Skip to main content
Log in

Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Three Synechocystis PCC 6803 strains with different levels of phycobilisome antenna-deficiency have been investigated for their impact on photosynthetic electron transport and response to environmental factors (i.e. light-quality, -quantity and composition of growth media). Oxygen yield and P700 reduction kinetic measurements showed enhanced linear electron transport rates—especially under photoautotrophic conditions—with impaired antenna-size, starting from wild type (WT) (full antenna) over ΔapcE- (phycobilisomes functionally dissociated) and Olive (lacking phycocyanin) up to the PAL mutant (lacking the whole phycobilisome). In contrast to mixotrophic conditions (up to 80% contribution), cyclic electron transport plays only a minor role (below 10%) under photoautotrophic conditions for all the strains, while linear electron transport increased up to 5.5-fold from WT to PAL mutant. The minor contribution of the cyclic electron transport was proportionally increased with the linear one in the ΔapcE and Olive mutant, but was not altered in the PAL mutant, indicating that upregulation of the linear route does not have to be correlated with downregulation of the cyclic electron transport. Antenna-deficiency involves higher linear electron transport rates by tuning the PS2/PS1 ratio from 1:5 in WT up to 1:1 in the PAL mutant. While state transitions were observed only in the WT and Olive mutant, a further ~30% increase in the PS2/PS1 ratio was achieved in all the strains by long-term adaptation to far red light (720 nm). These results are discussed in the context of using these cells for future H2 production in direct combination with the photosynthetic electron transport and suggest both Olive and PAL as potential candidates for future manipulations toward this goal. In conclusion, the highest rates can be expected if mutants deficient in phycobilisome antennas are grown under photoautotrophic conditions in combination with uncoupling of electron transport and an illumination which excites preferably PS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

CCCP:

Carbonyl-cyanide m-chlorophenylhydrazone

Chl:

Chlorophyll

Cyt:

Cytochrome

DCBQ:

2,6-Dichloro-benzoquinone

DCMU:

3-(3′,4′-Dichlorophenyl)-1,1-dimethylurea

FNR:

Ferredoxin:NADP+ oxidoreductase

H2-ase:

Hydrogenase

LCM :

ApcE, the 99 kDa phycobilisome core-membrane linker protein

MV:

Methyl viologen

P700 :

The primary electron donor of PS1

PBS:

Phycobilisome

PC:

Phycocyanin

PQ:

Plastoquinone

PS:

Photosystem

WT:

Wild type

References

  • Ajlani G, Vernotte C (1998) Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803. Plant Mol Biol 37:577–580. doi:10.1023/A:1005924730298

    Article  PubMed  CAS  Google Scholar 

  • Berry S, Schneider D, Vermaas WFJ, Rögner M (2002) Electron transport routes in whole cells of Synechocystis sp strain PCC 6803: the role of the cytochrome bd-type oxidase. Biochemistry 41:3422–3429. doi:10.1021/bi011683d

    Article  PubMed  CAS  Google Scholar 

  • Bonente G, Dall’Osto L, Bassi R (2008) In between photosynthesis and photoinhibition: the fundamental role of carotenoids and carotenoid-binding proteins in photoprotection. In: Pavesi L, Fauchet PM (eds) Biophotonics. Springer, New York, NY, pp 29–46

    Chapter  Google Scholar 

  • Campbell D, Hurry V, Clarke AK, Gustafsson P, Öquist G (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683

    PubMed  CAS  Google Scholar 

  • Cooley JW, Vermaas WFJ (2001) Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp strain PCC 6803: capacity comparisons and physiological function. J Bacteriol 183:4251–4258. doi:10.1128/JB.183.14.4251-4258.2001

    Article  PubMed  CAS  Google Scholar 

  • Emlyn-Jones D, Ashby MK, Mullineaux CW (1999) A gene required for the regulation of photosynthetic light harvesting in the cyanobacterium Synechocystis 6803. Mol Microbiol 33:1050–1058. doi:10.1046/j.1365-2958.1999.01547.x

    Article  PubMed  CAS  Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11:543–549. doi:10.1016/j.tplants.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  • Franck F, Juneau P, Popovic R (2002) Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta 1556:239–246. doi:10.1016/S0005-2728(02)00366-3

    Article  PubMed  CAS  Google Scholar 

  • Fujimori T, Higuchi M, Sato H, Aiba H, Muramatsu M, Hihara Y, Sonoike K (2005) The mutant of sll1961, which encodes a putative transcriptional regulator, has a defect in regulation of photosystem stoichiometry in the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol 139:408–416. doi:10.1104/pp.105.064782

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Murakami A (1987) Regulation of electron-transport composition in cyanobacterial photosynthetic system—stoichiometry among Photosystem-I and Photosystem-II complexes and their light-harvesting antennae and Cytochrome-b6 Cytochrome-f complex. Plant Cell Physiol 28:1547–1553

    CAS  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Nederlands, pp 677–692

    Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu JP, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91. doi:10.1146/annurev.arplant.58.032806.103848

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lojero C, Perez-Gomez B, Shen GZ, Schluchter WM, Bryant DA (2003) Interaction of ferredoxin : NADP(+) oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp strain PCC 7002. Biochemistry 42:13800–13811. doi:10.1021/bi0346998

    Article  PubMed  CAS  Google Scholar 

  • Herranen M, Tyystjärvi T, Aro EM (2005) Regulation of photosystem I reaction center genes in Synechocystis sp strain PCC 6803 during light acclimation. Plant Cell Physiol 46:1484–1493. doi:10.1093/pcp/pci160

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Ochiai Y, Katayama M, Ikeuchi M (2007) The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna. Plant Physiol 144:1200–1210. doi:10.1104/pp.107.099267

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H-2 production in engineered green algal cells. J Biol Chem 280:34170–34177. doi:10.1074/jbc.M503840200

    Article  PubMed  CAS  Google Scholar 

  • Leong TY, Anderson JM (1986) Light-quality and irradiance adaptation of the composition and function of pea-thylakoid membranes. Biochim Biophys Acta 850:57–63. doi:10.1016/0005-2728(86)90008-3

    Article  CAS  Google Scholar 

  • Mao HB, Li GF, Ruan X, Wu QY, Gong YD, Zhang XF, Zhao NM (2002) The redox state of plastoquinone pool regulates state transitions via cytochrome b(6)f complex in Synechocystis sp PCC 6803. FEBS Lett 519:82–86. doi:10.1016/S0014-5793(02)02715-1

    Article  PubMed  CAS  Google Scholar 

  • McCauley SW, Melis A, Tang GMS, Arnon DI (1987) Protonophores induce plastoquinol oxidation and quench chloroplast fluorescence—evidence for a cyclic, proton-conducting pathway in oxygenic photosynthesis. Proc Natl Acad Sci USA 84:8424–8428. doi:10.1073/pnas.84.23.8424

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748. doi:10.1104/pp.010498

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135. doi:10.1104/pp.122.1.127

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW, Allen JF (1986) The State-2 transition in the cyanobacterium Synechococcus-6301 can be driven by respiratory electron flow into the plastoquinone pool. FEBS Lett 205:155–160. doi:10.1016/0014-5793(86)80885-7

    Article  CAS  Google Scholar 

  • Mullineaux CW, Emlyn-Jones D (2005) State transitions: an example of acclimation to low-light stress. J Exp Bot 56:389–393. doi:10.1093/jxb/eri064

    Article  PubMed  CAS  Google Scholar 

  • Murakami A (1997) Quantitative analysis of 77 K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynth Res 53:141–148. doi:10.1023/A:1005818317797

    Article  CAS  Google Scholar 

  • Ozaki H, Ikeuchi M, Ogawa T, Fukuzawa H, Sonoike K (2007) Large-scale analysis of chlorophyll fluorescence kinetics in Synechocystis sp PCC 6803: identification of the factors involved in the modulation of photosystem stoichiometry. Plant Cell Physiol 48:451–458. doi:10.1093/pcp/pcm015

    Article  PubMed  CAS  Google Scholar 

  • Pfannschmidt T, Schütze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130. doi:10.1074/jbc.M105701200

    Article  PubMed  CAS  Google Scholar 

  • Polle JEW, Kanakagiri S, Jin E, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264. doi:10.1016/S0360-3199(02)00116-7

    Article  CAS  Google Scholar 

  • Porra RJ, Thompson WA, Kriedmann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentrations of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Rögner M, Nixon P, Diner B (1990) Purification and characterization of photosystem I and photosystem II core complexes from wild-type and phycocyanin-deficient strains of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 265:6189–6196

    PubMed  Google Scholar 

  • Schluchter WM, Shen G, Zhao J, Bryant DA (1996) Characterization of psaI, psaL mutants of Synechococcus sp. strain PCC 7002: a new model for state transitions in cyanobacteria. Photochem Photobiol 64:53–66. doi:10.1111/j.1751-1097.1996.tb02421.x

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Boussiba S, Vermaas WF (1993) Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell 5:1853–1863

    Article  PubMed  CAS  Google Scholar 

  • Sonoike K, Hihara Y, Ikeuchi M (2001) Physiological significance of the regulation of photosystem stoichiometry upon high light acclimation of Synechocystis sp PCC 6803. Plant Cell Physiol 42:379–384. doi:10.1093/pcp/pce046

    Article  PubMed  CAS  Google Scholar 

  • Teuber M, Rögner M, Berry S (2001) Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. Biochim Biophys Acta 1506:31–46. doi:10.1016/S0005-2728(01)00178-5

    Article  PubMed  CAS  Google Scholar 

  • van Thor JJ, Gruters OW, Matthijs HC, Hellingwerf KJ (1999) Localization and function of ferredoxin:NADP(+) reductase bound to the phycobilisomes of Synechocystis. EMBO J 18:4128–4136. doi:10.1093/emboj/18.15.4128

    Article  PubMed  Google Scholar 

  • van Thor JJ, Mullineaux CW, Matthijs HCP, Hellingwerf KJ (1998) Light harvesting and state transitions in cyanobacteria. Bot Acta 111:430–443

    Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272. doi:10.1021/cr050196r

    Article  PubMed  CAS  Google Scholar 

  • Yeremenko N, Jeanjean R, Prommeenate P, Krasikov V, Nixon PJ, Vermaas WFJ, Havaux M, Matthijs HCP (2005) Open reading frame ssr2016 is required for antimycin A-sensitive photosystem I-driven cyclic electron flow in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol 46:1433–1436. doi:10.1093/pcp/pci147

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Zhao JD, Mühlenhoff U, Bryant DA, Golbeck JH (1993) Psae is required for in-vivo cyclic electron flow around Photosystem-I in the cyanobacterium Synechococcus sp-Pcc-7002. Plant Physiol 103:171–180

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports by the Federal Ministry of Education and Research (BMBF, project “Bio-H2”), the EU/NEST project “Solar-H”, and the German Research Foundation (DFG, project C1 in SFB 480) are gratefully acknowledged. We thank Erdmut Thomas for excellent technical assistance, and Anna Sallai, Regina Oworah-Nkruma, and Daichi Takenaka for their help with the strains. The PAL mutant was a kind gift from Ghada Ajlani and Zoltán Gombos; fruitful discussion with the latter is also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Bernát.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernát, G., Waschewski, N. & Rögner, M. Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99, 205–216 (2009). https://doi.org/10.1007/s11120-008-9398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9398-7

Keywords

Navigation