Skip to main content

Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency

  • Chapter
  • First Online:
Microbial Interventions in Agriculture and Environment

Abstract

Realization of nutrient security and foodstuff demand as a whole is a significant aspect for the whole community of farming system. Microbes as unicellular organisms play a significant role in the whole soil–plant diverse agro-ecosystem. Bacteria, fungi and other microbial creatures have friendly symbiotic relationship with other well-developed organisms, some of which are equally helpful (mutualism), while others can harm the host life or develop relationships such as synergism and commensalism. Microbial intervention mainly encompasses the method of intervening natural process in soil or in crop rhizosphere by the microbial population there in the root, which is mostly helpful for the improvement of food materials accessibility as well as expansion and yield of plants. Effective soil inoculants attack and stay in the crop field with naturally occurring bacteria and confined stress situation in erratic state and to set up a well-matched interface by the host that includes biochemical association with the crop-resistant features. Various microbes in the soil system not only help in mineralization process but also help to make firm soil with good amount of organic substance akin to humus and other natural carbon-related complexes. This process is very much influenced by various climatic factors mainly temperature and wind, precipitation, etc. Under changing climate situation, nature of microbes is also being changed and develops very complex type of interactions, which become very difficult to understand. Genetically modified crops (mainly nonleguminous) form N2-accumulating competent nodules by Rhizobium, ensuing nitrogen accumulation by nitrogen fixation. The induction of nodules harbouring nitrogen-fixing bacteria is a result of complex interface between BNF microorganism and plant. It involves several sets of genes and signals from both partners in a coordinated expression. In totality, it may be possible that NSP1/NSP2, NF-YA and ERN1 work in association and are helpful to the plant systems. Various biofertilizers are capable of accumulating nitrogen from the atmosphere, assisting the right use of nutrients such as potassium and phosphorus from organic or natural fertilizers and earth stock, progressing drought tolerance, getting better crop health or boosting alkalinity resistance. Crop root notices microbes with pattern-recognition sensor, which attach microbial-linked molecular pattern and trigger a basal protection enough for expansion of various pathogenic bacteria. ‘Omics’ techniques facilitate the recognition of gene transcripts, proteins or metabolites and have been developed to give a more detailed account into the genes and function expressed in the crop microbiome. Microbial population in soil agro-ecosystem are affected by an accumulation of biotic and abiotic factors that lead to numerical and qualitative variations. Bioremediation is a universal suitable option mainly to eradicate ecological pollutants in a contaminated place. This method includes mainly bacteria and flora to rot, impound or take away soil pollutants, mainly chemical insecticides and synthetic chemicals. This is possible by a succession of complex metabolic exchanges, repeatedly linking numerous diverse organisms, and unwanted contaminants can be ruined down or removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420. https://doi.org/10.1016/j.tibtech.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Glomus intraradices, Pseudomonas alcaligenes, and Bacillus pumilus: effect agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J Gen Plant Pathol 74(1):53–60

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenesinduce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Akiyoshi T, Takahiro G, Ryo A, Shao-hui Z, Susumu A, Akihiro S (2012) Quantitative trait locus analysis of symbiotic nitrogen fixation activity in the model legume Lotus japonicus. J Plant Res 125(3):395–406

    Article  CAS  Google Scholar 

  • Albers D, Migge S, Schaefer M, Scheu S (2004) Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biol Biochem 36:155–164

    Article  CAS  Google Scholar 

  • Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7:e46802.55

    Article  CAS  Google Scholar 

  • Arora NK (2013) Plant microbe symbiosis: fundamentals and advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer Science + Business Media, Dordrecht, pp 45–68

    Chapter  Google Scholar 

  • Augusto L, Delerue F, Gallet-Budynek A, David LA (2013) Global assessment of limitation to symbiotic nitrogen fixation by phosphorus availability in terrestrial ecosystems using a meta-analysis approach. Glob Biogeochem Cycles 27:804–815. https://doi.org/10.1002/gbc.20069

    Article  CAS  Google Scholar 

  • Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT (2009) Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol Biochem 41:514–520

    Article  CAS  Google Scholar 

  • Bailey KL (2014) The bioherbicide approach to weed control using plant pathogens. In: Abrol DP (ed) Integrated pest management: current concepts and ecological perspective. Elsevier, San Diego, pp 245–266

    Chapter  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth promoting bacterium Azospirillum promotes plant growth-A critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Plant Sci 333:416–417

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002.44

    Article  CAS  PubMed  Google Scholar 

  • Bilyk O, Luzhetskyy A (2016) Metabolic engineering of naturalproduct biosynthesis in actinobacteria. Curr Opin Biotechnol 42:98–107

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and bio-control by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bohm H, Albert I, Fan L, Reinhard A, Nurnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54

    Article  PubMed  CAS  Google Scholar 

  • Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, Reynolds JF, Treseder KK, Wallenstein MD (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11:1316–1327

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Hamerlynck EP, Hahn D (2002) Interactions among plant species and microorganisms in salt marsh sediments. Appl Environ Microbiol 68:1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai F, Chen W, Wei Z, Pang G, Li R, Ran W, Shen Q (2014) Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 388:337–350

    Article  CAS  Google Scholar 

  • Cerri MR, Frances L, Laloum T, Auriac MC, Niebel A, Oldroyd GED, Barker DG, Fournier J, de Carvalho-Niebel F (2012) Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. J Plant Physiol 160:2155–2172

    Article  CAS  Google Scholar 

  • Chamoun R, Aliferis KA, Jabaji S (2015) Identification of signatory secondary metabolites during mycoparasitism of Rhizoctonia solani by Stachybotrys elegans. Front Microbiol 6:353

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen LH, Huang XQ, Zhang FG, Zhao DK, Yang XM, Shen QR (2012) Application of Trichoderma harzianum SQR-T037 bioorganic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J Sci Food Agric 92:2465–2470

    Article  CAS  PubMed  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant–Microbe Interact 28:274–285

    Article  CAS  PubMed  Google Scholar 

  • Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. J Plant Sci 225:130–137

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • De Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S (2009) Community proteogenomics reveals insights into the physiology of Phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamantis V, Pagorogon L, Gazani E, Doerr SH, Pliakas F, Ritsema CJ (2013) Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil. Ecol Eng 58:393–398

    Article  Google Scholar 

  • Diaz R, Manrique V, Hibbard K, Fox A, Roda A, Gandolfo D (2014) Successful biological control of tropical soda apple (Solanales: Solanaceae) in Florida: a review of key program components. Fla Entomol 97:179–190. https://doi.org/10.1653/024.097.0124

    Article  Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053

    Article  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC (2012) Impact of root exudates and plant defence signalling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Elliott MS, Massey B, Cui X, Hiebert E, Charudattan R, Waipara N (2009) Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australas. Plant Pathol 38:603–607. https://doi.org/10.1071/ap09046

    Article  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks tomodels. Nat Rev Microbiol 10:538–550.3

    Article  CAS  PubMed  Google Scholar 

  • Fialho CMT (2014) Interação entre micro-organismos do solo, plantas daninhas e as culturas do milho e da soja. 2013. 75 f. Tese (Doutorado em Fitotecnia) – Universidade Federal de Viçosa, Viçosa, MG

    Google Scholar 

  • Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, Knight R, Gilbert JA, McCulley RL (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624

    Article  CAS  PubMed  Google Scholar 

  • Florence M, Crook BM, Garcia K, Garcia AC, Barney AG, Evangelia DK, Ponraj P, Min-Hyung L, Oldroyd ED, Poole PS, Udvardi MK, Voigt CA, Ane IM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to non legumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  Google Scholar 

  • Franklin O, McMurtrie R, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Chang Biol 15:132–144

    Article  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peat lands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassman K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Ghanem G, Ewald A, Hennig F (2014) Effect of root colonization with Piriformospra indica and phosphate availability on the growth and reproductive biology of a Cyclamen persicum cultivar. Sci Hortic 172:233–241

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. OpenMicrobiol J 9:1–7.47

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320.27

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedayetullaha M, Zaman P, Mukherjee D (2018) Setaria grasses (African grass). In: Hedayetullaha M, Zaman P (eds) Forage crop of the world, vol 2. Apple Academic Press, New York, pp 3–12

    Google Scholar 

  • Herschkovitz Y, Lerner Y, Davidof Y (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasiliense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50(2):277–288

    Article  CAS  PubMed  Google Scholar 

  • Houser J, Richardson W (2010) Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640:71–88

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong YM, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1085.; PMID:15497400. https://doi.org/10.1094/MPMI.2004.17.10.1078

    Article  CAS  PubMed  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jianbo S, Li C, Mi G, Li L, Lixing Y, Rongfeng J, Fusuo Z (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64(5):1181–1192

    Article  CAS  Google Scholar 

  • Jing JY, Rui YK, Zhang FS, Rengel Z, Shen JB (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119:355–364

    Article  Google Scholar 

  • John FM, Alexandra R, Raka MM, Lysiane B, Jongho S, Alexis E, Sharon RL, Michael S, Pascal R, Oldroyd GED (2007) Medicago truncatula NIN is essential for Rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol 144:324–335

    Article  CAS  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Plant and endophyte relationships: nutrient management. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Elsevier, Amsterdam, pp 713–727

    Chapter  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633.; PMID:17632573. https://doi.org/10.1038/nrmicro1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahiluoto H, Kuisma M, Kuokkanen A, Mikkilä M, Linnanen L (2014) Taking planetary nutrient boundaries seriously: can we feed the people? Glob Food Sec 3:16–21. https://doi.org/10.1016/j.gfs.2013.11.002

    Article  Google Scholar 

  • Kertsez AM, Mirleau P (2004) The role of soil microbes in plant sulphur nutrition. J Exp Bot 55(404):1939–1945

    Article  CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S (2011) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kundu A, Kundu CK, Khan NR, Roy S, Majumdar A, Mukherejee D, Lamana MCL (2017) Effect of 2, 4-D ethyl ester 80% EC on weed control in wheat. J Crop Weed 13(1):203–205

    Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an above ground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lareen A, Frances B, Patrick S (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Shi X, Zheng F, Li C, Wu D, Bai G, Gao D, Wu J, Li T (2016) A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat. Theor Appl Genet 129(11):2075–2084

    Article  CAS  PubMed  Google Scholar 

  • Li S, Peng M, Liu Z, Shah SS (2017) The role of soil microbes in promoting plant growth. Mol Microbiol Res 7(4):30–37. https://doi.org/10.5376/mmr.2017.07.0004

    Article  Google Scholar 

  • Lukas S, Andreas G, Matthias M, Adrian M, Thomas B, Paul M, Natarajan M (2017) Improving crop yield and nutrient use efficiency via biofertilization—A global meta-analysis. Front Plant Sci 8(2204):1–13. https://doi.org/10.3389/fpls.2017.02204

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey D, McFall AJ (2006) MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Mol Microbiol 61:1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Madsen E (2003) Report on bioavailability of chemical wastes with respect to the potential for soil bioremediation. US Environmental Protection Agency, National Centre for Environmental Research, pp 67–69

    Google Scholar 

  • Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J (2010) The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 1:10

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M (2011) Fungal lipochitooligo saccharide symbiotic signals in Arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Mani JK, Mukherjee D (2016) Accuracy of weather forecast for hill zone of West Bengal for better agriculture management practices. Indian J Res 5(10):325–332

    Google Scholar 

  • Manuella R, Bragg M, Dourado MN, Luiz W (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47(S):86–98

    Google Scholar 

  • Mark GL, Dow JM, Kiely PD (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci U S A 102:17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic, London

    Google Scholar 

  • Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822

    Article  CAS  PubMed  Google Scholar 

  • Massenssini AM (2014) Arbuscular mycorrhizal associations and occurrence of dark septate endophytes in the roots of Brazilian weed plants. Mycorrhiza 24(2):153–159

    Article  PubMed  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate solubilizing bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174

    Article  CAS  Google Scholar 

  • Menaria BL (2007) Bioherbicides: an eco-friendly approach to weed management. Curr Sci 92:10–11

    Google Scholar 

  • Mendes R, Kruijt M, de Bruijn, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering therhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1101

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013a) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Paolina G, Jos MR (2013b) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  PubMed  Google Scholar 

  • Montanez A, Rodriguez Blanco A, Barlocco CM, Beracochea M, Sicardi M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28

    Article  Google Scholar 

  • Mukherjee D (2002) Food security coping with nutritional challenge ahead. Agric Today 8:30–32

    Google Scholar 

  • Mukherjee D (2006) Techniques of weed management in chickpea -a review. Agric Rev 28(1):34–41

    Google Scholar 

  • Mukherjee D (2008) Association of medicinal plants with important tree species in hills of Darjeeling. Environ Ecol 26(4A):1697–1699

    Google Scholar 

  • Mukherjee D (2011) Organic farming for sustainable agricultural development. In: Trievedi PC (ed) Organic farming for sustainable agriculture. Aavishkar Publishers, Jaipur, pp 101–135

    Google Scholar 

  • Mukherjee D (2012) Influence of combined application of bio and inorganic fertilizers on growth and yield of soyabean (Glycin max (L) Merill). Indian Agriculturist 56(3 & 4):107–112

    Google Scholar 

  • Mukherjee D (2013) Organic agriculture. In: Rodriguez H, Ramanjaneyulu R, Sarkar NC, Maity R (eds) Advances in agro-technology: a text book, Compilation of international research work. Puspa Publishing House, Kolkata, pp 43–81

    Google Scholar 

  • Mukherjee D (2014a) Effect of forest microhabitat on growth of high altitude plants in Darjeeling Himalaya. J Interacademicia 18(1):20–30

    Google Scholar 

  • Mukherjee D (2014b) Climate change and its impact on Indian agriculture. In: Nehra S (ed) Plant disease management and microbes. Aavishkar Publishers, Jaipur, pp 193–206

    Google Scholar 

  • Mukherjee D (2015a) Food security: a world wide challenge. Research and review. J Agric Allied Sci 4(1):3–5

    Google Scholar 

  • Mukherjee D (2015b) Microbial diversity for soil sustainability and crop productivity. In: Sharam BK, Singh A (eds) Microbial empowerment in agriculture: a key to sustainability and crop productivity. Biotech publishers, New Delhi, pp 237–268

    Google Scholar 

  • Mukherjee D (2015c) Perspective of conservation agriculture under hill agro-ecosystem: a perspective. Himal J Res 2(2):13–27

    Google Scholar 

  • Mukherjee D (2016a) Conservation farming: An approach of sustainable forest ecosystem. MFP Newsletter 26(2):5–10

    Google Scholar 

  • Mukherjee D (2016b) Evaluation of different crop sequence productivity potential, economics and nutrient balance under new alluvial situation of NEPZ. Int J Hortic Agric 1(1):5

    Google Scholar 

  • Mukherjee D (2016c) Medicinal and aromatic plants: wealth of India. In: Hemantaranjan A (ed) Advances in plant physiology, vol 17. Scientific Publishers, Jodhpur, pp 425–456

    Google Scholar 

  • Mukherjee D (2017a) Influence of mulching and graded fertility levels on microbial population, growth and productivity of potato (Solanum tuberosum L.). Int J Curr Microbiol App Sci 6(10):4784–4792. https://doi.org/10.20546/ijcmas.2017.610.445

    Article  CAS  Google Scholar 

  • Mukherjee D (2017b) Effective approaches for sustainable wheat production under changing global perspective – a reappraisal. Agriculture Extension Journal 1(4):16–28

    Google Scholar 

  • Mukherjee D (2017c) Worry about weeds and its management through sustainable utilization – an ecological approach: a review. Int J For Usufructs Manag 18(2):32–41

    Google Scholar 

  • Mukherjee D (2017d) Advance agronomic tools for maximization of wheat production. In: Kumar A, Kumar A, Prasad B (eds) Wheat a premier food crop. Kalyani Publishers, New Delhi, pp 177–222

    Google Scholar 

  • Mukherjee D (2017e) Improved agronomic practices and input use efficiency for potato production under changing climate. In: Londhe S (ed) Sustainable potato production and the impact of climate change. IGI Global, Hershey, pp 105–132. https://doi.org/10.4018/978-1-5225-1715-3ch005

    Chapter  Google Scholar 

  • Mukherjee D (2018) Tackling climate charge impact on wheat production and effective adaptation strategy for state. In: Rakshit A, Tripathi VK, Singh A, Shekhar S, Sarkar DR (eds) Innovative approach of integrated resource management. New Delhi Publishers, Kolkata, pp 17–22

    Google Scholar 

  • Mukherjee D, Hedayetullaha M (2018) Non conventional legume forage crops. In: Hedayetullaha M, Zaman P (eds) Forage crop of the world, vol 2. Apple Academic Press, New York, pp 287–308

    Google Scholar 

  • Mukherjee D, Karmakar R (2015) Integrated weed management in transplanted rice. Int J Bioresour Sci 2(2):153–158

    Article  Google Scholar 

  • Mukherjee D, Singh RP (2004) The biological control of weed (a review). Agric Rev 25(4):279–288

    Google Scholar 

  • Namvar A, Khandan T (2015) Inoculation of rapeseed under different rates of inorganic nitrogen and sulfur fertilizer: impact on water relations, cell membrane stability, chlorophyll content and yield. Arch Agron Soil Sci 61(8):1137–1149

    Article  CAS  Google Scholar 

  • Nebert L, Bohannan B, Ocamb C, Still A, Kleeger S, Bramlett J, Heisler C (2016) Managing indigenous seed-inhabiting microbes for biological control against Fusarium pathogens in corn. University of Oregon. More information at OFRF: http://ofrf.org/research/grants/managing-indigenous-seed-inhabiting-microbes-biological-controlagainst-fusarium

  • Norby RJ, Ledford J, Reilly CD, Miller EE, O’Neill G (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci U S A 101:9689–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC (2008) Emerging technologies to benefit farmers in sub-saharan Africa and South Asia. The National Academic Press, Washington, DC

    Google Scholar 

  • Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Orr CH, Leifert C, Cummings SP, Cooper JM (2012) Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 7:e5289. PMID:23285218. https://doi.org/10.1371/journal

    Article  Google Scholar 

  • Pandit TK, Mukherjee D, Sarkar RK (2017) Influence of organic and inorganic nutrients on large cardamom (Amomum subulatum Roxb.) under Darjeeling Sub-Himalayan region of West Bengal. Agric Ext J 1(3):107–115

    Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6(10):763–775

    Article  CAS  PubMed  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of rhizobium-meliloti nodulation genes. Science 233:977–980.49

    Article  CAS  PubMed  Google Scholar 

  • PMRA (2006) Re-evaluation of Colletotrichum gloeosporioides f.sp. malvae [CGM]” REV2006-10. Health Canada, Ottawa

    Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbiere F, Monrozier LJ (2001) Comparison of nif-H gene pools in soils and soil microenviornments with contrasting properties. Appl Environ Microbiol 67:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan L, Xinzhang S, Honghao G, Gao F (2016) Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations. Sci Rep 6:28235. https://doi.org/10.1038/srep28235www.nature.com/scientificreports

    Article  Google Scholar 

  • Rai S, Singh DK, Annapurna K (2014) Dynamics of soil diazotrophic community structure, diversity, and functioning during the cropping period of cotton (Gossypium hirsutum). J Basic Microbiol 55(1):62–73

    Article  PubMed  CAS  Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926.; PMID:22836784. https://doi.org/10.1007/s10532-012-9576-3

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996.; PMID:21606316. https://doi.org/10.1104/pp.111.175448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A (2007) Pyro-sequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Oldroyd GED (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65:1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Science Medical Research LSMR-21

    Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola. Brassica napus L. using phosphorus solubilizing and sulfur oxidizing bacteria. Austr J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Santos MA, Geraldi IO, Garcia AA, Bortolatto N, Schiavon A, Hungria M (2013) Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas 150(2–3):17–25

    Article  PubMed  Google Scholar 

  • Sanyal SK, De Datta SK (1991) Chemistry of phosphorus transformations in soil. Adv Soil Sci 16:1–120

    CAS  Google Scholar 

  • Saxena AK, Tilak KVBR (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK (ed) Microbes for health, wealth and sustainable environment. Malhotra Publishing Company, New Delhi, pp 25–64

    Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Korner C (2012) Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Glob Chang Biol 18:757–768

    Article  Google Scholar 

  • Schmid M, Hartmann A (2007) Molecular phylogeny and ecology of root associated diazotrophic and Proteo-bacteria. In: Elmerich C, Newton WE (eds) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 41–71

    Google Scholar 

  • Shen J, Li H, Neumann G, Zhang F (2005) Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci 168:837–845

    Article  CAS  Google Scholar 

  • Shidore T, Dinse T, Ohrlein J, Becker A, Reinhold-Hurek B (2012) Transcriptomic analysis of responses to exudates reveal genes required for rhizosphere competence of the endophyte Azoarcus sp strain BH72. Environ Microbiol 14:2775–2787

    Article  CAS  PubMed  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Singh RK, Mukherjee D (2009) Effect of biofertilizer and fertility levels and weed management on chickpea under late sown condition. J Food Legum 22(3):216–218

    Google Scholar 

  • Singh RP, Singh RK, Mukherjee D (2004) Effect of weed interference on efficacy of crop. Agronomica:24–26

    Google Scholar 

  • Singh RK, Mishra PNR, Jaiswal HK, Kumar V, Pandey SP (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349

    Article  CAS  PubMed  Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agro-ecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor induced transcription. Science 308:1789–1791

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averty KB (eds) (2007) Climate Change 2007: The physical science basis. Contribution of working group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Strom L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82

    Article  CAS  Google Scholar 

  • Tata A, Perez C, Campos ML, Bayfield MA, Eberlin MN (2015) Imprint desorption electrospray ionization mass spectrometry imaging for monitoring secondarymetabolites production during antagonistic interaction of fungi. Ann Chem 87:12298–12304.62

    Article  CAS  Google Scholar 

  • Taylor LL, Leake JR, Quirk J, Hardy K, Banwarts SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye M, Dufault NS, Dornbusch M, Allan D, Vance CP, Samac DA (2003) Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol Biochem 35:1103–1113

    Article  CAS  Google Scholar 

  • Tian J, Wang X, Tong Y, Chen X, Liao H (2012) Bioengineering and management for efficient phosphorus utilization in crops and pastures. Curr Opin Biotechnol 23:866–871. https://doi.org/10.1016/j.copbio.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int. https://doi.org/10.1155/2013/863240

    Article  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullman JB (1996) Structural equation modelling. In: Tabachnick BG, Fidell LS (eds) Using multivariate statistics, 3rd edn. HarperCollins College Publishers, New York, pp 709–819

    Google Scholar 

  • van der Heijden MGA, Wagg C (2013) Soil microbial diversity and agro-ecosystem functioning. Plant Soil 363:1–5. https://doi.org/10.1007/s11104-012-1545-4

    Article  CAS  Google Scholar 

  • van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, KristufekV SJF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Vessy JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  Google Scholar 

  • Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207

    Article  CAS  PubMed  Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Waller F, Achatz B, Baltrschat H, Fodor J, Becker K, Fischer M, Heier T, Hu R, Neumann C, von Wettstein D, Franken F, Kogel K (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HB, Zhang ZX, Li H (2011) Characterization of metaproteomics in crop rhizospheric soil. J Proteome Res 10:932–940

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ye X, Ding G, Xu F (2013) Over expression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One 8:e60801.; PMID:23573285. https://doi.org/10.1371/journal.pone.0060801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiß M, Sykorova Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6(2):e16793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Williams MA (2007) Response of microbial communities to water stress in irrigated and drought-prone tall grass prairie soils. Soil Biol Biochem 39:2750–2757

    Article  CAS  Google Scholar 

  • Yamada S, Ohkubo S, Miyashita H, Setoguchi H (2012) Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae). FEMS Microbiol Ecol 81:696–706

    Article  CAS  PubMed  Google Scholar 

  • Young IM, Crawford JW (2004) Interactions and self organization in the soil microbe complex. Science 304:1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Zhang FS, Shen JB, Zhang JL, Zuo YM, Li L, Chen XP (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China, Advances in agronomy 107. Academic, San Diego, pp 1–32

    Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, D. (2019). Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency. In: Singh, D., Prabha, R. (eds) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-32-9084-6_2

Download citation

Publish with us

Policies and ethics