecules 23:233

    Article  PubMed Central  Google Scholar 

  159. Nitsche C, Otting G (2018) NMR studies of ligand binding. Curr Opin Struct Biol 48:16–22

    Article  CAS  PubMed  Google Scholar 

  160. Yadav DK, Zigácˇková D, Zlobina M, Klumpler T, Beaumont C, Kubícˇková M et al (2019) Staufen1 reads out structure and sequence features in ARF1 dsRNA for target recognition. Nucleic Acids Res 48:2091–2106

    Article  PubMed Central  Google Scholar 

  161. Xiao T, Frey G, Fu Q, Lavine CL, Scott DA, Seaman MS et al (2020) HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes. Nat Chem Biol 16:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Orts J, Gossert AD (2018) Structure determination of protein-ligand complexes by NMR in solution. Methods 138:3–25

    Article  PubMed  Google Scholar 

  163. Li Q, Kang CA (2020) Practical perspective on the roles of solution NMR spectroscopy in drug discovery. Molecules 25:2974. https://doi.org/10.3390/molecules25132974

    Article  CAS  PubMed Central  Google Scholar 

  164. Proudfoot A, Bussiere DE, Lingel A (2017) high-confidence protein–ligand complex modeling by NMR-guided docking enables early hit optimization. J Am Chem Soc 139:17824–17833

    Article  CAS  PubMed  Google Scholar 

  165. Williamson MP (2013) Using chemical shift perturbation to characterize ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  PubMed  Google Scholar 

  166. Sánchez-Pedregal VM, Reese M, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44:4172–4175

    Article  PubMed  Google Scholar 

  167. Jayalakshmi V, Krishna NR (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson 155:106–118

    Article  CAS  PubMed  Google Scholar 

  168. Zhang W, Li R, Shin R, Wang Y, Padmalayam I, Zhai L, Krishna NR (2013) Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMA-ST calculations. ChemMedChem 8:1629–1633

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cala O, Guillière F, Krimm I (2014) NMR-based analysis of protein-ligand interactions. Anal Bioanal Chem 406:943–956

    Article  CAS  PubMed  Google Scholar 

  170. Hajduk P, Olejniczak E, Fesik S (1997) One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257–12261

    Article  CAS  Google Scholar 

  171. Salvi N, Buratto R, Bornet A, Ulzega S, Rentero Rebollo I et al (2012) Boosting the sensitivity of ligand-protein screening by NMR of long-lived states. J Am Chem Soc 134:11076–11079

    Article  CAS  PubMed  Google Scholar 

  172. Vulpett A, Dalvit C (2013) Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved 19F NMR methodology. ChemMedChem 8:2057–2069

    Article  Google Scholar 

  173. Dalvit C, Vulpetti A (2012) Technical and practical aspects of 19F NMR-based screening: toward sensitive high-throughput screening with rapid deconvolution. Magn Reson Chem 50:592–597

    Article  CAS  PubMed  Google Scholar 

  174. Guduff L, Kuprov I, vanHeijenoort C, Dumez J-N (2017) Spatially encoded 2D and 3D diffusion-ordered NMR spectroscopy. Chem Commun 53:701–704

    Article  CAS  Google Scholar 

  175. Dumez J-N (2018) Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 109:101–134

    Article  CAS  PubMed  Google Scholar 

  176. Kramer M, Kleinpeter E (2010) STD-DOSY: a new NMR method to analyze multi-component enzyme/substrate systems. J Magn Reson 202:245–249

    Article  CAS  PubMed  Google Scholar 

  177. Tanoli S, Tanoli N, Usmani S, Zaheer-Ul-Haq FA (2014) The exploration of interaction studies of smaller size, mostly ignored yet intrinsically inestimable molecules towards BSA; an example of STD and DOSY NMR. Open Chem 12:332–340

    Article  CAS  Google Scholar 

  178. Xu C, Wan Y, Chen D, Gao C, Yin H, Fetherston D et al (2017) 19F DOSY diffusion-NMR spectroscopy of fluoropolymers. Magn Reson Chem 55:472–484

    Article  CAS  PubMed  Google Scholar 

  179. Lingel A, Vulpetti A, Reinsperger T, Proudfoot A, Denay R, Frommlet A et al (2020) Comprehensive and high-throughput exploration of chemical space using broadband 19F NMR-based screening. Angew Chem Int Ed 59(35):14809–14817

    Article  CAS  Google Scholar 

  180. Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ (2020) Rapid quantification of protein-ligand binding via 19F NMR lineshape analysis. Biophys J 118:2537–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Arntson KE, Urick AK, Mishra NK, Hawk LML, Wisniewski AJ, Pomerantz WCK (2016) Protein-observed 19F-NMR for fragment screening, affinity quantification and druggability assessment. Nat Protoc 11:1414

    Article  PubMed  PubMed Central  Google Scholar 

  182. Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK (2012) Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem Biol 7:1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Leone M, Barile E, Vazquez J, Mei A, Guiney D, Dahl R et al (2010) NMR-based design and evaluation of novel bidentate inhibitors of the protein tyrosine phosphatase YopH. Chem Biol Drug Des 76:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chen WN, Nitsche C, Pilla KB, Graham B, Huber T, Klein CD et al (2016) Sensitive NMR approach for determining the binding mode of tightly binding ligand molecules to protein targets. J Am Chem Soc 138:4539–4546

    Article  CAS  PubMed  Google Scholar 

  185. Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440:1227–1230. https://doi.org/10.1038/nature04673

    Article  CAS  PubMed  Google Scholar 

  186. Pintacuda G, John M, Su XC, Otting G (2007) NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212. https://doi.org/10.1021/ar050087z

    Article  CAS  PubMed  Google Scholar 

  187. Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020) Drug screening in human cells by NMR spectroscopy allows the early assessment of drug potency. Angew Chem Int Ed Engl 59:6535–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Luchinat E, Barbieri L, Cremonini M, Nocentini A, Supuran CT, Banci L (2020) intracellular binding/unbinding kinetics of approved drugs to carbonic anhydrase ii observed by in-cell NMR. ACS Chem Biol 15:2792–2800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Burz DS, Dutta K, Cowburn D, Shekhtman A (2006) Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nat Methods 3:91–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Burz DS, Shekhtman A (2010) The STINT-NMR method for studying in-cell protein-protein interactions. Curr Protoc Protein Sci 61:17.11.1–17.11.15

    Article  Google Scholar 

  191. DeMott CM, Girardin R, Cobbert J, Reverdatto S, Burz DS, McDonough K, Shekhtman A (2018) Potent inhibitors of Mycobacterium tuberculosis growth identified by using in-Cell NMR-based screening. ACS Chem Biol 13:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Primikyri A, Sayyad N, Quilici G, Vrettos EI, Lim K et al (2018) Probing the interaction of a quercetin bioconjugate with Bcl-2 in living human cancer cells with in-cell NMR spectroscopy. FEBS Lett 592:3367–3379

    Article  CAS  PubMed  Google Scholar 

  193. Potenza D, Vasile F, Belvisi L, Civera M, Araldi EM (2011) STD and trNOESY NMR study of receptor-ligand interactions in living cancer cells. ChemBioChem 12:695–699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AA acknowledges grants from DBT (BT/PR31893/MED/29/1390/2019) and CSIR-CDRI (FBR/MLP2029). This is communication number 10257 from CSIR-Central Drug Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Arora .

Editor information

Editors and Affiliations

Ethics declarations

Funding: AA acknowledges grants from DBT (BT/PR31893/MED/29/1390/2019) and CSIR-CDRI (FBR/MLP2029).

Ethical Approval: This manuscript is a review of previously published accounts, as such, no animal or human studies were performed.

Informed Consent: No patients were studied in this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mundra, S. et al. (2021). Protein Labeling and Structure Determination by NMR Spectroscopy. In: Saxena, A.K. (eds) Biophysical and Computational Tools in Drug Discovery. Topics in Medicinal Chemistry, vol 37. Springer, Cham. https://doi.org/10.1007/7355_2021_133

Download citation

Publish with us

Policies and ethics