Skip to main content

Advertisement

Log in

Arbuscular mycorrhizal fungi and nitrogen uptake

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nitrogen (N) is among the most important macro-nutrients significantly affecting plant growth and yield production. Accordingly, N must be supplied adequately so that optimum amounts of yield are resulted. There are different ways of supplying N to the plant including the use of chemical and biological fertilization. The chemical properties of N make it very mobile, especially under humid conditions. Hence, N must not be overfertilized with respect to the economical and environmental points of view. N Biological fertilization includes the use of plant growth-promoting rhizobacteria (PGPR) including the N-fixing bacteria, rhizobium. There are also arbuscular mycorrhizal (AM) fungi in the soil, which are symbiotic to most terrestrial plants enhancing plant growth and yield production through increasing the uptake of water and nutrients by the host plant. Numerous experiments have indicated the important role of AM fungi in enhancing P uptake by plant. However, it is yet a matter of debate that how AM fungi may affect soil N dynamic and hence plant N uptake. Some of the most important and recent aspects regarding such effects by AM fungi are highlighted, which can be of significance to health and productivity of the ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames RN, Reid CPP, Porter KL, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Aneja M, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch J, Schloter M (2006) Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135

    Article  PubMed  Google Scholar 

  • Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14:221–228

    Article  PubMed  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2010) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol (in press)

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    Article  CAS  PubMed  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón R, Ruiz-Lozano JM, Rodríguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake (15N) under increasing N supply to the soil. Can J Bot 79:1175–1180

    Article  Google Scholar 

  • Azcón R, Rodríguez R, Amora-Lazcano E, Ambrosano E (2008) Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. Eur J Soil Sci 59:131–138

    Article  Google Scholar 

  • Cliquet JB, Stewart GR (1993) Ammonia assimilation in maize infected with the VAM fungus Glomus fasciculatum. Plant Physiol 101:65–871

    Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447–454

    Article  CAS  Google Scholar 

  • Guether M et al (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hodge A (2003a) N capture by Plantago lanceolata and Brassica napus from organis material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 57:401–411

    Article  Google Scholar 

  • Hodge A (2003b) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759

    Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organicmaterial. Nature 413

  • Hodge A, Campbell CD, Fitter AH (2001b) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Nitrogen transformations and ecosystem services. Annu Rev Plant Biol 59:341–363

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Kuang R, Liao H, Yan X, Dong Y (2005) Phosphorus and nitrogen interactions in field-grown soybean as related to genetic attributes of root morphological and nodular traits. J Integr Plant Biol 47:549–559

    Article  CAS  Google Scholar 

  • Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2008) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal science and technology. NRC, Ottawa

    Google Scholar 

  • Liu A, Hamel C, Hamilton R, Smith D (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Article  CAS  Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resource-limited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth, Binghamton, pp 38–66

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner P, Crowley D, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  Google Scholar 

  • McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4. Ecosystems 13:177–193

    Article  CAS  Google Scholar 

  • Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biol 12:563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2010b) Arbuscular Mycorrhiza and soil microbes. In: Thangadurai D, Busso CA, Hijri M (eds) Mycorrhizal biotechnology. Science, CRC and Taylor and Francis Publishers, USA, 226 p

  • Miransari M (2010c) Biological fertilization. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Microbiology book series—2010 edition, Spain

  • Miransari M (2010d) Mycorrhizal fungi and ecosystem efficiency, In: Fulton SM (ed) Mycorrhizal fungi: soil, agriculture and environmental implications. Published by Nova Publishers, USA. ISBN: 978-1-61122-659-1

  • Miransari M, Mackenzie AF (2010a) Wheat (Triticum aestivum L.) grain N uptake as affected by soil total and mineral N, for the determination of optimum N fertilizer rates for wheat production. Commun Soil Sci Plant Anal 41:1644–1653

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2010b) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant Anal (in press)

  • Miransari M, Mackenzie AF (2010c) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr (in press)

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • St. John TV, Coleman DC, Reid CPP (1983) Association of vesicular–arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959

    Article  Google Scholar 

  • Subramanian K, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57:189–214

    Article  Google Scholar 

  • Tobar RM, Azcon R, Barea JM (1994a) The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 4:105–108

    Article  Google Scholar 

  • Tobar RM, Azcon R, Barea JM (1994b) improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2010) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza (in press)

  • Xie Z, Staehelin C, Vierheili H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T, Xie ZP (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of undulating and non-nodulating soybeans. Plant Physiol 108:1519–1525

    CAS  PubMed  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2010) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miransari, M. Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193, 77–81 (2011). https://doi.org/10.1007/s00203-010-0657-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0657-6

Keywords

Navigation