Skip to main content
Log in

A Stable and Efficient Agrobacterium tumefaciens-Mediated Genetic Transformation of the Medicinal Plant Digitalis purpurea L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we developed a rapid and efficient method for in vitro propagation and Agrobacterium tumefaciens-mediated transformation of Digitalis purpurea L. (syn. foxglove), an important medicinal plant. Mature leaf explants of D. purpurea were used for 100 % adventitious shoot regeneration on Murashige and Skoog (MS) medium supplemented with 1 mg L−1 thidiazuron (TDZ) (a cytokine) and 0.1 mg L−1 1-naphthaleneacetic acid (NAA) (an auxin). Transformation was achieved by inoculating leaf explants with the A. tumefaciens strains GV2260/pBI121 or GV3101/pBI121. The binary vector pBI121 contained the reporter β-glucuronidase gene (GUS) and kanamycin selection marker nptII. Kanamycin-resistant shoots were regenerated directly on the selection medium 4–6 weeks after co-cultivation. Approximately, 52.2 and 60 % of kanamycin-resistant shoots transformed with Agrobacterium strains GV2260 and GV3101, respectively, showed strong GUS staining by histochemical assay. Furthermore, PCR and Southern blot analysis confirmed the presence of nptII and GUS on the chromosome of the transformed D. purpurea plants, and stable GUS expression was detected in the transformants by RT-PCR analysis. This efficient method of shoot regeneration and genetic transformation of D. purpurea will provide a powerful tool to increase and produce valuable components such as digitoxin, digoxin, and digoxigenin in D. purpurea through improved secondary metabolic pathways via a biotechnological approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albach, D. C., Meudt, H. M., & Oxelman, B. (2005). American Journal of Botany, 92, 297–315.

    Article  CAS  Google Scholar 

  2. Saito, K., Yamazaki, M., Shimomura, K., Yoshimatsu, K., & Murakoshi, I. (1990). Plant Cell Reports, 9, 121–124.

    Article  CAS  Google Scholar 

  3. Mastenbroek, C. (1985). British Heart Journal, 54, 262–268.

    Article  CAS  Google Scholar 

  4. Navarro, E., Alonso, P., Alonso, S., Trujillo, J., Pérez, C., Toro, M. V., & Ayuso, M. J. (2000). Journal of Ethnopharmacology, 71, 437–442.

    Article  CAS  Google Scholar 

  5. Pérez-Bermúdez, P., García, A. A. M., Tuñón, I., & Gavidia, I. (2010). New Phytologist, 185, 687–700.

    Article  Google Scholar 

  6. Sharma, A., & Purkait, B. (2012). Journal of Analytical Methods in Chemistry. doi 10.1155/2012/109058.

  7. Haux, J. (1999). Medical Hypotheses, 53, 543–548.

    Article  CAS  Google Scholar 

  8. Haux, J., Klepp, O., Spigset, O., & Tretli, S. (2001). BMC Cancer, 1, 11.

    Article  CAS  Google Scholar 

  9. López-Lázaro, M. (2007). Expert Opinion on Therapeutic Targets, 11, 1043–1053.

    Article  Google Scholar 

  10. Wu, B., Li, Y., Yan, H., Ma, Y., Luo, H., Yuan, L., Chen, S., & Lu, S. (2012). BMC Genomics, 13, 15.

    Article  CAS  Google Scholar 

  11. Menger, L., Vacchelli, E., Kepp, O., Eggermont, A., Tartour, E., Zitvogel, L., Kroemer, G., & Galluzzi, L. (2013). Oncoimmunology, 2, e23082.

    Article  Google Scholar 

  12. Sato, M., Murao, K., Mizobuchi, M., & Takahara, J. (1993). Biotechnology, 15, 880–882.

    CAS  Google Scholar 

  13. McCabe, M. S., Power, J. B., de Laat, A. M., & Davey, M. R. (1997). Molecular Biotechnology, 7, 79–84.

    Article  CAS  Google Scholar 

  14. Kim, M., Cui, M., Cubas, P., Gillies, A., Lee, K., Chapman, M. A., Abbott, R. J., & Coen, E. (2008). Science, 322, 1116–1119.

    Article  CAS  Google Scholar 

  15. Kreis, W., May, U., & Reinhard, E. (1986). Plant Cell Reports, 5, 442–445.

    Article  CAS  Google Scholar 

  16. Koga, K., Hirashima, K., & Nakahara, T. (2000). Plant Biotechnology, 17, 99–104.

    Article  CAS  Google Scholar 

  17. Kuate, S. P., Pádua, R. M., Eisenbeiss, W. F., & Kreis, W. (2008). Phytochemistry, 69, 619–626.

    Article  CAS  Google Scholar 

  18. Verpoorte, A., & Memelink, J. (2002). Phytochemistry Reviews, 1, 13–25.

    Article  CAS  Google Scholar 

  19. Vanisree, M., & Tsay, H. S. (2004). International Journal of Applied Science and Engineering, 2, 29–48.

    Google Scholar 

  20. Gurel, E., Yucesan, B., Aglic, E., Gurel, S., Verma, S. K., Sokmen, M., & Sokmen, A. (2011). Plant Cell, Tissue and Organ Culture, 104, 217–225.

    Article  CAS  Google Scholar 

  21. Pérez-Alonso, N., Capote, A., Gerth, A., & Jiménez, E. (2012). Plant Cell, Tissue and Organ Culture, 110, 153–162.

    Article  Google Scholar 

  22. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 81–84.

    Article  Google Scholar 

  23. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). EMBO Journal, 63, 901–3907.

    Google Scholar 

  24. Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., & Leemans, J. (1985). Nucleic Acids Research, 13, 4777–4785.

    Article  CAS  Google Scholar 

  25. Koncz, C., & Shell, J. (1986). Molecular and General Genetics, 204, 383–396.

    Article  CAS  Google Scholar 

  26. Shen, W. J., & Forde, B. G. (1989). Nucleic Acids Research, 17, 8385.

    Article  CAS  Google Scholar 

  27. Rogers, S. O., & Bendich, A. J. (1985). Plant Molecular Biology, 5, 69–76.

    Article  CAS  Google Scholar 

  28. Patil, J. G., Ahire, M. L., Nitnaware, K. M., Panda, S., Bhatt, V. P., Kishor, P. B., & Nikam, T. D. (2013). Applied Microbiology and Biotechnology, 97, 2379–2393.

    Article  CAS  Google Scholar 

  29. Sales, E., Nebauer, S. G., Arrillaga, I., & Segura, J. (2002). Journal of Plant Physiology, 159, 9–16.

    Article  CAS  Google Scholar 

  30. Cui, M., Ezura, H., Nishimura, S., Kamada, H., & Handam, T. (2004). Plant Science, 166, 873–879.

    Article  CAS  Google Scholar 

  31. Cui, M., Ichikawa, H., Sage-Ono, K., Kamada, H., & Handa, T. (2003). Journal of Horticultural Science & Biotechnology, 78, 394–399.

    Google Scholar 

  32. Sales, E., Segura, J., & Arrillaga, I. (2003). Planta Medica, 69, 143–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from Yunnan provincial Science and Technology Department (no. 2012IB001) to MLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Long Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Gao, Z., Piao, C. et al. A Stable and Efficient Agrobacterium tumefaciens-Mediated Genetic Transformation of the Medicinal Plant Digitalis purpurea L.. Appl Biochem Biotechnol 172, 1807–1817 (2014). https://doi.org/10.1007/s12010-013-0648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0648-6

Keywords

Navigation