Skip to main content

Foundations of Robotics

A Multidisciplinary Approach with Python and ROS

  • Textbook
  • Open Access
  • © 2022

You have full access to this open access Textbook

Overview

  • Provides a multidisciplinary introduction to robotics

  • Easy to understand language, examples, and exercises

  • Introduces programming concepts using Python

  • This book is open access, which means that you have free and unlimited access

Buy print copy

Softcover Book USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Table of contents (18 chapters)

  1. Contextual Design

  2. Embedded Design

  3. Interaction Design

Keywords

About this book

This open access book introduces key concepts in robotics in an easy to understand language using an engaging project-based approach. It covers contemporary topics in robotics, providing an accessible entry point to fundamentals in all the major domains. A section is dedicated to introducing programming concepts using Python, which has become a language of choice in robotics and AI. The book also introduces the reader to the Robot Operating System (ROS), the ubiquitous software and algorithmic framework used by researchers and the industry. The book provides an inspired, up-to-date and multidisciplinary introduction to robotics in its many forms, including emerging topics related to robotics on Machine Learning, ethics, Human-Robot Interaction,  and Design Thinking. The book also includes interviews with industry experts, providing an additional layer of insight into the world of robotics. The book is made open access through the generous support from Kinova Robotics. The book is suitable as an undergraduate textbook in a relevant engineering course. It is also suitable for students in art and design, high school students, and self-learners who would like to explore foundational concepts in robotics.

This book provides the ‘foundation’ for understanding how robots work. It is the accessible introduction that artists and engineers have been waiting for.”

- Ken Goldberg, William S. Floyd Jr. Distinguished Chair in Engineering, UC Berkeley.


Editors and Affiliations

  • Collaborative Robotics Lab, Human Centred Technology Research Centre, University of Canberra, Canberra, Australia

    Damith Herath

  • Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada

    David St-Onge

About the editors

Damith Herath (Ph.D., Robotics) is an Associate Professor in Robotics and Art at the University of Canberra. Damith is a multi-award winning entrepreneur and a roboticist with extensive experience leading multidisciplinary research teams on complex robotic integration, industrial and research projects for over two decades. He founded Australia’s first collaborative robotics startup in 2011 and was named one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015 and 2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted Amazon Robotics Challenge - an industry-focussed competition amongst the robotics research elite. In addition, Damith has chaired several international workshops on Robots and Art and is the lead editor of the book "Robots and Art: Exploring an Unlikely Symbiosis" - the first significant work to feature leading roboticists and artists together in the field of Robotic Art.

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering Department at the École de technologie supérieure and director of the INIT Robots Lab (initrobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the field of interactive media (structure, automatization and sensing) as workshop production director and as R&D engineer. He is an active member of national clusters centered on human-robot interaction (REPARTI) and art-science collaborations (Hexagram). He participates in national training programs for highly qualified personnel for drone services (UTILI), as well as for the deployment of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic integration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA 2019).

Bibliographic Information

Publish with us