Skip to main content
Log in

In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Digitalis purpurea L. (Scrophulariaceae; Foxglove) is a source of cardiotonic glycosides such as digitoxin and digoxin which are commercially applied in the treatment to strengthen cardiac diffusion and to regulate heart rhythm. This investigation deals with in vitro propagation and elicited production of cardiotonic glycosides digitoxin and digoxin in shoot cultures of D. purpurea L. In vitro germinated seedlings were used as a primary source of explants. Multiple shoot formation was achieved for three explant types (nodal, internodal, and leaf) cultured on Murashige and Skoog (MS) medium with several treatments of cytokinins (6-benzyladenine—BA; kinetin—Kin; and thidiazuron—TDZ) and auxins (indole-3-acetic acid—IAA; α-naphthaleneacetic acid—NAA; and 2,4-dichlorophenoxy acetic acid—2,4-D). Maximum multiple shoots (12.7 ± 0.6) were produced from nodal explants on MS + 7.5 μM BA. Shoots were rooted in vitro on MS containing 15 μM IAA. Rooted plantlets were successfully acclimatized. To further maintain the multiple shoot induction, mother tissue was cut into four equal parts and repeatedly sub-cultured on fresh shoot induction liquid medium after each harvest. On adaptation of this strategy, an average of 18 shoots per explant could be produced. This strategy was applied for the production of biomass and glycosides digitoxin and digoxin in shoot cultures on MS medium supplemented with 7.5 μM BA and several treatments with plant growth regulators, incubation period, abiotic (salicylic acid, mannitol, sorbitol, PEG-6000, NaCl, and KCl), biotic (Aspergillus niger, Helminthosporium sp., Alternaria sp., chitin, and yeast extract) elicitors, and precursors (progesterone, cholesterol, and squalene). The treatment of KCl, mycelial mass of Helminthosporium sp., and progesterone were highly effective for the production of cardenolides. In the presence of progesterone (200 to 300 mg/l), digitoxin and digoxin accumulation was enhanced by 9.1- and 11.9-folds respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahire ML, Ghane SG, Lokhande VH, Suprasanna P, Nikam TD (2011) Micropropagation of Uraria picta through adventitious bud regeneration and antimicrobial activity of callus. In Vitro Cell Dev Biol Plant 47:488–495

    Article  CAS  Google Scholar 

  • Batz O, Logemann E, Reinold S, Hahlbrock K (1998) Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 379:1127–1135

    Article  CAS  Google Scholar 

  • Brodelius P, Collinge MA, Funk C, Gügler K, Marques I (1989) Studies on alkaloid formation in plant cell cultures after treatment with a yeast elicitor. In: Kurz WGW (ed) Primary and secondary metabolism of plant cell cultures II. Springer-Verlag, Berlin, pp 191–199

    Chapter  Google Scholar 

  • Broeckling CD, Huhman DV, Farag MA, Smith JT, May GD, Mendes P, Dixon RA, Sumner LW (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J Exp Bot 56:323–336

    Article  CAS  Google Scholar 

  • Budavari S, O’Neill MJ, Smith A, Heckelman PE (1989) The Merck Index. An Encyclopedia of chemicals, drugs and biologicals (11th Edn), Merck & Co., Inc., Whitehouse Station, NJ, USA

  • Buitelaar RM, Cesário MT, Tramper J (1992) Elicitation of thiophene production by hairy roots of Tagetes patula. Enzyme Microb Technol 14:2–7

    Article  CAS  Google Scholar 

  • Chavan SP, Nitnaware KM, Lokhande VH, Nikam TD (2011) Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol 89:1701–1707

    Article  CAS  Google Scholar 

  • Ciddi V, Srinivasan V, Shuler ML (1995) Elicitation of Taxus sp. cell culture for production of taxol. Biotechnol Lett 17:1343–1346

    Article  CAS  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Org Cult 106:279–282

    Article  CAS  Google Scholar 

  • Debjani D, Brattati D (2005) Elicitation of diosgenin production in Dioscorea floribunda by ethylene-generating agent. Fitoterapia 76:153–156

    Article  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    Article  CAS  Google Scholar 

  • Draper J (1997) Salicyliate, superoxide synthesis and cell suicide in plant defense. Trends Plant Sci 2:162–165

    Article  Google Scholar 

  • Eisenbeiβ M, Kreis W, Reinhard E (1999) Cardenolide biosynthesis in light- and dark-grown Digitalis lanata shoot cultures. Plant Physiol Biochem 37:13–23

    Article  Google Scholar 

  • Elze H, Pilgrim H, Teuscher E (1974) Die Biotransformation von Cholesterol-26[14C] durch Gewebkulturen von Evonymus europaea and Digitalis purpurea. Pharm Unserer Zeit 29:727–728

    CAS  Google Scholar 

  • Fiola JA, Hassan MA, Swartz HJ, Bors RH, McNicols R (1990) Effect of thidiazuron, light fluence rates and kanamycin on in vitro shoot organogenesis from excised Rubus cotyledons and leaves. Plant Cell Tiss Org Cult 20:223–228

    CAS  Google Scholar 

  • Frabetti M, Gutiérrez-Pesce P, Mendoza-de Gyves E, Rugini E (2009) Micropropagation of Teucrium fruticans L., an ornamental and medicinal plant. In Vitro Cell Dev Biol Plant 45:129–134

    Article  CAS  Google Scholar 

  • Gavidia I, Pérez-Bermúdez P (1997) Cardenolides of Digitalis obscura: the effect of phosphate and manganese on growth and productivity of shoot-tip cultures. Phytochem 45:81–85

    Article  CAS  Google Scholar 

  • Gertlowski C, Peterson M (1993) Influence of the carbon source on growth and rosmarinic acid production in suspension cultures of Coleus blumei. Plant Cell Tiss Org Cult 34:183–190

    Article  CAS  Google Scholar 

  • Ghanem SA, Aboul-Enein AM, El-Sawy A, Rady MR, Ibrahem MM (2010) In vitro propagation and cardiac glycosides content of Digitalis lanata. Int J Acad Res 2:349–356

    Google Scholar 

  • Grave R, Luckner M, Vogel E, Tewes A, Nover L (1980) Growth, morphogenesis and cardenolide formation in long-term cultures of Digitalis lanata. Planta Med 40:92–103

    Article  Google Scholar 

  • Graves JMH, Smith WK (1967) Transformation of pregnenolone and progesterone by cultured plant cells. Nature 214:1248–1249

    Article  CAS  Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tiss Org Cult 104:217–225

    Article  CAS  Google Scholar 

  • Hagimori M, Matsumoto T, Obi Y (1982) Studies on the production of Digitalis cardenolides by plant tissue culture. II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media. Plant Physiol 69:653–656

    Article  CAS  Google Scholar 

  • Hagimori M, Matsumoto T, Obi Y (1983) Effects of mineral salts, initial pH and precursors on digitoxin formation by shoot forming cultures of Digitalis purpurea L. grown in liquid media. Agric Biol Chem 47:565–571

    Article  CAS  Google Scholar 

  • Hagimori M, Matsumoto T, Mikami Y (1984) Photoautotrophic culture of undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. Plant Cell Physiol 25:1099–1102

    CAS  Google Scholar 

  • Haux J (1999) Digitoxin is a potential anticancer agent for several types of cancer. Med Hypotheses 53:543–548

    Article  CAS  Google Scholar 

  • Haux J, Klepp O, Spigset O, Tretli S (2001) Digitoxin medication and cancer; case control and internal dose-response studies. BMC Cancer 1:11

    Article  CAS  Google Scholar 

  • Heftmann E (1975) Steroid hormones in plants. Lloydia 38:195–209

    CAS  Google Scholar 

  • Hirotani M, Furuya T (1977) Restoration of cardenolide-synthesis in redifferentiated shoots from callus cultures of Digitalis purpurea. Phytochem 16:610–611

    Article  CAS  Google Scholar 

  • Hultén E (1968) Flora of Alaska and Neighboring Territories. Stanford University Press, Stanford, p 1008

    Google Scholar 

  • Kang SM, Min JY, Kim YD, Kang YM, Park DJ, Jung HN, Kim SW, Choi MS (2006) Effects of methyl jasmonate and salicylic acid on the production of bilobalide and ginkgolides in cell cultures of Ginkgo biloba. In Vitro Cell Dev Biol Plant 42:44–49

    Article  CAS  Google Scholar 

  • Kim SI, Choi HK, Kim JH, Lee HS, Hong SS (2001) Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb Technol 28:202–209

    Article  CAS  Google Scholar 

  • Kreis W, May U, Reinhard E (1986) UDP-glucose: Digitoxin 160-Oglucosyltransferase from suspension-cultured Digitalis lanata cells. Plant Cell Rep 5:442–445

    Article  CAS  Google Scholar 

  • Kuate SP, Padua RM, Eisenbeiss WF, Kreis W (2008) Purification and characterization of malonyl-coenzyme A: 21-hydroxypregnane 21-Omalonyltransferase (Dp21MaT) from leaves of Digitalis purpurea L. Phytochem 69:619–626

    Article  CAS  Google Scholar 

  • Lindemann P, Luckner M (1997) Biosynthesis of pregnane derivatives in somatic embryos of Digitalis lanata. Phytochem 46:507–513

    Article  CAS  Google Scholar 

  • López-Lázaro M (2007) Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Exp Opin Ther Targets 11:1043–1053

    Article  Google Scholar 

  • López-Lázaro M, Palma DLP, Pastor N, Martín-Cordero C, Navarro E, Cortés F, Ayuso MJ, Toro MV (2003) Anti-tumor activity of Digitalis purpurea L. subsp. heywoodii. Planta Med 69:701–704

    Article  Google Scholar 

  • Lui JHC, Staba EJ (1979) Effects of precursors on serially propagated Digitalis lanata leaf and root cultures. Phytochem 18:1913–1916

    Article  CAS  Google Scholar 

  • Malik KA, Saxena PK (1992) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus actifolius A., P. aureus L., Wilczek, P. coccineus L., and P. wrightii L. Plant Cell Rep 11:163–168

    Article  CAS  Google Scholar 

  • Mastenbroek C (1985) Cultivation and breeding of Digitalis lanata in the Netherlands. Br Heart J 54:262–268

    Article  CAS  Google Scholar 

  • Mohammadi K, Liu L, Tian J, Kometiani P, Xie Z, Askari A (2003) Positive inotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na+/K+-ATPase to ERK1/2. J Cardiovasc Pharmacol 41:609–614

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–505

    Article  CAS  Google Scholar 

  • Naik PM, Manohar SH, Murthy HN (2011) Effects of macro elements and nitrogen source on biomass accumulation and bacoside A production from adventitious shoots cultures of Bacopa monnieri (L.). Acta Physiol Plant 33:1553–1557

    Article  CAS  Google Scholar 

  • Navarro E, Alonso P, Alonso S, Trujillo J, Pérez C, Toro MV, Ayuso MJ (2000) Cardiovascular activity of a methanolic extract of Digitalis purpurea spp. Heywoodii. J Ethnopharmacol 71:437–442

    Article  CAS  Google Scholar 

  • Pérez-Alonso N, Wilken D, Gerth A, Jähn A, Nitzsche H-M, Kerns G, Capote-Perez A, Jiménez E (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tiss Org Cult 99:151–156

    Article  Google Scholar 

  • Pérez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tiss Org Cult. doi:10.1007/s11240-012-0139-4

  • Pérez-Bermúdez P, García AAM, Tuñón I, Gavidia I (2010) Digitalis purpurea P5bR2, encoding steroid 5b-reductase, is a novel defense-related gene involved in cardenolide biosynthesis. New Phytol 185:687–700

    Article  Google Scholar 

  • Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26:252–258

    Article  CAS  Google Scholar 

  • Rahimtoola SH, Tak T (1996) The use of Digitalis in heart failure. Curr Probl Cardiol 21:781–853

    Article  CAS  Google Scholar 

  • Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotech Adv 20:10–153

    Google Scholar 

  • Rücker W, Jentzsch K, Wichtl M (1976) Wurzeldifferenzierung und Glycosidbildung bei in vitro kultivierten Blattexplantaten von Digitalis purpurea L. Z Pflanzenphysiol 80:323–335

    Google Scholar 

  • Sajc L, Grubisic D, Vunjak-Novakovic G (2000) Bioreactors for plant engineering: an outlook for further research. Biochem Eng J 4:89–99

    Article  Google Scholar 

  • Sales E, Nebauer SG, Arrillaga I, Segura J (2002) Plant hormones and Agrobacterium tumefaciens strain 82.139 induce efficient plant regeneration in the cardenolide-producing plant Digitalis minor. J Plant Physiol 159:9–16

    Article  CAS  Google Scholar 

  • Savitha BC, Thimmaraju R, Bhagyalakshmi N, Ravishankar GA (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake flask and bioreactor. Process Biochem 41:50–60

    Article  CAS  Google Scholar 

  • Schwinger RHG, Bundgaard H, Muller-Ehmsen J, Kjeldsen K (2003) The Na, K-ATPase in the failing human heart. Cardiovasc Res 57:913–920

    Article  CAS  Google Scholar 

  • Seitz HU, Gärtner D (1994) Enzymes in cardenolide-accumulating shoot cultures of Digitalis purpurea L. Plant Cell Tiss Org Cult 38:337–344

    Article  CAS  Google Scholar 

  • Sharma A, Purkait B (2012) Identification of medicinally active ingredient in ultra diluted Digitalis purpurea: fluorescence spectroscopic and cyclic-voltammetric study. J Anal Meth Chem. doi:10.1155/2012/109058

  • Shimomura K, Yoshimatsu K, Sauerwein M, Christen P, Toda Y, Aoki T (1992) Production of biologically active compounds by transformed cultures. In: Oono R, Hirabayashi T, Kiruchi S, Handa H, Kahwara S (ed) Plant tissue culture and gene manipulation for breeding and formation of phytochemicals, National Institute of Agrobiological Resources, Tsukuba pp 293–296

  • Stefaan P, Werbrouck O, Debergh PC (1994) Applied aspects of plant regeneration. In: Dixon RA, Gonzales RA (eds) Plant Cell Culture: A Practical Approach. Oxford University Press, Oxford, pp 127–145

    Google Scholar 

  • Stenkvist B (2001) Cardenolides and cancer. Anticancer Drugs 12:635–638

    Article  CAS  Google Scholar 

  • Vanisree M, Tsay HS (2004) Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875

    Article  CAS  Google Scholar 

  • Verma SK, Yücesan BB, Şahin G, Gürel S, Gürel E (2011) Direct shoot regeneration from leaf explants of Digitalis lamarckii, an endemic medicinal species. Turk J Bot 35:689–695

    Google Scholar 

  • Verpoorte A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wickramasinghe JAF, Hirsch PC, Munavalli SM, Caspi E (1968) Biosynthesis of plant sterols. VII. The possible operation of several routes in the biosynthesis of cardenolides from cholesterol. Biochem 7:3248–3253

    Article  CAS  Google Scholar 

  • Wilken D, Jiménez E, Hohe A, Jordan M, Gómez R, Schmeda G, Gerth A (2005) Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, New York, pp 525–537

    Chapter  Google Scholar 

  • Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S (2012) Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics 13:15

    Article  CAS  Google Scholar 

  • Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  CAS  Google Scholar 

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nature Biotechnol 14:1129–1132

    Article  CAS  Google Scholar 

  • Zhang C, Yan Q, Cheuk W, Wu J (2004) Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med 70:147–151

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2000) Improved indole alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnol Lett 22:1221–1226

    Article  CAS  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    Article  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  Google Scholar 

  • Zhao JL, Zhou LG, Wu JY (2010) Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Appl Microbiol Biotechnol 87:137–144

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from UGC, SAP-DRS III, DST-FIST and DST-PURSE program, Government of India to the Department of Botany, University of Pune, Pune is gratefully acknowledged. The author Patil JG is thankful to the UGC for the junior research fellowship under meritorious student program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukaram Dayaram Nikam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, J.G., Ahire, M.L., Nitnaware, K.M. et al. In vitro propagation and production of cardiotonic glycosides in shoot cultures of Digitalis purpurea L. by elicitation and precursor feeding. Appl Microbiol Biotechnol 97, 2379–2393 (2013). https://doi.org/10.1007/s00253-012-4489-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4489-y

Keyword

Navigation