Skip to main content
Log in

How fast can Photosystem II split water? Kinetic performance at high and low frequencies

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Molecular oxygen evolution from water is a universal signature of oxygenic photosynthesis. Detection of the presence, speed and efficiency of the enzymatic machinery that catalyzes this process in vivo has been limited. We describe a laser-based fast repetition rate fluorometer (FRRF) that allows highly accurate and rapid measurements of these properties via the kinetics of Chl-a variable fluorescence yield (Fv) in living cells and leaves at repetition rates up to 10 kHz. Application to the detection of quenching of Fv is described and compared to flash-induced O2 yield data. Period-four oscillations in both Fv and O2, caused by stimulation of primary charge recombination by the O2 evolving complex (WOC) within Photosystem II (PS II), are directly compared. The first quantitative calculations of the enzymatic parameters of the Kok model (α – miss; β – double hit; S-state populations) are reported from Fv data over a 5 kHz range of flash frequencies that is 100-fold wider than previously examined. Comparison of a few examples of cyanobacteria, green algae and spinach reveals that Arthrospira m., a cyanobacterium that thrives in alkaline carbonate lakes, exhibits the fastest water-splitting rates ever observed thus farin vivo. In all oxygenic phototrophs examined thus far, an unprecedented large increase in the Kok α and β parameters occur at both high and low flash frequencies, which together with their strong correlation, indicates that PS II-WOC centers split water at remarkably lower efficiencies and possibly by different mechanisms at these extreme flash frequencies. Revisions to the classic Kok model are anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α, β:

miss and double hit parameters in Kok model

Chl:

chlorophyll

FRRF:

fast repetition rate fluorometer

Fv:

variable fluorescence

PS II:

Photosystem II

T dark :

dark interval between single turnover flashes

STF:

single turnover flash with saturated light intensity

Y n :

yield of quantum efficiency Fv/Fm on 1...

WOC:

water-oxidizing complex

Y Z :

redox active tyrosine on the D1 protein

References

  • GM Ananyev GC Dismukes (1996) ArticleTitleHigh-resolution kinetic studies of the reassembly of the tetra-manganese cluster of photosynthetic water oxidation: proton equilibrium, cations, and electrostatics Biochemistry 35 14608–14617 Occurrence Handle8931559

    PubMed  Google Scholar 

  • GT Babcock RE Blankenship K Sauer (1976) ArticleTitleReaction-kinetics for positive charge accumulation on water side of chloroplast Photosystem 2 FEBS Lett 61 286–289 Occurrence Handle174952

    PubMed  Google Scholar 

  • V Barzda M Vengris L Valkunas R Grondelle Particlevan H Amerongen Particlevan (2000) ArticleTitleGeneration of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants Biochemistry 39 10468–10477 Occurrence Handle10956037

    PubMed  Google Scholar 

  • AM Chekalyuk FE Hoge CW Wright RN Swift (2000) ArticleTitleShort-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics Photosynth Res 66 33–44 Occurrence Handle10.1023/A:1010795820025

    Article  Google Scholar 

  • J Clausen RJ Debus W Junge (2004) ArticleTitleTime-resolved oxygen production by PS II: chasing chemical intermediates Biochim Biophys Acta Bioenerg 1655 184–194 Occurrence Handle10.1016/j.bbabio.2003.06.001

    Article  Google Scholar 

  • J Dasgupta RTV Willigen GC Dismukes (2004) ArticleTitleConsequences of structural and biophysical studies for the molecular mechanism of photosynthetic oxygen evolution: functional roles for calcium and bicarbonate Phys Chem Chem Phys 6 4793–4802

    Google Scholar 

  • JP Dekker HJ Gorkom Particlevan J Wessink L Ouwehand (1984) ArticleTitleAbsorbance difference spectra of the successive redox states of the oxygen-evolving apparatus of photosynthesis Biochim Biophys Acta 767 1–9

    Google Scholar 

  • R Wijn Particlede HJ Gorkom Particlevan (2002) ArticleTitleS-state dependence of the miss probability in Photosystem II Photosynth Res 72 217–222 Occurrence Handle10.1023/A:1016128632704

    Article  Google Scholar 

  • R Delosme (1971) ArticleTitleVariations in fluorescence yield of chlorophyll in-vivo during very intense flashes Comptes Rendus Hebdomadaires des Seances de L’Academic Academie des Sciences Serie D 272 2828–2831

    Google Scholar 

  • R Delosme P Joliot (2002) ArticleTitlePeriod four oscillations in chlorophyll a fluorescence Photosynth Res 73 165–168 Occurrence Handle10.1023/A:1020430610627

    Article  Google Scholar 

  • GC Dismukes Y Siderer (1980) ArticleTitleEPR spectroscopic observations of a manganese center associated with water oxidation in spinach chloroplasts FEBS Lett 121 78–80 Occurrence Handle10.1016/0014-5793(80)81270-1

    Article  Google Scholar 

  • KN Ferreira TM Iverson K Maghlaoui J Barber S Iwata (2004) ArticleTitleArchitecture of the photosynthetic oxygen-evolving center Science 303 1831–1838 Occurrence Handle14764885

    PubMed  Google Scholar 

  • Govindjee (1995) ArticleTitle63 Years since Kautsky – chlorophyll-a fluorescence Aust J Plant Physiol 22 131–160

    Google Scholar 

  • J He WS Chow (2003) ArticleTitleThe rate coefficient of repair of Photosystem II after photoinactivation Physiol Plant 118 297–304 Occurrence Handle10.1034/j.1399-3054.2003.00107.x

    Article  Google Scholar 

  • P Joliot (2003) ArticleTitlePeriod-four oscillations of the flash-induced oxygen formation in photosynthesis Photosynth Res 76 65–72 Occurrence Handle10.1023/A:1024946610564

    Article  Google Scholar 

  • Joliot P and Joliot A (1968) A polarographic method for detection of oxygen production and reduction of hill reagent by isolated chloroplasts. Biochim Biophys Acta 153: 625– 638

    Google Scholar 

  • P Joliot G Barbieri R Chabaud (1969) ArticleTitleA new model of photochemical centers in Photosystem-II Photochem Photobiol 10 309–329

    Google Scholar 

  • W Junge G Renger W Auslander (1977) ArticleTitleProton release into internal phase of thylakoids due to photosynthetic water oxidation – periodicity under flashing light FEBS Lett 79 155–159 Occurrence Handle19287

    PubMed  Google Scholar 

  • H Koike B Hanssum Y Inoue G Renger (1987) ArticleTitleTemperature dependence of S-state transition in thermophilic cyanobacterium,Synechococcus vulcanus Copeland, measured by absorption changes in UV region Biochim Biophys Acta 893 524–533

    Google Scholar 

  • B Kok B Forbush M McGloin (1970) ArticleTitleCooperation of charges in photosynthetic O2 evolution. I. A linear four-step mechanism Photochem Photobiol 11 457–475 Occurrence Handle5456273

    PubMed  Google Scholar 

  • ZS Kolber O Prasil PG Falkowski (1998) ArticleTitleMeasurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols Biochim Biophys Acta Bioenerg 1367 88–106 Occurrence Handle10.1016/S0005-2728(98)00135-2

    Article  Google Scholar 

  • D Lazar (1999) ArticleTitleChlorophyll a fluorescence induction Biochim Biophys Acta Bioenerg 1412 1–28 Occurrence Handle10.1016/S0005-2728(99)00047-X

    Article  Google Scholar 

  • K Maxwell GN Johnson (2000) ArticleTitleChlorophyll fluorescence-a practical guide J Exp Bot 51 659–668 Occurrence Handle10938857

    PubMed  Google Scholar 

  • L Nedbal M Trtilek D Kaftan (1999) ArticleTitleFlash fluorescence induction: a novel method to study regulation of Photosystem II J Photochem Photobiol 48 154–157 Occurrence Handle10.1016/S1011-1344(99)00032-9

    Article  Google Scholar 

  • B Osmond G Ananyev J Berry C Langdon Z Kolber GH Lin R Monson C Nichol U Rascher U Schurr S Smith D Yakir (2004) ArticleTitleChanging the way we think about global change research: scaling up in experimental ecosystem science Global Change Biol 10 393–407 Occurrence Handle10.1111/j.1529-8817.2003.00747.x

    Article  Google Scholar 

  • M Qian SF Al-Khaldi C Putnam-Evans TM Bricker RL Burnap (1997) ArticleTitlePhotoassembly of the Photosystem II (Mn)4 cluster in site-directed mutants impaired in the binding of the manganese-stabilizing protein Biochemistry 36 15244–15252 Occurrence Handle9398252

    PubMed  Google Scholar 

  • MR Razeghifard RJ Pace (1997) ArticleTitleElectron paramagnetic resonance kinetic studies of the S states in spinach PS II membranes Biochim Biophys Acta Bioenerg 1322 141–150 Occurrence Handle10.1016/S0005-2728(97)00069-8

    Article  Google Scholar 

  • F Reifarth G Christen G Renger (1997) ArticleTitleFluorometric equipment for monitoring P680+ reduction in PS II preparations and green leaves Photosynth Res 51 231–242 Occurrence Handle10.1023/A:1005881810057

    Article  Google Scholar 

  • G Renger Govindjee (1993) ArticleTitleHow plants and cyanobacteria make oxygen: 25 years of period four oscillations Photosynth Res 38 211–469 Occurrence Handle10.1007/BF00046749

    Article  Google Scholar 

  • B Renger W Weiss (1986) ArticleTitleFunctional and structural aspects of photosynthetic water oxidation Biochem Soc Trans 14 17–20 Occurrence Handle3514306

    PubMed  Google Scholar 

  • E Schlodder K Brettel HT Witt (1985) ArticleTitleRelation between microsecond reduction kinetics of photooxidized Chl-a (P-680) and photosynthetic water oxidation Biochim Biophys Acta 808 123–131

    Google Scholar 

  • U Schreiber C Neubauer U Schliwa (1993) ArticleTitlePAM fluorometer based on medium-frequency pulsed Xe-flash measuring light – a highly sensitive new tool in basic and applied photosynthesis research Photosynth Res 36 65–72 Occurrence Handle10.1007/BF00018076

    Article  Google Scholar 

  • U Schreiber T Endo HL Mi K Asada (1995) ArticleTitleQuenching analysis of chlorophyll fluorescence by the saturation pulse method – particular aspects relating to the study of eukaryotic algae and cyanobacteria Plant Cell Physiol 36 873–882

    Google Scholar 

  • U Schreiber M Kuhl I Klimant H Reising (1996) ArticleTitleMeasurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe Photosynth Res 47 103–109 Occurrence Handle10.1007/BF00017758

    Article  Google Scholar 

  • VP Shinkarev (2003) ArticleTitleOxygen evolution in photosynthesis: simple analytical solution for the Kok model Biophys J 85 435–441 Occurrence Handle12829498

    PubMed  Google Scholar 

  • M Trtilek DM Kramer M Koblizek L Nedbal (1997) ArticleTitleDual-modulation LED kinetic fluorometer J Lumin 72 IssueID-74 597–599 Occurrence Handle10.1016/S0022-2313(97)00066-5

    Article  Google Scholar 

  • A Vonshak A Abeliovich S Boussiba S Arad A Richmond (1982) ArticleTitleProduction ofSpirulina biomass – effects of environmental factors and population density Biomass 2 175–185 Occurrence Handle10.1016/0144-4565(82)90028-2

    Article  Google Scholar 

  • KL Zankel (1973) ArticleTitleRapid fluorescence changes observed in chloroplasts – their relationship to O2 evolving system Biochim Biophys Acta 325 138–148 Occurrence Handle4770725

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Charles. Dismukes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ananyev, G., Dismukes, G.C. How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84, 355–365 (2005). https://doi.org/10.1007/s11120-004-7081-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-004-7081-1

Keywords

Navigation