Skip to main content
Log in

Spectral density function mapping using 15N relaxation data exclusively

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A method is presented for the determination of values of the spectral density function, J(ω), describing the dynamics of amide bond vectors from 15N relaxation parameters alone. Assuming that the spectral density is given by the sum of Lorentzian functions, the approach allows values of J(ω) to be obtained at ω=0, ωN and 0.870ωH, where ωN and ωH are Larmor frequencies of nitrogen and proton nuclei, respectively, from measurements of 15N T1, T2 and 1H−15N steady-state NOE values at a single spectrometer frequency. Alternatively, when measurements are performed at two different spectrometer frequencies of i and j MHz, J(ω) can be mapped at ω=0, ωi N, ωj N, 0.870ωi H and 0.870ωj H, where ωi N, for example, is the 15N Larmor frequency for a spectrometer operating at i MHz. Additionally, measurements made at two different spectrometer frequencies enable contributions to trasverse relaxation from motions on millisecond-microsecond time scales to be evaluated and permit assessment of whether a description of the internal dynamics is consistent with a correlation function consisting of a sum of exponentials. No assumptions about the specific form of the spectral density function describing the dynamics of the 15N−NH bond vector are necessary, provided that dJ(ω)/dω is relatively constant between ω=ωHN to ω=ωH−ωN. Simulations demonstrate that the method is accurate for a wide range of protein motions and correlation times, and experimental data establish the validity of the methodology. Results are presented for a folded and an unfolded form of the N-terminal SH3 domain of the protein drk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbragamA. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • AkkeM., SkeltonN.J., KördelJ., PalmerIIIA.G. and ChazinW.J. (1993) Biochemistry, 32, 9832–9844.

    Article  Google Scholar 

  • AllerhandA., DoddrellD., GlushkoV., CochranD.W., WenkertE., LawsonP.J. and GurdF.R.N. (1971) J. Am. Chem. Soc., 93, 544–566.

    Article  Google Scholar 

  • BrainardJ.R. and SzaboA. (1981) Biochemistry, 20, 4618–4628.

    Article  Google Scholar 

  • CarringtonA. and McLachlanA.D. (1967) Introduction to Magnetic Resonance, Harper, New York, NY.

    Google Scholar 

  • ChengJ.-W., LepreC.A., ChambersS.P., FulghumJ.R., ThomsonJ.A. and MooreJ.M. (1993) Biochemistry, 32, 9000–9010.

    Article  Google Scholar 

  • CloreG.M., DriscollP.C., WingfieldP.T. and GronenbornA.M. (1990) Biochemistry, 29, 7387–7401.

    Article  Google Scholar 

  • DelaglioF. (1993) NMRPipe Software System, National Institutes of Health, Bethesda, MD.

    Google Scholar 

  • FarrowN.A., MuhandiramR., SingerA.U., PascalS.M., KayC.M., GishG., ShoelsonS.E., PawsonT., Forman-KayJ.D. and KayL.E. (1994) Biochemistry, 33, 5984–6003.

    Article  Google Scholar 

  • FarrowN.A., ZhangO., Forman-KayJ.D. and KayL.E. (1995) Biochemistry, 34, 868–878.

    Article  Google Scholar 

  • KarplusM. and McCammonJ.A. (1986) Sci. Am., 254, 42–51.

    Article  Google Scholar 

  • KayL.E., TorchiaD.A. and BaxA. (1989) Biochemistry, 28, 8972–8979.

    Article  Google Scholar 

  • KinoshitaK., KawatoW. and IkegamiA. (1977) Biophys. J., 20, 289.

    Article  Google Scholar 

  • KördelJ., SkeltonN.J., AkkeM., PalmerIIIA.G. and ChazinW.J. (1992) Biochemistry, 31, 4856–4866.

    Article  Google Scholar 

  • LipariG. and SzaboA. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Article  Google Scholar 

  • LipariG. and SzaboA. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Article  Google Scholar 

  • LondonR.E. and AvitabileJ. (1978) J. Am. Chem. Soc., 100, 7159–7165.

    Article  Google Scholar 

  • MarkleyJ.L., HorsleyW.J. and KleinM.P. (1971) J. Chem. Phys., 55, 3604–3605.

    Article  ADS  Google Scholar 

  • PalmerIIIA.G. (1993) Curr. Opin. Biotechnol., 4, 385–391.

    Article  Google Scholar 

  • PengJ.W. and WagnerG. (1992a) J. Magn. Reson., 98, 308–332.

    ADS  Google Scholar 

  • PengJ.W. and WagnerG. (1992b) Biochemistry, 31, 8571–8586.

    Article  Google Scholar 

  • PressW.H., FlanneryB.P., TeukolskyS.A. and VetterlingW.T. (1986) Numerical Recipes, Cambridge University Press, Cambridge, p. 548.

    MATH  Google Scholar 

  • RicharzR., NagayamaK. and WüthrichK. (1980) Biochemistry, 19, 5189–5196.

    Article  Google Scholar 

  • SchneiderD.M., DellwoM.J. and WandA.J. (1992) Biochemistry, 31, 3645–3652.

    Article  Google Scholar 

  • StoneM.J., FairbrotherW.J., PalmerIIIA.G., ReizerJ., SaierJr.M.H. and WrightP.E. (1992) Biochemistry, 31, 4394–4406.

    Article  Google Scholar 

  • WagnerG., HybertsS. and PengJ.W. (1993) In NMR of Proteins (Eds, CloreG.M. and GronenbornA.M.), Macmillan Press, London, pp. 220–257.

    Google Scholar 

  • WittebortR.J. and SzaboA. (1978) J. Chem. Phys., 69, 1722–1736.

    Article  ADS  Google Scholar 

  • WoessnerD.E. (1962) J. Chem. Phys., 36, 647–654.

    Article  ADS  Google Scholar 

  • ZhangO., KayL.E., OlivierJ.P. and Forman-KayJ.D. (1994) J. Biomol. NMR, 4, 845–858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrow, N.A., Zhang, O., Szabo, A. et al. Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR 6, 153–162 (1995). https://doi.org/10.1007/BF00211779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211779

Keywords

Navigation