Skip to main content

Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges

  • Chapter
  • First Online:
Synthetic Biology of Cyanobacteria

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1080))

Abstract

With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the “H2 economy.” Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a “plug and play” chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joseck F, Nguyen T, Klahr B, Talapatra A (2016) In: D.o. energy (ed) DOE hydrogen and fuel cells program record

    Google Scholar 

  2. Yi KB, Harrison DP (2005) Low-pressure sorption-enhanced hydrogen production. Ind Eng Chem Res 44:1665–1669

    Article  CAS  Google Scholar 

  3. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  4. Whitton BA, Potts M (2007) The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media

    Google Scholar 

  5. Seckbach J (2007) Cellular origin, life in extreme habitats and astrobiology v. 11 1 online resource (xxxiv, 811 p.). Springer, Dordrecht

    Google Scholar 

  6. Stal LJ (2015) In: Gargaud M et al (eds) Encyclopedia of astrobiology. Springer, Berlin, pp 595–599

    Chapter  Google Scholar 

  7. Mandal S, Rath J (2014) Extremophilic cyanobacteria for novel drug development. Springer International Publishing AG, Cham

    Google Scholar 

  8. Stal L (2015) Nitrogen fixation in cyanobacteria. eLS 1–9

    Google Scholar 

  9. Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  10. Kumar D, Kumar HD (1992) Hydrogen production by several cyanobacteria. Int J Hydrog Energy 17:847–852

    Article  CAS  Google Scholar 

  11. Kothari A, Potrafka R, Garcia-Pichel F (2012) Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 162:105–114

    Article  PubMed  CAS  Google Scholar 

  12. Allahverdiyeva Y et al (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 35:1117–1127

    Article  CAS  Google Scholar 

  13. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by Cyanobacteria. Microb Cell Factories 4:36

    Article  CAS  Google Scholar 

  14. Leino H et al (2014) Characterization of ten H2 producing cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 39:8983–8991

    Article  CAS  Google Scholar 

  15. Nielsen M, Revsbech NP, Kuhl M (2015) Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Front Microbiol 6:726

    PubMed  PubMed Central  Google Scholar 

  16. Burow LC et al (2012) Hydrogen production in photosynthetic microbial mats in the Elkhorn Slough estuary, Monterey Bay. ISME J 6:863–874

    Article  PubMed  CAS  Google Scholar 

  17. Happe T, Schutz K, Bohme H (2000) Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182:1624–1631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sveshnikov D, Sveshnikova N, Rao K, Hall D (1997) Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett 147:297–301

    Article  CAS  Google Scholar 

  19. Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139

    Article  PubMed  CAS  Google Scholar 

  21. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrog Energy 27:1283–1289

    Article  CAS  Google Scholar 

  22. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium Plectonema boryanum. Appl Biochem Biotechnol 162:208–220

    Article  PubMed  CAS  Google Scholar 

  24. Berla BM et al (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246

    Article  PubMed  PubMed Central  Google Scholar 

  25. Camsund D, Lindblad P (2014) Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pinto F et al (2012) Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiology 158:448–464

    Article  PubMed  CAS  Google Scholar 

  27. Al-Haj L, Lui YT, Abed RM, Gomaa MA, Purton S (2016) Cyanobacteria as Chassis for industrial biotechnology: progress and prospects. Life (Basel) 6

    Google Scholar 

  28. Gao X, Sun T, Pei G, Chen L, Zhang W (2016) Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol 100:3401–3413

    Article  PubMed  CAS  Google Scholar 

  29. Peter AP et al (2015) Cyanobacterial KnowledgeBase (CKB), a compendium of cyanobacterial genomes and proteomes. PLoS One 10:e0136262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nakao M et al (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res 38:D379–D381

    Article  PubMed  CAS  Google Scholar 

  31. Ludwig M, Bryant DA (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by next-gen (SOLiD) sequencing of cDNA. Front Microbiol 2:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Choi SY et al (2016) Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq. Sci Rep 6:30584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Vijayan V, Jain IH, O'Shea EK (2011) A high resolution map of a cyanobacterial transcriptome. Genome Biol 12:R47

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kopf M et al (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21:527–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180

    Article  PubMed  CAS  Google Scholar 

  36. Ruffing AM (2013) Borrowing genes from Chlamydomonas reinhardtii for free fatty acid production in engineered cyanobacteria. J Appl Phycol 25:1495–1507

    Article  CAS  Google Scholar 

  37. Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    Article  CAS  Google Scholar 

  38. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  PubMed  CAS  Google Scholar 

  39. Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka (e) nes. Biotechnol Biofuels 6:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Davies FK, Work VH, Beliaev AS, Posewitz MC (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Frontiers in bioengineering and biotechnology 2:21

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu Y et al (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: cell factories for soluble sugars. Metab Eng 16:56–67

    Article  PubMed  CAS  Google Scholar 

  42. Xu Y et al (2011) Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods Mol Biol 684:273–293

    Article  PubMed  CAS  Google Scholar 

  43. Masukawa H, Mochimaru M, Sakurai H (2002) Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58:618–624

    Article  PubMed  CAS  Google Scholar 

  44. Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 290:186–204

    Article  PubMed  CAS  Google Scholar 

  45. Ren L, Shi D, Dai J, Ru B (1998) Expression of the mouse metallothionein-I gene conferring cadmium resistance in a transgenic cyanobacterium. FEMS Microbiol Lett 158:127–132

    Article  PubMed  CAS  Google Scholar 

  46. Yu J et al (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO(2). Sci Rep 5:8132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schwarz D, Orf I, Kopka J, Hagemann M (2013) Recent applications of metabolomics toward cyanobacteria. Metabolites 3:72–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Saha R et al (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7(e48285)

    Google Scholar 

  49. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. P Natl Acad Sci USA 109:2678–2683

    Article  Google Scholar 

  50. Montagud A, Navarro E, Fernandez de Cordoba P, Urchueguia JF, Patil KR (2010) Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol 4:156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shastri AA, Morgan JA (2005) Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog 21:1617–1626

    Article  PubMed  CAS  Google Scholar 

  52. Knoop H, Zilliges Y, Lockau W, Steuer R (2010) The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol 154:410–422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yoshikawa K et al (2011) Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol 92:347–358

    Article  PubMed  CAS  Google Scholar 

  54. Vu TT et al (2013) Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8:619–630

    Article  PubMed  CAS  Google Scholar 

  55. Qian X et al (2017) Flux balance analysis of photoautotrophic metabolism: uncovering new biological details of subsystems involved in cyanobacterial photosynthesis. Biochim Biophys Acta 1858:276–287

    Article  PubMed  CAS  Google Scholar 

  56. Vu TT et al (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comput Biol 8:e1002460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Alagesan S, Gaudana SB, Sinha A, Wangikar PP (2013) Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. Photosynth Res 118:191–198

    Article  PubMed  CAS  Google Scholar 

  58. Klanchui A, Khannapho C, Phodee A, Cheevadhanarak S, Meechai A (2012) iAK692: a genome-scale metabolic model of Spirulina platensis C1. BMC Syst Biol 6:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Beck AE, Bernstein HC, Carlson RP (2017) Stoichiometric network analysis of cyanobacterial acclimation to photosynthesis-associated stresses identifies heterotrophic niches. PRO 5:32

    Google Scholar 

  60. Yamasato A, Satoh K (2001) The establishment of conditions to efficiently screen photosynthesis-deficient mutants of Synechocystis sp. PCC 6803 by nitrofurantoin treatment. Plant Cell Physiol 42:414–418

    Article  PubMed  CAS  Google Scholar 

  61. Ortega-Ramos M et al (2014) Engineering Synechocystis PCC6803 for hydrogen production: influence on the tolerance to oxidative and sugar stresses. PLoS One 9:e89372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Anderson SL, McIntosh L (1991) Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108:3941–3946

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lindberg P, Schütz K, Happe T, Lindblad P (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrog Energy 27:1291–1296

    Article  CAS  Google Scholar 

  65. Yoshino F, Ikeda H, Masukawa H, Sakurai H (2007) High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase-deficient mutant with high nitrogenase activity. Mar Biotechnol (NY) 9:101–112

    Article  CAS  Google Scholar 

  66. Miyake J (1998) In: Zaborsky OR, Benemann JR, Matsunaga T, Miyake J, San Pietro A (eds) BioHydrogen. Springer US, Boston, pp 7–18

    Google Scholar 

  67. Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll-b and chlorophyll-d light-harvesting systems. Mol Biol Evol 22:21–28

    Article  PubMed  CAS  Google Scholar 

  68. Chen M, Li YQ, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  PubMed  CAS  Google Scholar 

  69. Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    Article  PubMed  CAS  Google Scholar 

  70. DOE (2015) In: U.S.o.A. Department of energy (ed) United States of America

    Google Scholar 

  71. Tamagnini P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    Article  PubMed  CAS  Google Scholar 

  72. Peters JW et al (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. BBA-Mol Cell Res 1853:1350–1369

    CAS  Google Scholar 

  73. Mulder DW et al (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052

    Article  PubMed  CAS  Google Scholar 

  74. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102:8368–8377

    Article  PubMed  CAS  Google Scholar 

  75. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol R 74:529–551

    Article  CAS  Google Scholar 

  76. Adams MW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Article  PubMed  CAS  Google Scholar 

  77. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Article  PubMed  CAS  Google Scholar 

  78. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  CAS  Google Scholar 

  79. Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160

    Article  PubMed  CAS  Google Scholar 

  80. Barney BM, Yurth MG, Dos Santos PC, Dean DR, Seefeldt LC (2009) A substrate channel in the nitrogenase MoFe protein. J Biol Inorg Chem : JBIC : Publ Soc Biol Inorg Chem 14:1015

    Article  CAS  Google Scholar 

  81. Morrison CN, Hoy JA, Zhang L, Einsle O, Rees DC (2015) Substrate pathways in the nitrogenase MoFe protein by experimental identification of small molecule binding sites. Biochemistry 54:2052–2060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Telor E, Stewart WDP (1977) Photosynthetic components and activities of nitrogen-fixing isolated heterocysts of Anabaena-cylindrica. Proc R Soc Ser B-Bio 198:61–86

    Article  CAS  Google Scholar 

  83. Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:557–563

    Article  PubMed  CAS  Google Scholar 

  84. Murry MA, Wolk CP (1989) Evidence that the barrier to the penetration of oxygen into heterocysts depends upon 2 layers of the cell-envelope. Arch Microbiol 151:469–474

    Article  CAS  Google Scholar 

  85. Berman-Frank I et al (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  PubMed  CAS  Google Scholar 

  86. Kumar K, Das D (2013) In: Reazeghifard R (ed) Natural and artificial photosynthesis: solar power as an energy source, 1st edn. Wiley

    Google Scholar 

  87. Hu Y, Lee CC, Ribbe MW (2012) Vanadium nitrogenase: a two-hit wonder? Dalton Trans (Cambridge, England : 2003) 41. https://doi.org/10.1039/c1031dt11535a

  88. Steunou A-S et al (2008) Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME J 2:364–378

    Article  PubMed  CAS  Google Scholar 

  89. Ludwig M, Schulz-Friedrich R, Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63:758–768

    Article  PubMed  CAS  Google Scholar 

  90. Tamagnini P et al (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20., table of contents

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Carrasco CD, Buettner JA, Golden JW (1995) Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A 92:791–795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Boison G, Bothe H, Schmitz O (2000) Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40:315–321

    Article  PubMed  CAS  Google Scholar 

  93. Oliveira P, Leitao E, Tamagnini P, Moradas-Ferreira P, Oxelfelt F (2004) Characterization and transcriptional analysis of hupSLW in Gloeothece sp. ATCC 27152: an uptake hydrogenase from a unicellular cyanobacterium. Microbiology 150:3647–3655

    Article  PubMed  CAS  Google Scholar 

  94. Axelsson R, Lindblad P (2002) Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 68:444–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Aubert-Jousset E, Cano M, Guedeney G, Richaud P, Cournac L (2011) Role of HoxE subunit in Synechocystis PCC6803 hydrogenase. FEBS J 278:4035–4043

    Article  PubMed  CAS  Google Scholar 

  96. Ghirardi ML et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  PubMed  CAS  Google Scholar 

  97. Gutekunst K et al (2014) The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J Biol Chem 289:1930–1937

    Article  PubMed  CAS  Google Scholar 

  98. McIntosh CL, Germer F, Schulz R, Appel J, Jones AK (2011) The [NiFe]-hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 works bidirectionally with a bias to H2 production. J Am Chem Soc 133:11308–11319

    Article  PubMed  CAS  Google Scholar 

  99. Stiebritz MT, Reiher M (2012) Hydrogenases and oxygen. Chem Sci 3:1739–1751

    Article  CAS  Google Scholar 

  100. Montet Y et al (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    Article  PubMed  CAS  Google Scholar 

  101. Volbeda A, Fontecilla-Camps JC (2003) The active site and catalytic mechanism of NiFe hydrogenases. Dalton Trans 4030–4038

    Google Scholar 

  102. Volbeda A, Montet Y, Vernede X, Claude Hatchikian E, Fontecilla-Camps J (2002) High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase. Int J Hydrogen Energy 27:1449–1461

    Article  CAS  Google Scholar 

  103. Ghirardi ML, Maness PC, Seibert M (2008) In: Rajeshwar K, McConnell R, Licht S (eds) Solar hydrogen generation: toward a renewable energy future. Springer, New York, pp 229–271

    Chapter  Google Scholar 

  104. Adamson H et al (2017) Retuning the catalytic bias and overpotential of a [NiFe]-hydrogenase via a single amino acid exchange at the electron entry/exit site. J Am Chem Soc 139:10677–10686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Laursen AB et al (2015) Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ Sci 8:1027–1034

    Article  CAS  Google Scholar 

  106. Posewitz MC et al (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  PubMed  CAS  Google Scholar 

  107. Kubas A et al (2017) Mechanism of O2 diffusion and reduction in FeFe hydrogenases. Nat Chem 9:88–95

    PubMed  CAS  Google Scholar 

  108. Ananyev GM, Skizim NJ, Dismukes GC (2012) Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. J Biotechnol 162:97–104

    Article  PubMed  CAS  Google Scholar 

  109. Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta (BBA) – Rev Bioenerg 768:227–255

    Article  CAS  Google Scholar 

  110. Appel J, Phunpruch S, Steinmüller K, Schulz R (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch Microbiol 173:333–338

    Article  PubMed  CAS  Google Scholar 

  111. Skizim NJ, Ananyev GM, Krishnan A, Dismukes GC (2012) Metabolic pathways for photobiological hydrogen production by nitrogenase- and hydrogenase-containing unicellular cyanobacteria Cyanothece. J Biol Chem 287:2777–2786

    Article  PubMed  CAS  Google Scholar 

  112. Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    Article  PubMed  CAS  Google Scholar 

  113. Mullineaux CW (2014) Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochim Biophys Acta 1837:503–511

    Article  PubMed  CAS  Google Scholar 

  114. Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    Article  PubMed  CAS  Google Scholar 

  115. Shimakawa G et al (2017) Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis. Sci Rep 7:41022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. La Rocca N, Moro I, Rascio N (2016) Handbook of photosynthesis, 3rd edn. CRC Press, Boca Raton, pp 369–396

    Google Scholar 

  117. Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta 1857:247–255

    Article  PubMed  CAS  Google Scholar 

  118. Allahverdiyeva Y, Isojarvi J, Zhang P, Aro EM (2015) Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. Life (Basel) 5:716–743

    CAS  Google Scholar 

  119. Flores E, Frias JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83:117–133

    Article  PubMed  CAS  Google Scholar 

  120. Navarro F, Martín-Figueroa E, Candau P, Florencio FJ (2000) Ferredoxin-dependent iron–sulfur flavoprotein glutamate synthase (GlsF) from the cyanobacterium Synechocystis sp. PCC 6803: expression and assembly in Escherichia coli. Arch Biochem Biophys 379:267–276

    Article  PubMed  CAS  Google Scholar 

  121. Lea-Smith DJ et al (2013) Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol 162:484–495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  123. Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soc Trans 33:832–835

    Article  PubMed  CAS  Google Scholar 

  124. Rakhimberdieva MG, Elanskaya IV, Vermaas WFJ, Karapetyan NV (2010) Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. Biochim Biophys Acta (BBA) – Bioenerg 1797:241–249

    Article  CAS  Google Scholar 

  125. Helman Y et al (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235

    Article  PubMed  CAS  Google Scholar 

  126. Mustila H et al (2016) The flavodiiron protein Flv3 functions as a homo-oligomer during stress acclimation and is distinct from the Flv1/Flv3 hetero-oligomer specific to the O2 photoreduction pathway. Plant Cell Physiol 57:1468–1483

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Eisenhut M et al (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci 105:17199–17204

    Article  PubMed  Google Scholar 

  128. Hishiya S et al (2008) Binary reducing equivalent pathways using NADPH-thioredoxin reductase and ferredoxin-thioredoxin reductase in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Cell Physiol 49:11–18

    Article  PubMed  CAS  Google Scholar 

  129. Flores E, Herrero A (1994) In: Peschek GA, Loffelhardt W, Schmetterer G (eds) The molecular biology of cyanobacteria. Kluwer Academic, New York

    Google Scholar 

  130. Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    Article  PubMed  CAS  Google Scholar 

  131. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970

    Article  PubMed  CAS  Google Scholar 

  132. Ort DR, Zhu XG, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    Article  PubMed  CAS  Google Scholar 

  133. Kok B (1956) Photosynthesis in flashing light. Biochim Biophys Acta 21:245–258

    Article  PubMed  CAS  Google Scholar 

  134. Nakajima Y, Fujiwara S, Sawai H, Imashimizu M, Tsuzuki M (2001) A phycocyanin-deficient mutant of Synechocystis PCC 6714 with a single-base substitution upstream of the cpc Operon. Plant Cell Physiol 42:992–998

    Article  PubMed  CAS  Google Scholar 

  135. Bernat G, Waschewski N, Rogner M (2009) Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99:205–216

    Article  PubMed  CAS  Google Scholar 

  136. Ananyev G, Dismukes GC (2005) How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84:355–365

    Article  PubMed  CAS  Google Scholar 

  137. Allakhverdiev S et al. (2010) Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic means.

    Google Scholar 

  138. Ohkawa H, Pakrasi HB, Ogawa T (2000) Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. J Biol Chem 275:31630–31634

    Article  PubMed  CAS  Google Scholar 

  139. Peschek GA, Obinger C, Paumann M (2004) The respiratory chain of blue-green algae (cyanobacteria). Physiol Plant 120:358–369

    Article  PubMed  CAS  Google Scholar 

  140. Berger S, Ellersiek U, Steinmuller K (1991) Cyanobacteria contain a mitochondrial complex I-homologous NADH-dehydrogenase. FEBS Lett 286:129–132

    Article  PubMed  CAS  Google Scholar 

  141. Alpes I, Scherer S, Böger P (1989) The respiratory NADH dehydrogenase of the cyanobacterium Anabaena variabilis: purification and characterization. Biochim Biophys Acta (BBA) – Bioenerg 973:41–46

    Article  CAS  Google Scholar 

  142. Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A 88:4275–4279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Cooley JW, Vermaas WF (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp. strain PCC 6803: capacity comparisons and physiological function. J Bacteriol 183:4251–4258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Belkin S, Padan E (1978) Sulfide-dependent hydrogen evolution in the cyanobacterium Oscillatoria limnetica. FEBS Lett 94:291–294

    Article  CAS  Google Scholar 

  145. Imashimizu M et al (2011) Regulation of F0F1-ATPase from Synechocystis sp. PCC 6803 by gamma and epsilon subunits is significant for light/dark adaptation. J Biol Chem 286:26595–26602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Gutthann F, Egert M, Marques A, Appel J (2007) Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:161–169

    Article  PubMed  CAS  Google Scholar 

  147. Moezelaar R, Bijvank SM, Stal LJ (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplastes. Appl Environ Microbiol 62:1752–1758

    PubMed  PubMed Central  CAS  Google Scholar 

  148. Kumaraswamy GK et al (2013) Reprogramming the glycolytic pathway for increased hydrogen production in cyanobacteria: metabolic engineering of NAD+-dependent GAPDH. Energy Environ Sci 6:3722–3731

    Article  CAS  Google Scholar 

  149. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Guerra LT et al (2013) Natural osmolytes are much less effective substrates than glycogen for catabolic energy production in the marine cyanobacterium Synechococcus sp. strain PCC 7002. J Biotechnol 166:65–75

    Article  PubMed  CAS  Google Scholar 

  151. Woodward J, Orr M, Cordray K, Greenbaum E (2000) Enzymatic production of biohydrogen. Nature 405:1014–1015

    Article  PubMed  CAS  Google Scholar 

  152. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Muro-Pastor MI, Reyes JC, Florencio FJ (2005) Ammonium assimilation in cyanobacteria. Photosynth Res 83:135–150

    Article  PubMed  CAS  Google Scholar 

  154. Irmler A, Sanner S, Dierks H, Forchhammer K (1997) Dephosphorylation of the phosphoprotein P(II) in Synechococcus PCC 7942: identification of an ATP and 2-oxoglutarate-regulated phosphatase activity. Mol Microbiol 26:81–90

    Article  PubMed  CAS  Google Scholar 

  155. Forchhammer K (1999) In: Peschek GA, Loffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic, New York

    Google Scholar 

  156. Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183:411–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Klotz A, Reinhold E, Doello S, Forchhammer K (2015) Nitrogen starvation acclimation in Synechococcus elongatus: redox-control and the role of nitrate reduction as an electron sink. Life (Basel) 5:888–904

    CAS  Google Scholar 

  158. Schwarz R, Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci U S A 95:11008–11013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Hickman JW et al (2013) Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942. Algal Res 2:98–106

    Article  Google Scholar 

  160. Grundel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043

    Article  PubMed  CAS  Google Scholar 

  161. Hasunuma T et al (2013) Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot 64:2943–2954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Salomon E, Bar-Eyal L, Sharon S, Keren N (2013) Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochim Biophys Acta 1827:340–347

    Article  PubMed  CAS  Google Scholar 

  163. Kumazawa S, Mitsui A (1994) Efficient hydrogen photoproduction by synchronously grown cells of a marine cyanobacterium, Synechococcus sp. Miami BG 043511, under high cell density conditions. Biotechnol Bioeng 44:854–858

    Article  PubMed  CAS  Google Scholar 

  164. Sakurai H, Masukawa H, Kitashima M, Inoue K (2015) How close we are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria: a review of the biological aspects. Life (Basel) 5:997–1018

    CAS  Google Scholar 

  165. Miyamoto K, Hallenbeck P, Benemann J (1979) Solar energy conversion by nitrogen-limited cultures of Anabaena cylindrica. J Ferment Technol

    Google Scholar 

  166. Miyamoto K, Hallenbeck PC, Benemann JR (1979) Effects of nitrogen supply on hydrogen production by cultures of Anabaena cylindrica. Biotechnol Bioeng 21:1855–1860

    Article  CAS  Google Scholar 

  167. Melnicki MR et al (2012) Sustained H(2) production driven by photosynthetic water splitting in a unicellular cyanobacterium. MBio 3:e00197–e00112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162

    Article  PubMed  CAS  Google Scholar 

  169. Weissman JC, Benemann JR (1977) Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl Environ Microbiol 33:123–131

    PubMed  PubMed Central  CAS  Google Scholar 

  170. Lambert GR, Daday A, Smith GD (1979) Hydrogen evolution from immobilized cultures of the cyanobacterium Anabaena cylindrica B629. FEBS Lett 101:125–128

    Article  PubMed  CAS  Google Scholar 

  171. Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Baebprasert W, Jantaro S, Khetkorn W, Lindblad P, Incharoensakdi A (2011) Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng 13:610–616

    Article  PubMed  CAS  Google Scholar 

  173. McNeely K et al (2014) Metabolic switching of central carbon metabolism in response to nitrate: application to autofermentative hydrogen production in cyanobacteria. J Biotechnol 182–183C:83–91

    Article  CAS  Google Scholar 

  174. Qian X et al (2016) Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113:979–988

    Article  PubMed  CAS  Google Scholar 

  175. Schutz K et al (2004) Cyanobacterial H(2) production – a comparative analysis. Planta 218:350–359

    Article  PubMed  CAS  Google Scholar 

  176. Khetkorn W, Lindblad P, Incharoensakdi A (2012) Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J Biol Eng 6:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  PubMed  CAS  Google Scholar 

  178. Masukawa H, Sakurai H, Hausinger RP, Inoue K (2017) Increased heterocyst frequency by patN disruption in Anabaena leads to enhanced photobiological hydrogen production at high light intensity and high cell density. Appl Microbiol Biotechnol 101:2177–2188

    Article  PubMed  CAS  Google Scholar 

  179. Carrieri D et al (2010) Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria. Appl Environ Microbiol 76:6455–6462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Song K, Tan X, Liang Y, Lu X (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100:7865–7875

    Article  PubMed  CAS  Google Scholar 

  181. Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  PubMed  CAS  Google Scholar 

  182. Shah V, Garg N, Madamwar D (2003) Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiol (Praha) 48:65–70

    Article  CAS  Google Scholar 

  183. Shah V, Garg N, Madamwar D (2001) Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiol Lett 194:71–75

    Article  PubMed  CAS  Google Scholar 

  184. Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrog Energy 35:6611–6616

    Article  CAS  Google Scholar 

  185. Kuwada Y, Ohta Y (1989) Hydrogen production and carbohydrate consumption by Lyngbya sp.(No. 108). Agric Biol Chem 53:2847–2851

    CAS  Google Scholar 

  186. Prabaharan D, Subramanian G (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresour Technol 57:111–116

    Article  CAS  Google Scholar 

  187. Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25:575–585

    Article  CAS  Google Scholar 

  188. Kothari A, Parameswaran P, Garcia-Pichel F (2014) Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase. Front Microbiol 5:680

    Article  PubMed  PubMed Central  Google Scholar 

  189. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  PubMed  CAS  Google Scholar 

  190. Hamilton JJ, Reed JL (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One 7:e34670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Knoop H, Steuer R (2015) A computational analysis of stoichiometric constraints and trade-offs in cyanobacterial biofuel production. Front Bioeng Biotechnol 3:47

    Article  PubMed  PubMed Central  Google Scholar 

  192. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A 99:15112–15117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP (2016) Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour Technol 213:190–197

    Article  PubMed  CAS  Google Scholar 

  195. Yoshikawa K et al (2015) Construction of a genome-scale metabolic model of arthrospira platensis NIES-39 and metabolic design for cyanobacterial bioproduction. PLoS One 10:e0144430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol Syst Biol 3:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Yoshikawa K, Toya Y, Shimizu H (2017) Metabolic engineering of Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux balance analysis. Bioprocess Biosyst Eng 40:791–796

    Article  PubMed  CAS  Google Scholar 

  198. Sengupta T, Bhushan M, Wangikar PP (2013) Metabolic modeling for multi-objective optimization of ethanol production in a Synechocystis mutant. Photosynth Res 118:155–165

    Article  PubMed  CAS  Google Scholar 

  199. Wang X, Xiong X, Sa N, Roje S, Chen S (2016) Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 100:6091–6101

    Article  PubMed  CAS  Google Scholar 

  200. Bock A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    Article  PubMed  CAS  Google Scholar 

  201. Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    Article  PubMed  CAS  Google Scholar 

  202. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Weyman PD et al (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 6:e20126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Asada Y et al (2000) Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochim Biophys Acta 1490:269–278

    Article  PubMed  CAS  Google Scholar 

  205. Berto P et al (2011) The cyanobacterium Synechocystis sp. PCC 6803 is able to express an active [FeFe]-hydrogenase without additional maturation proteins. Biochem Biophys Res Commun 405:678–683

    Article  PubMed  CAS  Google Scholar 

  206. Gartner K, Lechno-Yossef S, Cornish AJ, Wolk CP, Hegg EL (2012) Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Appl Environ Microbiol 78:8579–8586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Armstrong FA (2004) Hydrogenases: active site puzzles and progress. Curr Opin Chem Biol 8:133–140

    Article  PubMed  CAS  Google Scholar 

  208. Burgdorf T et al (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    Article  PubMed  CAS  Google Scholar 

  209. Maness PC, Smolinski S, Dillon AC, Heben MJ, Weaver PF (2002) Characterization of the oxygen tolerance of a hydrogenase linked to a carbon monoxide oxidation pathway in Rubrivivax gelatinosus. Appl Environ Microbiol 68:2633–2636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Vargas WA, Weyman PD, Tong Y, Smith HO, Xu Q (2011) [NiFe] hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Appl Environ Microbiol 77:1990–1998

    Article  PubMed  PubMed Central  Google Scholar 

  211. Maroti G et al (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microbiol 75:5821–5830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    Article  PubMed  CAS  Google Scholar 

  213. Liebgott PP et al (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997

    Article  PubMed  CAS  Google Scholar 

  214. Lautier T et al (2011) The quest for a functional substrate access tunnel in FeFe hydrogenase. Faraday Discuss 148:385–407.; discussion 421-341

    Article  PubMed  CAS  Google Scholar 

  215. Dementin S et al (2009) Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J Am Chem Soc 131:10156–10164

    Article  PubMed  CAS  Google Scholar 

  216. Brooke EJ et al (2017) Importance of the active site “Canopy” residues in an O2-tolerant [NiFe]-hydrogenase. Biochemistry 56:132–142

    Article  PubMed  CAS  Google Scholar 

  217. Huang GF et al (2015) Improved O2-tolerance in variants of a H2-evolving [NiFe]-hydrogenase from Klebsiella oxytoca HP1. FEBS Lett 589:910–918

    Article  PubMed  CAS  Google Scholar 

  218. Duche O, Elsen S, Cournac L, Colbeau A (2005) Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. FEBS J 272:3899–3908

    Article  PubMed  Google Scholar 

  219. Buhrke T, Lenz O, Krauss N, Friedrich B (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796

    Article  PubMed  CAS  Google Scholar 

  220. Cano M et al (2014) Improved oxygen tolerance of the Synechocystis sp. PCC 6803 bidirectional hydrogenase by site-directed mutagenesis of putative residues of the gas diffusion channel. Int J Hydrog Energy 39:16872–16884

    Article  CAS  Google Scholar 

  221. Swartz JR, KOO J (2017) In: USPTO (ed) The Board of Trustees of The Leland Stanford Junior University

    Google Scholar 

  222. van Thor JJ et al (2000) Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin: NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim Biophys Acta (BBA)-Bioenerg 1457:129–144

    Article  Google Scholar 

  223. Eilenberg H et al (2016) The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 9:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Yacoby I et al (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 108:9396–9401

    Article  PubMed  PubMed Central  Google Scholar 

  225. Masukawa H, Inoue K, Sakurai H (2007) Effects of disruption of homocitrate synthase genes on Nostoc sp. strain PCC 7120 photobiological hydrogen production and nitrogenase. Appl Environ Microbiol 73:7562–7570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Weyman PD, Pratte B, Thiel T (2010) Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 304:55–61

    Article  PubMed  CAS  Google Scholar 

  227. Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76:6741–6750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Masukawa H, Sakurai H, Hausinger RP, Inoue K (2014) Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int J Hydrog Energy 39:19444–19451

    Article  CAS  Google Scholar 

  229. Seibert M, Benson DK, Flynn TM (2001). USA

    Google Scholar 

  230. Katsuda T, Oshima H, Azuma M, Kato J (2006) New detection method for hydrogen gas for screening hydrogen-producing microorganisms using water-soluble Wilkinson's catalyst derivative. J Biosci Bioeng 102:220–226

    Article  PubMed  CAS  Google Scholar 

  231. Schrader PS, Burrows EH, Ely RL (2008) High-throughput screening assay for biological hydrogen production. Anal Chem 80:4014–4019

    Article  PubMed  CAS  Google Scholar 

  232. Wecker MSA, Meuser JE, Posewitz MC, Ghirardi ML (2011) Design of a new biosensor for algal H-2 production based on the H-2-sensing system of Rhodobacter capsulatus. Int J Hydrog Energy 36:11229–11237

    Article  CAS  Google Scholar 

  233. Wecker MSA, Ghirardi ML (2014) High-throughput biosensor discriminates between different algal H-2-photoproducing strains. Biotechnol Bioeng 111:1332–1340

    Article  PubMed  CAS  Google Scholar 

  234. Boyer ME, Stapleton JA, Kuchenreuther JM, Wang CW, Swartz JR (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99:59–67

    Article  PubMed  CAS  Google Scholar 

  235. Kuchenreuther JM, Stapleton JA, Swartz JR (2009) Tyrosine, cysteine, and S-adenosyl methionine stimulate in vitro [FeFe] hydrogenase activation. PLoS One 4:e7565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Stapleton JA, Swartz JR (2010) Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS One 5:e15275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Barahona E, Jimenez-Vicente E, Rubio LM (2016) Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening. Sci Rep 6:38291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Web Resources

    General Learning

    Publicly Available Cyanobacterial Databases

    Biological Hydrogen Production Targets (Department of Energy)

    Download references

    Acknowledgment

    GCD expresses his gratitude to former students and coworkers whose work provided some of the content summarized herein.

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to G. Charles Dismukes .

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2018 Springer Nature Singapore Pte Ltd.

    About this chapter

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this chapter

    Krishnan, A., Qian, X., Ananyev, G., Lun, D.S., Dismukes, G.C. (2018). Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. In: Zhang, W., Song, X. (eds) Synthetic Biology of Cyanobacteria. Advances in Experimental Medicine and Biology, vol 1080. Springer, Singapore. https://doi.org/10.1007/978-981-13-0854-3_8

    Download citation

    Publish with us

    Policies and ethics