Skip to main content
Log in

Methyl groups as probes of supra-molecular structure, dynamics and function

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The development of new protein labeling strategies, along with optimized experiments that exploit the label, have significantly impacted on the types of biochemical problems that can now be addressed by solution NMR spectroscopy. Here we describe how methyl labeling of key residues in a highly deuterated protein background has facilitated studies of the structure, dynamics and interactions of supra-molecular particles. The methyl-labeling approach is briefly reviewed, followed by a summary of applications to three different molecular machines so as to illustrate the types of questions that can now be addressed. Areas where future innovations will lead to yet further improvements are highlighted as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  Google Scholar 

  • Amero C, Schanda P, Dura MA, Ayala I, Marion D, Franzetti B, Brutscher B, Boisbouvier J (2009) Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. J Am Chem Soc 131:3448–3449

    Article  Google Scholar 

  • Ayala I, Sounier R, Use N, Gans P, Boisbouvier J (2009) An efficient protocol for the complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol NMR 43:111–119

    Article  Google Scholar 

  • Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39:5355–5365

    Article  Google Scholar 

  • Bax A (1994) Multidimensional nuclear magnetic resonance methods for protein studies. Curr Opin Struct Biol 4:738–744

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spectroscopy of paramagnetic metalloproteins. Chembiochem 6:1536–1549

    Article  Google Scholar 

  • Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 67:835–851

    Article  Google Scholar 

  • Cheng Y (2009) Toward an atomic model of the 26S proteasome. Curr Opin Struct Biol 19:203–208

    Article  Google Scholar 

  • Clore GM, Gronenborn AM (1991) Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252:1390–1399

    Article  ADS  Google Scholar 

  • Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108–4139

    Article  Google Scholar 

  • Crespi HL, Rosenberg RM, Katz JJ (1968) Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side-chains. Science 161:795–796

    Article  ADS  Google Scholar 

  • Driessen AJ, Brundage L, Hendrick JP, Schiebel E, Wickner W (1991) Preprotein translocase of Escherichia coli: solubilization, purification, and reconstitution of the integral membrane subunits SecY/E. Methods Cell Biol 34:147–165

    Article  Google Scholar 

  • Economou A, Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843

    Article  Google Scholar 

  • Eisenstein E, Markby DW, Schachman HK (1990) Heterotropic effectors promote a global conformational change in aspartate transcarbamoylase. Biochemistry 29:3724–3731

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, Oxford

    Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2002) NMR analysis of a 900K GroEL GroES complex. Nature 418:207–211

    Article  ADS  Google Scholar 

  • Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a 13C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein structural analysis by NMR spectroscopy. Chembiochem 8:610–612

    Article  Google Scholar 

  • Forster A, Masters EI, Whitby FG, Robinson H, Hill CP (2005) The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell 18:589–599

    Article  Google Scholar 

  • Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-δ1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600

    Article  Google Scholar 

  • Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401

    Article  Google Scholar 

  • Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769

    Article  Google Scholar 

  • Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592

    Article  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Gross JD, Gelev VM, Wagner G (2003) A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J Biomol NMR 25:235–242

    Article  Google Scholar 

  • Grzesiek S, Anglister J, Ren H, Bax A (1993) 13C line narrowing by 2H decoupling in 2/13C/15N-enriched proteins. Applications to triple resonance 4D J-connectivity of sequential amides. J Am Chem Soc 115:4369–4370

    Article  Google Scholar 

  • Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang JG, Betz SF, Fesik SW (2000) NMR-based screening of proteins containing C-13 labeled methyl groups. J Am Chem Soc 122:7898–7904

    Article  Google Scholar 

  • Hamel DJ, Dahlquist FW (2005) The contact interface of a 120 kD CheA-CheW complex by methyl TROSY interaction spectroscopy. J Am Chem Soc 127:9676–9677

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  Google Scholar 

  • Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of alanine residues. J Am Chem Soc 129:15428–15429

    Article  Google Scholar 

  • Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    Article  Google Scholar 

  • John M, Schmitz C, Park AY, Dixon NE, Huber T, Otting G (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757

    Article  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    Google Scholar 

  • Kobayashi M, Yagi H, Yamazaki T, Yoshida M, Akutsu H (2008) Dynamic inter-subunit interactions in thermophilic F(1)-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR. J Biomol NMR 40:165–174

    Article  Google Scholar 

  • Korzhnev DM, Kloiber K, Kanelis V, Tugarinov V, Kay LE (2004) Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J Am Chem Soc 126:3964–3973

    Article  Google Scholar 

  • Kreishman-Deitrick M, Goley ED, Burdine L, Denison C, Egile C, Li R, Murali N, Kodadek TJ, Welch MD, Rosen MK (2005) NMR analyses of the activation of the Arp2/3 complex by neuronal Wiskott–Aldrich syndrome protein. Biochemistry 44:15247–15256

    Article  Google Scholar 

  • LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteration. Biochemistry 27:142–150

    Article  Google Scholar 

  • Lichtenecker R, Ludwiczek ML, Schmid W, Konrat R (2004) Simplification of protein NOESY spectra using bioorganic precursor synthesis and NMR spectral editing. J Am Chem Soc 126:5348–5349

    Article  Google Scholar 

  • Lipscomb WN (1994) Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv Enzymol Relat Areas Mol Biol 68:67–151

    Article  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268:533–539

    Article  ADS  Google Scholar 

  • Mao X, Li X, Sprangers R, Wang X, Venugopal A, Wood T, Zhang Y, Kuntz DA, Coe E, Trudel S, Rose D, Batey RA, Kay LE, Schimmer AD (2009) Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma. Leukemia 23:585–590

    Article  Google Scholar 

  • Marion D, Driscoll PC, Kay LE, Wingfield PT, Bax A, Gronenborn AM, Clore GM (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H–15N Hartmann–Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1β. Biochemistry 28:6150–6156

    Article  Google Scholar 

  • Markley JL, Putter I, Jardetzky O (1968) High resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161:1249–1251

    Article  ADS  Google Scholar 

  • Matsumoto G, Yoshihisa T, Ito K (1997) SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane. EMBO J 16:6384–6393

    Article  Google Scholar 

  • Metzler WJ, Wittekind M, Goldfarb V, Mueller L, Farmer BT (1996) Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a perdeuterated, 15N-labeled protein: potential in structure determination of large proteins by NMR. J Am Chem Soc 118:6800–6801

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  • Montelione GT, Wagner G (1990) Conformation-independent sequential NMR connections in isotope-enriched peptides by H–1C–13–N15 triple resonance experiments. J Magn Reson 87:183–188

    Google Scholar 

  • Ni F (1994) Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc 26:517–606

    Article  Google Scholar 

  • Nicholson LK, Kay LE, Baldisseri DM, Arango J, Young PE, Bax A, Torchia DA (1992) Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococal nuclease. Biochemistry 31:5253–5263

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187

    Article  Google Scholar 

  • Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, Cheng Y (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30:360–368

    Article  Google Scholar 

  • Rosen MK, Gardner KH, Willis RC, Parris WE, Pawson T, Kay LE (1996) Selective methyl group protonation of perdeuterated proteins. J Mol Biol 263:627–636

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  Google Scholar 

  • Schachman HK (1988) Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J Biol Chem 263:18583–18586

    Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  Google Scholar 

  • Shan X, Gardner KH, Muhandiram DR, Rao NS, Arrowsmith CH, Kay LE (1996) Assignment of 15N, 13Cα, 13Cβ and HN resonances in an 15N, 13C, 2H labeled 64 kDa trp repressor-operator complex using triple resonance NMR spectroscopy and 2H-decoupling. J Am Chem Soc 118:6570–6579

    Article  Google Scholar 

  • Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  ADS  Google Scholar 

  • Sprangers R, Kay LE (2007a) Probing supramolecular structure from measurement of methyl (1)H–(13)C residual dipolar couplings. J Am Chem Soc 129:12668–12669

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007b) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  Google Scholar 

  • Sprangers R, Gribun A, Hwang PM, Houry WA, Kay LE (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci USA 102:16678–16683

    Article  ADS  Google Scholar 

  • Sprangers R, Li X, Mao X, Rubinstein JL, Schimmer AD, Kay LE (2008) TROSY-based NMR evidence for a novel class of 20S proteasome inhibitors. Biochemistry 47:6727–6734

    Article  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Tauc P, Leconte C, Kerbiriou D, Thiry L, Herve G (1982) Coupling of homotropic and heterotropic interactions in Escherichia coli aspartate transcarbamylase. J Mol Biol 155:155–168

    Article  Google Scholar 

  • Thiry L, Herve G (1978) The stimulation of Escherichia coli aspartate transcarbamylase activity by adenosine triphosphate. Relation with the other regulatory conformational changes; a model. J Mol Biol 125:515–534

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003a) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2003b) Side chain assignments of Ile delta 1 methyl groups in high molecular weight proteins: an application to a 46 ns tumbling molecule. J Am Chem Soc 125:5701–5706

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005a) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6:1567–1577

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005b) Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface. Biochemistry 44:15970–15977

    Article  Google Scholar 

  • Tugarinov V, Hwang P, Ollerenshaw J, Kay LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu Rev Biochem 73:107–146

    Article  Google Scholar 

  • Tugarinov V, Sprangers R, Kay LE (2007) Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J Am Chem Soc 129:1743–1750

    Article  Google Scholar 

  • Velyvis A, Yang YR, Schachman HK, Kay LE (2007) A solution NMR study showing that active site ligands and nucleotides directly purturb the allosteric equilibrium in aspartate transcarbamolyase. Proc Natl Acad Sci USA 104:8815–8820

    Article  ADS  Google Scholar 

  • Velyvis A, Schachman HK, Kay LE (2009) Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase. J Mol Biol 387:540–547

    Article  Google Scholar 

  • von Heijne G (1985) Signal sequences: the limits of variation. J Mol Biol 184:99–105

    Article  Google Scholar 

  • Wang L, Miller A, Kendall DA (2000) Signal peptide determinants of SecA binding and stimulation of ATPase activity. J Biol Chem 275:10154–10159

    Article  Google Scholar 

  • Xu Y, Liu M, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang D, Zhang X, Freemont P, Matthews S (2009) Automated assignment in selectively methyl-labeled proteins. J Am Chem Soc 131:9480–9481

    Article  Google Scholar 

  • Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994) A suite of triple resonance NMR experiments for the backbone assignment of 15N, 13C, 2H labeled proteins with high sensitivity. J Am Chem Soc 116:11655–11666

    Article  Google Scholar 

  • Yang D, Nagayama K (1996) A sensitivity-enhanced method for measuring heteronuclear long-range coupling constants from the displacement of signals in two 1D subspectra. J Magn Reson Ser A 118:117–121

    Article  Google Scholar 

  • Zheng D, Huang YJ, Moseley HN, Xiao R, Aramini J, Swapna GV, Montelione GT (2003) Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 12:1232–1246

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research. The authors are grateful to Prof. Babis Kalodimos, Rutgers University, for kindly providing the materials for Fig. 4. L. E. K. holds a Canada Research Chair in Biochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis E. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruschak, A.M., Kay, L.E. Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46, 75–87 (2010). https://doi.org/10.1007/s10858-009-9376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9376-1

Keywords

Navigation