Skip to main content

Plant Biotechnology and Foxglove

  • Chapter
  • First Online:
Plant Biotechnology and Medicinal Plants
  • 657 Accesses

Abstract

The genus Digitalis, commonly known as the “foxglove,” is one of the most important medicinal plants belonging to the family of the Plantaginaceae. Digitalis ssp. is used exclusively for the isolation of individual cardiac glycosides, principally digoxin and lanatoside C. Cardenolides from Digitalis are well known and frequently used as pharmaceuticals for the treatment of heart disorders. An overview of recent studies which have been used using various approaches of plant tissue, organ culture, regeneration, cryopreservation, and transformation of Digitalis ssp. is presented. This chapter summarizes the recent research work of various in vitro culture of Digitalis ssp. through abiotic, biotic elicitors, and precursor feeding applied to Digitalis cultural system and their stimulating effects on the accumulation of cardenolides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aawad ZJ, Al-Khateeb EH (2006) Using tissue culture technique for the production of cardiac glycosides from roots of Digitalis purpurea L plantlets (Var. Excelsior Mixed). Iraqi J Pharm 15(1):92–98

    Google Scholar 

  • Arrillaga I, Brisa MC, Segura J (1987) Somatic embryogenesis from hypocotyl callus cultures of Digitalis obscura L. Plant Cell Rep 6:223–226

    Article  CAS  Google Scholar 

  • Berggren B, Ohlsson AB (1991) Ultrastructure of Digitalis lanata tissue cultures. Effect of gibberellic acid and SAN 9789. Protoplasma 161:58–69

    Article  CAS  Google Scholar 

  • Berglund T, Ohlsson AB (1992) Effects of ethylene and aminoethoxyvinylglycine on cardenolide accumulation in tissue cultures of Digitalis lanata. J Plant Physiol 140:395–398

    Article  CAS  Google Scholar 

  • Bosila HA, Mohamed S, Gamal SE, Bekhit M (2003) Factors affecting callus production and glycosidal content of leaf tissue culture of Digitalis lanata Ehrh. Acta Hortic 597:289–301

    Article  CAS  Google Scholar 

  • Bota C, Deliu C (2011) The effect of copper sulphate on the production of flavonoids in Digitalis lanata cell cultures. Farmacia 59(1):113–118

    CAS  Google Scholar 

  • Brauchler C, Meimberg H, Heubl G (2004) Molecular phylogeny of the genera Digitalis L. and Isoplexis (Lindley) Loudon (Veronicaceae) based on ITS and trnL-F sequences. Plant Syst Evol 248:111–128

    Article  Google Scholar 

  • Cacho M, Moran M, Herrera MM, Fernandez-Tarrago J, Corchete MP (1991) Morphogenesis in leaf, hypocotyl and root explants of Digitalis thapsi L. cultured in vitro. Plant Cell Tissue Organ Cult 25:117–123

    CAS  Google Scholar 

  • Cacho M, Moran M, Fernandez-Tarrago J, Corchete P (1995) Calcium restriction induces cardenolide accumulation in cell suspension cultures of Digitalis thapsi L. Plant Cell Rep 14:786–789

    Article  CAS  Google Scholar 

  • Cacho M, Moran M, Corchete P, Fernandez-Tarrago J (1999) Effect of calcium restriction on cardenolide accumulation in two cell lines of Digitalis thapsi grown under different light regimes. Acta Physiol Plant 21(4):335–340

    Article  CAS  Google Scholar 

  • Chavan SP, Nitnaware KM, Lokhande VH, Nikam TD (2011) Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol 89:1701–1707

    Article  CAS  Google Scholar 

  • Corchete MP, Jimenez MA, Moran M, Cacho M, Fernandez-Tarrago J (1991) Effect of calcium, manganese and lithium on growth and cardenolide content in cell suspension cultures of Digitalis thapsi L. Plant Cell Rep 10:394–396

    Article  CAS  Google Scholar 

  • Corduan G, Spix C (1975) Haploid callus and regeneration of plants from anthers of Digitalis purpurea L. Planta (Berl) 124:1–11

    Article  CAS  Google Scholar 

  • Corduk NE, Aki C (2010) Direct shoot organogenesis of Digitalis trojana Ivan., an endemic medicinal herb of Turkey. Afr J Biotechnol 9(11):1587–1591

    Article  CAS  Google Scholar 

  • Diettrich B, Popov AS, Pfeiffer B, Neumann D, Butenko R, Luckner M (1982) Cryopreservation of Digitalis lanata cell cultures. Planta Med 46(10):82–87

    Article  CAS  Google Scholar 

  • Eisenbeiss M, Kreis W, Reinhard E (1999) Cardenolide biosynthesis in light- and dark-grown Digitalis lanata shoot cultures. Plant Physiol Biochem 37(1):13–23

    Article  CAS  Google Scholar 

  • Elbaz HA, Stueckle TA, Wang HL, O’Doherty GA, Lowry DT, Sargent LM, Wang L, Dinu CZ, Rojanasakul Y (2012) Digitoxin and a synthetic monosaccharide analog inhibit cell viability in lung cancer cells. Toxicol Appl Pharmacol 258:51–60

    Article  CAS  Google Scholar 

  • Fatima Z, Mujib A, Fatima S, Arshi A, Umar S (2009) Callus induction, biomass growth, and plant regeneration in Digitalis lanata Ehrh.: influence of plant growth regulators and carbohydrates. Turk J Bot 33:393–405

    Google Scholar 

  • Gartner DE, Seitz HU (1993) Enzyme activities in cardenolide-accumulating, mixotrophic shoot cultures of Digitalis purpurea L. J Plant Physiol 141:269–275

    Article  Google Scholar 

  • Ghanem SA, Aboul-Enein AM, El-Sawy A, Rady MR, Ibrahem MM (2010) In vitro propagation and cardiac glycosides content of Digitalis lanata. Int J Acad Res 2(6):349–356

    Google Scholar 

  • Goldner EM, Seitz U, Reinhard E (1991) Cryopreservation of Digitalis lanata Ehrh. cell cultures: preculture and freeze tolerance. Plant Cell Tissue Organ Cult 24:19–24

    Article  Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tissue Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  • Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture. II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656

    Article  CAS  Google Scholar 

  • Hagimori M, Matsumoto T, Obi Y (1983) Effects of mineral salts, initial pH and precursors on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Agric Biol Chem 47(3):565–571

    CAS  Google Scholar 

  • Herrera MT, Cacho M, Corchete MP, Fernandez-Tarrago J (1990) One step shoot tip multiplication and rooting of Digitalis thapsi L. Plant Cell Tissue Organ Cult 22:179–182

    Article  Google Scholar 

  • Koga M, Hirashima K, Nakahara T (2000) The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol 17(2):99–104

    Article  CAS  Google Scholar 

  • Kreis W (2017) The foxgloves (digitalis) revisited. Planta Med 83:962–976

    Article  CAS  Google Scholar 

  • Kreis W, Hensel KA, Stuhlemmer U (1998) Cardenolide biosynthesis in foxglove. Planta Med 64:491–499

    Article  CAS  Google Scholar 

  • Kreis W, Haug B, Yücesan B (2015) Somaclonal variation of cardenolide content in Heywood’s foxglove, a source for the antiviral cardenolide glucoevatromonoside, regenerated from permanent shoot culture and callus. In Vitro Cell Dev Biol Plant 51:35–41

    Article  CAS  Google Scholar 

  • Lapena L, Perez-Bermudez P, Segura J (1992) Factors affecting shoot proliferation and vitrification in Digitalis obscura cultures. In Vitro Cell Dev Biol 28:121–124

    Article  Google Scholar 

  • Lehmann U, Moldenhauer D, Thomar S, Diettrich B, Luckner M (1995) Regeneration of plants from Digitalis lanata cells transformed with Agrobacterium tumefaciens carrying bacterial genes encoding neomycin phosphotransferase II and β-glucuronidase. J Plant Physiol 147:53–57

    Article  CAS  Google Scholar 

  • Li Y, Gao Z, Piao C, Lu K, Wang Z, Cui ML (2014) A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L. Appl Biochem Biotechnol 172(4):1807–1817

    Article  CAS  Google Scholar 

  • Linsmaier E, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Luckner M, Wichtl M (2000) Digitalis – Geschichte, Biologie, Chemie, Physiologie, Molekularbiologie, Pharmakologie, medizinische Anwendung. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Lui JHC, Staba EJ (1981) Effects of age and growth regulators on serially propagated Digitalis lanata leaf and root cultures. Planta Med 41:90–95

    Article  CAS  Google Scholar 

  • Mohammed A, Yücesan B, Demir-Ordu O, Cihangir C, Eker I, Kreis W, Gürel E (2015) In vitro regeneration and cardenolide determination of an endemic foxglove, Digitalis cariensis (Aegean Foxglove). In Vitro Cell Dev Biol Plant 51:438–444

    Article  CAS  Google Scholar 

  • Munkert J, Geiger D, Meitinger N, Rieck C, Petersen J, Kreis W (2016) Production of natural and semisynthetic cardenolides–a synthetic biology approach. Abstracts/New Biotechnol 33:S1–S213. https://doi.org/10.1016/j.nbt.2016.06.1358

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nitseh JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  Google Scholar 

  • Ohlsson AB (1990) Effects of abscisic acid on cardenolide accumulation and growth in Digitalis lanata tissue cultures. J Plant Physiol 136:510–512

    Article  CAS  Google Scholar 

  • Ohlsson AB, Berglund T (1989) Effects of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol 135:505–507

    Article  CAS  Google Scholar 

  • Ohlsson AB, Bjork L (1988) Effect of gibberellic acid on cardenolide accumulation by Digitalis lanata tissue culture grown in light and darkness. J Plant Physiol 133:535–538

    Article  CAS  Google Scholar 

  • Ohlsson AB, Bjork L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22(11):2447–2450

    Article  CAS  Google Scholar 

  • Pádua RM, Meitinger N, Dias de Souza JF, Waibel R, Gmeiner P, Braga FC, Kreis W (2012) Biotransformation of 21-O-acetyl-deoxycorticosterone by cell suspension cultures of Digitalis lanata (strain W.1.4). Steroids 77:1373–1380

    Article  Google Scholar 

  • Patil JG, Ahire ML, Nitnaware KM, Panda S, Bhatt VP, Kishor PBK, Nikam TD (2013) In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl Microbiol Biotechnol 97:2379–2393

    Article  CAS  Google Scholar 

  • Pérez-Alonso N, Wilken D, Gerth A, Jahn A, Nitzsche HM, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 99:151–156

    Article  Google Scholar 

  • Perez-Alonso N, Capote A, Gerth A, Jimenez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 110:153–162

    Article  CAS  Google Scholar 

  • Pérez-Alonso N, Chong-Perez B, Capote A, Perez A, Izquierdo Y, Angenon G, Jimenez E (2014a) Agrobacterium tumefaciens-mediated genetic transformation of Digitalis purpurea L. Plant Biotechnol Rep 8:387–397

    Article  Google Scholar 

  • Pérez-Alonso N, Labrada FA, Capote A, Pérez A, Sosa R, Mollineda A, Gonzalez EJ (2014b) Stimulation of cardenolides production in Digitalis purpurea L. shoot cultures by elicitors addition. Rev Colomb Biotecnol XVI(1):51–61

    Article  Google Scholar 

  • Pérez-Alonso N, Martín R, Capote A, Pérez A, Hernández-Díaz EK, Rojas L, Jiménez E, Quiala E, Angenon G, Garcia-Gonzales R, Chong-Pérez B (2018) Efficient direct shoot organogenesis, genetic stability and secondary metabolite production of micropropagated Digitalis purpurea L. Ind Crop Prod 116:259–266

    Article  Google Scholar 

  • Perez-Bermudez P, Brisa MC, Cornejo MJ, Segura J (1984) In vitro morphogenesis from excised leaf explants of Digitalis obscura L. Plant Cell Rep 3:8–9

    Article  CAS  Google Scholar 

  • Perez-Bermudez P, Garcia AAM, Tunon I, Gavidia I (2010) Digitalis purpurea P5βR2, encoding steroid 5β-reductase, is a novel defense-related gene involved in cardenolide biosynthesis. New Phytol 185:687–700

    Article  CAS  Google Scholar 

  • Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J Plant Physiol 151:209–215

    Article  CAS  Google Scholar 

  • Roden DM (2001) Drugs effecting renal and cardiovascular system. In: Gilman GA, Hardman JG, Limbird LE (eds) The pharmacological basis of therapeutics. McGraw Hill, New York, p 920

    Google Scholar 

  • Sahin G, Verma SK, Gurel E (2013) Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey. Plant Physiol Biochem 73:139–143

    Article  CAS  Google Scholar 

  • Saito K, Yamazaki M, Shimomura K, Yoshimatsu K, Murakoshi I (1990) Genetic transformation of foxglove (Digitalis purpurea) by chimeric foreign genes and production of cardioactive glycosides. Plant Cell Rep 9:121–124

    Article  CAS  Google Scholar 

  • Sales E, Nebauer SG, Arrillaga I, Segura J (2001) Cryopreservation of Digitalis obscura selected genotypes by encapsulation-dehydration. Planta Med 67:833–838

    Article  CAS  Google Scholar 

  • Sales E, Segura J, Arrillaga I (2003) Agrobacterium tumefaciens-mediated genetic transformation of the cardenolide-producing plant Digitalis minor L. Planta Med 69:143–147

    Article  CAS  Google Scholar 

  • Seitz HU, Gartner DE (1994) Enzymes in cardenolide-accumulating shoot cultures of Digitalis purpurea L. Plant Cell Tissue Organ Cult 38:337–344

    Article  CAS  Google Scholar 

  • Seitz U, Alfermann AW, Reinhard E (1983) Stability of biotransformation capacity in Digitalis lanata cell cultures after cryogenic storage. Plant Cell Rep 2:273–276

    Article  CAS  Google Scholar 

  • Trosset JY, Carbonell P (2015) Synthetic biology for pharmaceutical drug discovery. Drug Des Devel Ther 9:6285–6302

    Article  CAS  Google Scholar 

  • Vela S, Gavidia I, Perez-Bermijdez P, Segura J (1991) Micropropagation of juvenile and adult Digitalis obscura and cardenolide content of clonally propagated plants. In Vitro Cell Dev Biol 27:143–146

    Article  Google Scholar 

  • Verma SK, Yucesan BB, Şahin G, Gurel S, Gurel E (2011a) Direct shoot regeneration from leaf explants of Digitalis lamarckii, an endemic medicinal species. Turk J Bot 35:689–695

    Google Scholar 

  • Verma SK, Yucesan BB, Gurel S, Gurel E (2011b) Indirect somatic embryogenesis and shoot organogenesis from cotyledonary leaf segments of Digitalis lamarckii Ivan., an endemic medicinal species. Turk J Biol 35:743–750

    CAS  Google Scholar 

  • Verma SK, Sahin G, Yucesan B, Eker I, Sahbaz N, Gurel S, Gurel E (2012) Direct somatic embryogenesis from hypocotyl segments of Digitalis trojana Ivan and subsequent plant regeneration. Ind Crop Prod 40:76–80

    Article  CAS  Google Scholar 

  • Verma SK, Sahin G, Gurel E (2016) Somatic embryogenesis, pigment accumulation and synthetic seed production in Digitalis davisiana Heywood. Indian J Exp Biol 54:245–253

    PubMed  Google Scholar 

  • Verma SK, Das AK, Gantait S, Gurel S, Gurel E (2018) Influence of auxin and its polar transport inhibitor on the development of somatic embryos in Digitalis trojana. 3 Biotech 8:99

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Jaques Cattell Press, Tempe

    Book  Google Scholar 

  • Yücesan B, Müller-Uri F, Kreis W, Gürel E (2014) Cardenolide estimation in callus-mediated regenerants of Digitalis lamarckii Ivanina (dwarf foxglove). In Vitro Cell Dev Biol Plant 50:137–142

    Article  Google Scholar 

  • Yücesan B, Mohammed A, Eker I, Sameeullah M, Demir-Ordu O, Cihangir C, Şahbaz N, Kaya O, Müller-Uri F, Kreis W, Gürel E (2016) In vitro propagation and cardenolide profiling of Digitalis ferruginea subsp. schischkinii, a medicinally important foxglove species with limited distribution in Northern Turkey. In Vitro Cell Dev Biol Plant 52:322–329

    Article  Google Scholar 

  • Yücesan BB, Eker I, Lazzarini LES, Aslam N, Mohammed A, Pinto JEBP, Kreis W, Gürel E (2018) Shoot-tip cultivation and cardenolide content analysis of natural populations of Digitalis lanata Ehrh. subsp. lanata (wooly foxglove) in Thrace region. Int J Agric Wildl Sci 4:55–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rady, M.R. (2019). Plant Biotechnology and Foxglove. In: Plant Biotechnology and Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-22929-0_3

Download citation

Publish with us

Policies and ethics