
Chapter 5
The Robot Operating System (ROS1&2):
Programming Paradigms and
Deployment

David St-Onge and Damith Herath

5.1 Learning Objectives

The objective at the end of this chapter is to be able to:

• to know how to use (run and launch) ROS nodes and packages;
• to understand the messaging structure, including topics and services;
• to know about some of the core modules of ROS, including the Gazebo simulator,
ROSbags, MoveIt! and the navigation stack.

5.2 Introduction

We expect most readers of this book to aim at the development of a new robot or
at adapting one for specific tasks. As we mentioned in the introduction, the content
of this book covers all of the required grounds to know “what has to be done” with
an overview of several ways to address “how can it be done”. If you do not know
it already, you will quickly understand through this book that robot design calls to
many different disciplines. The amount of knowledge needed to deploy a robotic sys-
tem can sometimes feel overwhelming. However, many individual problems were
solved already, including software ecosystems to simulate and then deploy our robots
seamlessly. Advanced toolset and libraries are certainly integrated in the proprietary
solution stack of the main robotic system manufacturers (such as ABB RobotStudio
and DJI UAV simulator), but can everybody benefit of the last decades of public
research for their own robots? This is a recurrent issue in many fields, and several
libraries have been created in specific domains, such as to gather vision algorithms

D. St-Onge (B)
Department of Mechanical Engineering, ÉTS Montréal, Montreal, Canada
e-mail: david.st-onge@etsmtl.ca

D. Herath
Collaborative Robotics Lab, University of Canberra, Canberra, Australia
e-mail: Damith.Herath@Canberra.edu.au

© The Author(s) 2022
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_5&domain=pdf
mailto:david.st-onge@etsmtl.ca
 854 53550 a 854 53550 a

mailto:david.st-onge@etsmtl.ca
mailto:Damith.Herath@Canberra.edu.au
 854 57535
a 854 57535 a

mailto:Damith.Herath@Canberra.edu.au
https://doi.org/10.1007/978-981-19-1983-1_5
 -2047 61852 a -2047 61852 a

https://doi.org/10.1007/978-981-19-1983-1_5

106 D. St-Onge and D. Herath

(OpenCV) and machine learning algorithms (TensorFlow). The Robot Operating
System (ROS) is an open-source solution addressing this critical sharing need for
robotic sensing, control, planning, simulation, and deployment. Not to be confused
with a library, it is a software ecosystem (the concept of an operating system might
be too strong) facilitating the integration, maintenance, and deployment of new func-
tionalities and hardware from simulations to physical deployment. While ROS can
run code the same from several popular languages, in order to use it you will need
good knowledge of the infrastructure’s underlying concepts (and honestly quite a
bit of practice). ROS is renowned to have a steep learning curve and even more so
for developers not familiar with software engineering. This chapter aims at giving
you an overview of ROS and setting the bases to use it without being specific to any
version (only few code examples are provided).

Since ROS is made to run predominantly on Linux operating system, we will end
the chapter with a quick overview of Linux fundamental tools useful for roboticists
and ROS developers.

An Industry Perspective

Alexandre Vannobel, Team Lead,
Kortex Applications Team

Kinova inc.

I have a bachelor’s degree in biomedical engineering fromPolytechniqueMon-
tréal. I was especially interested in software development through my studies,
most especially newer technologies such as AI, robotics, and cloud comput-
ing. I had the chance to work as an intern for one summer at Kinova. Needless
to say, I learned a lot about robots during those four months I never really
learned the basics of robotics in a classroom. It was more of a learn-by-doing
experience (and it still is).
Learning the details and intricacies of ROS, Gazebo, andMoveIt was certainly
a challenge! I have also been responsible for interfacing our robots with this
framework, and there were some development and integration issues, as the
goals and objectives of people who create robots and those who use robots do

5 The Robot Operating System (ROS1&2): Programming . . . 107

sometimes differ. It is of importance in those cases to consider what users want
and how they want to use the robot, but also to consider implementation costs
and time of features.
I havewitnessed the acceleration ofROS2’s development in the last fewmonth-
s/years, and I think this is where the field is going. ROS1 is a centralized
framework made to “unite” all of the robotics paradigms and tools in one big
system, but it suffers from a lot of legacy design choices that make the indus-
try really refractory from using it, starting with communication layers and the
lack of real-time support. I think ROS2, which was designed with the same
paradigms as ROS1 but with an emphasis on addressing those issues will bring
the industrial and the research worlds closer.

5.3 Why ROS?

Before you dive into ROS usage, you must understand its roots, as they motivated
several design decisions along theway, up to the need to redefine thewhole ecosystem
for industrial and decentralized applications in ROS2. ROS is a big part of the recent
advances in robotics and its history is as important as any of the works presented in
Chap. 1.

It all startedwith twoPhDs students at Stanford: EricBerger andKeenanWyrobek.
Early in their research, around 2005, they both needed a robotic platform to deploy
and test their scientific contributions: the design of an intrinsically safe personal
robot (Wyrobek et al., 2008). In their search for the best robotic platform, they ended
up talking to several researchers, each developing their own hardware and software.
The amount of duplicated work stunned them. They will later argue that 90% of the
roboticists work involve re-writing code and building prototypes, as illustrated in
Fig. 5.1. They made it their mission to change how things worked by developing a
new common software stack and a versatile physical robot, the PR1. The fund-raising
and marketing of their idea are out of scope here, but let us just mention that they
had to work hard in order to gain some credibility (Wyrobek, 2017). While still at
Stanford, they made the first PR1 prototype, alongside its modular software stack
(inspired from Switchyard byNateKoenig) and validated its versatility with a student
coding competition and an in-house demonstration (a living room cleaning robot).

Berger and Wyrobek’s vision of a universal operating system for robots defi-
nitely stroke right in the ambitious work of Scott Hassan (Silicon Valley billion-
aire). At the time, Scott Hassan was directing a research laboratory, Willow Garage,
focused on autonomous vehicles. Over time, ROS (Willow Garage new name for
Berger–Wyrobek–Koenig-inspired software stack) and PR became the main activ-
ity of Willow Garage, involving investments of several millions of dollars. These
considerable resources clearly contributed to the rapid growth of ROS, namely by
financially supporting a great team of engineers. However, there was already a hand-

http://dx.doi.org/10.1007/978-981-19-1983-1_1
 843 28269 a 843 28269 a

http://dx.doi.org/10.1007/978-981-19-1983-1_1

108 D. St-Onge and D. Herath

Fig. 5.1 Comic commissioned at Willow Garage, from Jorge Cham, to illustrate the wasted time
in robotics R&D

ful of open-source projects for robotics at the time, including Player/Stage (Gerkey
et al., 2003), the Carnegie Mellon Navigation Toolkit (CARMEN) (Montemerlo
et al., 2003), Microsoft Robotics Studio (Jackson, 2007), OROCOS (Bruyninckx,
2001), YARP (Metta et al., 2006), and more recently the Lightweight Communica-
tions and Marshalling (LCM) (Huang et al., 2010), as well as other systems (Kramer
and Scheutz, 2007). These systems provide common interfaces that allow code shar-
ing and reuse, but did not survive as strong as ROS did.Money itself could not ensure
ROS success, they needed a community.

In Silicon Valley, people are in a secret place working on something that may or may not ever
see the light of day. They may or may not ever be able to talk about it. It’s a very different
experience to be able to - as we do here - all day, every day, just write code and put it out in
the world—Brian Gerkey, chief executive officer at Open Robotics (Huet, 2017)

5 The Robot Operating System (ROS1&2): Programming . . . 109

The ROS community is nowadays clearly what makes ROS unique,1 powerful, and
impossible to avoidwhenworking in robotics. FollowingBerker testimony (Wyrobek,
2017), they built that community over three strategies:

1. They secured the support of the other major players in open-source robotics by
involving them from the start in the definition of what ROSmust be. These people
became early ambassadors of ROS.

2. They started a wide internship program, hosting PhD students, postdoctoral fel-
lows, professors, and industry engineers from all over the world, all contributing
to ROS and then using it in their own work. Berker mentions that Willow Garage
was hosting at some point more interns than employees, counting hundreds of
them.

3. They gave away 11 of their first PR2 prototypes, running exclusively on ROS, to
major research laboratories around the world as the result of a competitive call.
The new owners had to commit to contribute significantly to the ROS code base
and to provide a proof that their institution allows them to share their research
publicly.

Unfortunately, afterWillowGarage skyrocketedROSpopularity and usageworld-
wide, the company was dissolved in 2013. It was never meant to be the end of ROS
and PR2: the hardware customer service was taken over by Clearpath Robotics and
the open-source software development by a new entity, the Open Source Robotics
Foundation (non-profit). Under OSRF, they developed the first set of ROS distri-
butions (Distro), from Medusa Hydro (2013) to Melodic Morenia (2018), but the
foundation was growing with more requests for commercial contracts. In 2017, it
splits to create the Open Source Robotics Corporation (known as Open Robotics,2)
while the foundation still maintains the ROS code base. Open robotics released the
last version of ROS1, Noetic, the first to be based on Python 3 (all previous versions
used Python 2) and a whole new version, ROS2.

5.4 What Is ROS?

Now youmaywonder if ROS is not just a glorified library. . .What is so special about
it? The minimal answer is twofold: 1. It provides mechanisms for code maintenance
and extensibility (adding new features), and 2. it connects a large community. The
ROS wiki provides a more complete answer:3

ROS is an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between pro-
cesses, and package management. It also provides tools and libraries for obtaining, building,
writing, and running code across multiple computers.

1 ROS users’ world map: http://metrorobots.com/rosmap.html.
2 https://www.osrfoundation.org/welcome-to-open-robotics/.
3 http://wiki.ros.org/ROS/Introduction.

http://metrorobots.com/rosmap.html
 7587 55962 a 7587 55962 a

http://metrorobots.com/rosmap.html
https://www.osrfoundation.org/welcome-to-open-robotics/
 -1461 57290 a -1461 57290
a

https://www.osrfoundation.org/welcome-to-open-robotics/
http://wiki.ros.org/ROS/Introduction
 -1461 58619
a -1461 58619 a

http://wiki.ros.org/ROS/Introduction

110 D. St-Onge and D. Herath

Fig. 5.2 ROS workspace
folder structure from the
assignments detailed in
Chap. 18

Wewill stick to our two-item list and just scratch the surface of some core concepts
of software engineering to understand a bit better how they unfold in ROS. Imple-
menting software engineering best practices is at the core of ROS, from a modular
architecture to a full code-building workflow. The concept of an operating system
may be a bit stretched as ROS is closer to a middleware: the abstract interface to the
hardware (POSIX of robots).

As users (i.e., not developers) of ROS, we usually do not need to know the details
of the building structure, but it is mandatory to learn the basics in order to know how

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409 2651 a 409 2651 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

5 The Robot Operating System (ROS1&2): Programming . . . 111

to properly use it. ROS provides a meta-builder, a uniform set of tools to build code
in several languages for several different computer’s environments and architecture.
In ROS1, this is done by catkin (formerly by rosbuild); while in ROS2 ament
takes over. In the end, they are really similar things, both just wrappers aroundCMake
(Cross-platform Makefile system).4 If you are a Python developer, you may think
this kind of structure is unnecessary, but that is notwithstanding how it contributes
to the portability and modularity of ROS. Portability here refers to the deployment
of your code easily in different environments, as long as it follows the ROS building
structure. Different environments can be for other users, new robots, but also in
order to be seamlessly compatible with a testing environment. We will discuss more
in details the simulation infrastructure provided by ROS in Sect. 5.6.3. Using the
ROS build tools helps integrate your code with the rest of the ROS ecosystem. The
meta-builder will generate the custom messages (topics), services, and actions your
node requires (described in Sect. 5.5.1) and make them available to other executable
(alike libraries). It will also add several paths and files to the environment in order
to execute your code and quickly find your files (e.g., configuration files). The meta-
builder will organize your work space over build, devel and src folders, as
shown in Fig. 5.2.

Let us have a quick look at this ROS folder structure. In a glimpse, the build
folder will host all the final files generated from the meta-builder while the devel
folder keeps track of the files generated by the process for testing and debug-
ging purpose. The devel folder will also include the essential setup.bash file,
which, when sourced (#source devel/setup.bash), adds the location of the
packages built to your ROS environment. Sourcing the system ROS (#source
/opt/<ROS Distro>/setup.bash) and your local work space is mandatory
to run any executable using ROS commands. This is usually part of any ROS instal-
lation procedures, both for maintained packages and third-party ones. The folder
src is the one you will end up using the most. It contains a separated folder for each
package of your work space. Software in ROS is organized in packages. A package
might contain ROS nodes, a ROS-independent library, a dataset, configuration files,
a third-party piece of software, or anything else that logically constitutes a useful
module. The goal of these packages is to provide their intended functionality in an
easy-to-consume manner so that software can be easily reused.

Each of the package’s folders must respect a structure, as shown in Fig. 5.2,
with the subfolders: include, launch, src as well as optional ones related
to the use of Python code (script) and simulation (models, urdf, worlds).
The include and src folders are part of common C/C++ code structure, the
first for headers (declarations) and the second for content (definitions). launch
contains the launched files discussed in Sect. 5.5.2. The src folder contains
one or more nodes. The nodes are executable with dedicated functionalities
and specific inputs and outputs (when applicable). The work space shown in
Fig. 5.2 is extracted from the assignments in Project Chap. 18. It combines third-
party packages from Intel for the cameras (realsense-occupancy), from

4 https://cmake.org/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24969 53882 a 24969 53882 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://cmake.org/
 -1461 58323 a -1461 58323
a

https://cmake.org/

112 D. St-Onge and D. Herath

Kinova for the Gen3 lite arm (ros_kortex), from Clearpath for the wheeled
base (dingo, dingo_robot, jackal, puma_motor_driver) and pack-
ages specific to the assignments (mobile_manip, realsense_simulator,
common_gazebo_models).

To deploy a ROS work space, you must follow the ROS installation instructions,5

and then either copy a third-party node (clone a Git repository) in order to work on
it, or make your own fresh work space.6 In both cases, you will end up writing code
inside thepackage folder, for instance insidemobile_manip_ws/src/mobile_
manip shown in Fig. 5.2. Inside of your package, if a node (an executable file in
script or C/C++ code in src) is new, you need to add it to the CMakelist.txt
building configuration file at the root of your work space for your meta-builder to be
aware of the node existence. When setting up a new ROS environment, be aware that
there is a compatibility matrix to fit each ROS distribution with Linux distributions.7

Now that we have a better idea of how the meta-builder works to provide portabil-
ity (dealing with different environments) and modularity (packages and nodes), we
can look into how modularity help connects the ROS community. ROS developers
can share their nodes on any online platform (e.g., GitHub), or make it official by
including it to a ROS distribution (indexed). A ROS indexed package must follow
perfectly theROS structure standard aswell as programming best practices (unit tests,
well commented, etc.). After a bit of training, it becomes easy to download, build,
and run nodes made by any contributor around the world. This helped strengthen a
community, one so enthusiast that it creates its own annual event, entitled ROSCon
(ROSWorld in 2021 for the Virtual version), gathering hundreds of developers and
users. ROS community is growing pretty fast, with new groups emerging, such as
ROS Industrial8 focused on developing industry-relevant capability in ROS. Where
the community can easily exchange, their software must also be able to commu-
nicate. A large part of the modularity of ROS is provided by its communication
infrastructure. A library of message types, extendable, guarantees the data format is
compatible between all users nodes. The messages, i.e., simple data structures, can
then be called in the form of topics or as part of services, as will be explained in
Sect. 5.5.1.

5.4.1 ROS1&2: ROSCore Versus DDS

ROS distributions are frequently released with major updates (enhancements). Since
2017, the core of ROS was revisited, leading to the release of a first stable ROS2
distribution in 2020, Foxy Fitzroy. The last distribution of ROS1, Noetic, will be

5 https://wiki.ros.org/ROS/Installation.
6 https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#
Create_a_ROS_Workspace.
7 https://www.ros.org/reps/rep-0003.html#platforms-by-distribution.
8 https://rosindustrial.org/.

https://wiki.ros.org/ROS/Installation
 -1461 53009
a -1461 53009 a

https://wiki.ros.org/ROS/Installation
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
 -1461 54338 a -1461 54338 a

https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment#Create_a_ROS_Workspace
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1461 56773
a -1461 56773 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
https://rosindustrial.org/
 -1461 58101
a -1461 58101 a

https://rosindustrial.org/

5 The Robot Operating System (ROS1&2): Programming . . . 113

Fig. 5.3 ROS Core role: the
librarian connecting the
nodes’ topics and services

officially supported until May 2025 and may very well be active longer than that, but
at some point all ROS users are expected to transit to ROS2. We quickly mentioned
the new building mechanism of ROS2, ament, and we will discuss some format
changes (e.g., launch files) in the upcoming sections, but the main difference is at
the core, the roscore. In ROS1, roscore is a collection of nodes and programs
that are prerequisites of a ROS-based system. You must have a roscore running in
order for ROSnodes to communicate. Launching theroscore (either automatically
with a launch file or manually with the roscore command) starts the ROS Core,
i.e., the ROS1 librarian. As shown in Fig. 5.3, the ROS Master (i.e. ROS Core)
is the one responsible for indexing all nodes running (the slaves) along with their
communication modality. In other words, in ROS1, without the ROS Core, the nodes
cannot be aware of the others, let alone start to communicate with one another.
However, when all nodes are launched and aware of the others, theoretically the
ROS Core could be killed without any node noticing.

At a glimpse:roscore is dead inROS2, nomoremaster and slaves. The commu-
nication infrastructure is fundamentally decentralized in ROS2, based on a peer-to-
peer strategy, the Data Distribution Service (DDS).Where ROS1 had a critical single
point of failure, no node can block the others from running in ROS2. DDS includes
packet transport protocol and a distributed discovery service to grab information
from the other running nodes.9 This paves the way to facilitating the development
and deployment of multi-robot systems, maybe even so-called robotic swarms.

Before getting into the ROS world, you need to pick your version. If you are
looking for more existing packages and a more stable API, use ROS1. If you are

9 For more information: https://design.ros2.org/articles/ros_on_dds.html.

https://design.ros2.org/articles/ros_on_dds.html
 7176 57867 a 7176 57867 a

https://design.ros2.org/articles/ros_on_dds.html

114 D. St-Onge and D. Herath

looking for long-term stability, better performance, and newer algorithms, use ROS2.
Just do not try to learn both from scratch! If you are still in doubt about which one
to go for, ignore ROS1 and use ROS2, since ROS 1 will be going away in a couple
of years.

5.4.2 ROS Industrial

While we will be limiting our discussions to ROS 1 & ROS 2 in this book, it is
worth noting that another flavor of ROS exists called ROS Industrial or ROS-I for
short. 10 As the name suggests, ROS-I is a concerted effort to bring the best of ROS
to industrial-scale robotics. While, in general, research robotics systems such as the
PR2 follow an open-source ethos, most commercial robotic systems use closed and
proprietary software. This makes it extremely difficult to develop cross-platform
projects using them or adapt existing commercial hardware systems outside their
intended ecosystems. Frustrated by this situation, Shaun Edwards, in 2012, created
the initial ROS-I repository in collaboration with Yaskawa Motoman Robotics com-
pany and Willow Garage while he was at Southwest Research Institute to facilitate
the adoption of ROS in manufacturing and automation. Since then, many commer-
cial robotic platforms have been integrated within ROS-I. Core developments of
ROS-I are independently managed through several industrial consortia that require
a paid membership to participate. A good understanding of ROS should set you up
for a relatively easy transition to ROS-I if you eventually venture into commercial
robotics.

5.5 Key Features from the Core

The following sections will give an overview of the main features included in ROS.
While the focus is on ROS1 (the assignments presented in Project Chap. 18 run
on Noetic), the concepts are shared with ROS2, but some format differences are
discussed when applicable.

5.5.1 Communication Protocols

Whether it is decentralized (ROS2) or centralized (ROS1), the communication
between nodes is structured in messages.11 Figure 5.4 shows the Odometry mes-

10 https://rosindustrial.org/.
11 http://wiki.ros.org/Messages.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 31811 40598 a 31811 40598 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://rosindustrial.org/
 -1104 55666 a -1104 55666 a

https://rosindustrial.org/
http://wiki.ros.org/Messages
 -1104 56994 a -1104 56994 a

http://wiki.ros.org/Messages

5 The Robot Operating System (ROS1&2): Programming . . . 115

Fig. 5.4 Content of ROS
topic Odometry

sage with some of the message types it contains. Several message libraries come
along with a ROS installation, but developers can also generate custom messages for
their node. At run time, the availability of these data structure can be advertised over
topics. Topics are barely names, i.e., labels, put on a given data structure (message)
from a given node. A node may publish data to any number of topics and simultane-
ously have subscriptions to any number of topics. Topics are one of the main ways
in which data is exchanged between nodes and therefore between different parts of
the system (between robots and with a monitoring ground station). In order to share
information, a node needs to advertise a topic and then publish content (messages)
into it. The first part is done in the initialization part of the node’s code, while the
latter is done each time new data must be shared, commonly inside the code’s main
loop at a fixed frequency. On the other side, the node(s) that needs a topic’s content
will subscribe to it. The subscriber will associate a callback function triggered for
each new incoming message.

ROS comes with a really handy debugging tool for topics, the terminal command
rostopic (ros2 topic in ROS2). It can be used to show all available topics
from the nodes running: rostopic list (ros2 topic list), to print the
content (message) of a given topic: rostopic echo odom (ros2 topic
echo odom) and to show the publishing frequency of a topic: rostopic hz
odom (ros2 topic hz odom).

Topics are connectionless communication (classic publisher/subscriber system)
in the sense that the publisher of the message does not know if any other node is
listening. ROS also provides with a connection-oriented protocol (synchronous RPC
calls), the services. Services have a client and a server, and both will acknowledge
the information received by the other at each transaction. Topics and services use the
same containers (message types) for information, but are better suited to different
applications. For instance, topics are useful to stream the reading from a sensor,
while services are better suited to share the configuration of a node or change a

116 D. St-Onge and D. Herath

Fig. 5.5 Example of a launch file for: left is the XML format for ROS1 and right, the Python format
new to ROS2

node’s state. Finally, ROS provides the actions protocol (asynchronous RPC calls),
combining topics and services. A basic action includes a goal service, a result service,
and a feedback topic. Its format is well suited to interface withmission planners, such
as QGroundControl.12

5.5.2 Launch and Run

To deploy a ROS systemmeans to start several executable files, i.e., nodes. The most
basic command to do so is rosrun <package name> <node name> (ros2
run <package name> <node name>), which is most often run in a different
terminal for each node. However, in ROS1 you need a roscore before any node can be
run, so youmust use the command roscore beforehand. Using this strategy to start
the nodes individually will lead to numerous terminal tabs that must be monitored
simultaneously. ROS provides another way to launch several nodes altogether: the
launch files. In ROS1, using a launch file will also automatically start the roscore.

The format of the launchfile differs betweenROS1andROS2, as shown inFig. 5.5.
ROS1 uses an XML file while ROS2 encourages the use of Python scripts (ROS2
still supports XML format). Nevertheless, both serve to call nodes with parameters
and can nest other launch files. Calling several nodes simultaneously is great, but
what happens if you need twice the same node, for instance to process images from
two cameras? You can always use the rosrun command to launch nodes afterward
that are not in the launch file; they will connect to the same ecosystem automatically.
However, a powerful feature of launch files is the group tag to force nodes into
a given namespace: the same node can then be launched several times in different
parallel namespaceswithout interferingwith one another. This is essential to simulate
multi-robot systems.

12 http://qgroundcontrol.com/.

http://qgroundcontrol.com/
 -1104 57867 a -1104 57867 a

http://qgroundcontrol.com/

5 The Robot Operating System (ROS1&2): Programming . . . 117

5.5.3 ROS Bags

Now say you developed a new collision avoidance algorithm, based on the data of
several sensors. You deploy it on your robot and go for a run with it. No matter how
well it goes, you will want to extract performance metrics and assess afterward the
issues you faced. This calls for a logging system, luckily ROS provides a robust and
versatile one out-of-the-box! The ROS bag format is a logging format for storing
ROS messages in files. Files using this format are called bags and have the file
extension .bag. Bags are recorded, played back, and generally manipulated by
tools in the rosbag (ros2 bag) and rqt_bag (no counterpart yet available in
ROS2) packages. You can replay your field experiments: republish all sensor data
at their real frequency (or simulate different publishing rates), including packet loss
or any disturbance from the experiment. rosbags also has an API that provides
features to quickly parse and analyze or export your data. For instance in Python, it
may look like:

import rosbag bag = rosbag.Bag(’test.bag’) for topic, msg, t

in bag.read_messages(topics=’odom’):

print("Odometry is x={}, y={} and z={} at time {} sec".

format(

msg.pose.pose.position.x, msg.pose.pose.position.y,

msg.pose.pose.position.z,

t.toSec())

bag.close()

Rosbags are key to tuning your algorithms and sharing your time-consuming
experimental data with your peers.

5.5.4 Transforms and Visualization

Can you imagine a useful, physical robot that does not move or watch something
else move? Any useful application in ROS will inevitably have some component
that needs to monitor the position of a part, a robot link, or a tool. The ROS way of
dealing with relative motion is encompassed in TF (transforms). TF allows seeking
the geometrical transformation between any connected frames, even back through
time. It allows you to ask questions like “What was the transform between A and B
10 seconds ago?"

One possible example is a camera, mounted on a robot, tracking markers in the
scene, as shown inFig. 5.6. This example shows the robot odometry frame (themobile
base motion—camera_odom_frame), the camera pose (fixed to the base—
camera_fisheye2_frame), and the frame of the tag detected (ETS_target).
The tag is detected in the camera_fisheye2_frame, and its pose is extracted
and transformed directly incamera_odom_frame to visualize all frames together.

118 D. St-Onge and D. Herath

Fig. 5.6 Visualization in RViz of a fish-eye camera feed and the reference frames resulting from a
fiducial marker detection

As long as you have the position and orientation of an object (six degrees of
freedom), you can broadcast its TF in ROS. For instance in Python, it may look like:

import tf2_ros # import the TF library br =

tf2_ros.TransformBroadcaster() # create de broadcaster t =

geometry_msgs.msg.TransformStamped() # create the message

container

fill the message: t.header.stamp = rospy.Time.now()

t.header.frame_id = "world"

t.child_frame_id = "myrobotframe"

t.transform.translation.x = x

t.transform.translation.y = y

t.transform.translation.z = z

q = tf_conversions.transformations.quaternion_from_euler

(psi, phi, theta)

t.transform.rotation.x = q[0]

t.transform.rotation.y = q[1]

t.transform.rotation.z = q[2]

t.transform.rotation.w = q[3]

br.sendTransform(t) # broadcast the transform

Notice in the snippet above the format of the orientation (rotation): ROS, by default,
requires to use quaternions. tf_conversions library provides the tool to convert
rotation matrices and Euler angles to quaternions and back, but for more information
about the mathematical representation of the quaternions, read Chap. 6. Often TF are
used to define the fixed geometrical relations between a robot’s parts. You can then

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 28126 57070 a 28126 57070 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

5 The Robot Operating System (ROS1&2): Programming . . . 119

rather easily use the pose of an object detected by a camera mounted somewhere
on your robot to feed the wheels motors with appropriate commands, such as “my
camera sees the door 2 m ahead, but is positioned 50cm from the wheel axis, so let’s
go forward by only 1.5 m”.

The viewer shown in Figs. 5.6, 5.7, and 5.8 is RViz, short for ROS Visualization.
It is a 3D viewer supporting almost all types of topics, namely 2D and 3D LiDAR
point clouds, camera stream, and dynamic reference frames motion. The viewer is
launched simply with rosrun rviz rviz (or simply rviz). Then using the
graphical interface Add button, you can select the topic you want to monitor. While
RVizwasmade tomonitor your robot’s topics, it can also host interactivemarkers that
can be moved in the visualization window and will broadcast their updated position
out in ROS. An example used to command a robotic arm is shown in Fig. 5.8.

5.6 Additional Useful Features

Several community contributions went into the essential toolset of ROS and greatly
contribute to its popularity. This section covers a handful of what we consider to be
the most important for mobile robots and manipulators. All of these packages are
leveraged in at least one of the assignments of Project Chap. 18.

5.6.1 ROS Perception and Hardware Drivers

When dealing with your hardware integration, the same logic applies as for the soft-
ware parts discussed previously: you do not want to waste time in reproducing what
was done already to interface with each component. Manufacturers have their coun-
terpart to this logic: it can be really expensive to develop drivers for several different
operating systems and software solutions to accommodate potential clients. ROS
acts here again as a standard, connecting the manufacturers to a large community.
Hundreds of hardware manufacturers deliver ROS nodes with their products, namely
SICK, Clearpath, Kinova, Velodyne, Bosch, and Intel. The driver node made by the
manufacturer most often deals only with low-level communication into ROS com-
patible topics and services. From that point, the meta-package ROS perception helps
with filtering, synchronizing, and visualization of the data. For instance, ROS per-
ception includes pcl_ros to manage point clouds. It includes filters such as voxel
grid filter and pass-through filter, but also geometrical segmentation of the data to
extract planes or polygons from the point cloud. An example point cloud published
as a ROS topic is shown in Fig. 5.7. For dealing with images (cameras),cv_bridge
and several other packages bring the powerful features of the open library OpenCV
to process images within ROS code. This provides the classic algorithms for contours
detection, images filtering (blur, etc.), and histogram generation. From there, many

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 24902 25986 a 24902 25986 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18

120 D. St-Onge and D. Herath

Fig. 5.7 DARPA subterranean 2021 spot-1 finals map made by CTU-CRAS-NORLAB team

machine learning algorithms have ROS wrappers, such as the powerful You Only
Look Once (YOLO)13 for object recognition.

Finally, ROS perception also contains a package integrating several of the
most up-to-date algorithms for simultaneously localization and mapping (SLAM),
gmapping. Based on either on 2D LiDAR, 3D LiDAR, stereo camera, or a single
camera, the package outputs a rough map of the environment explored by the robot
without any a priori knowledge of the robot position in the map. These powerful
algorithms are nowadays essential to any mobile robot deployment in GPS-denied
environment. Several other, and more recent, SLAM solutions are also available on
GitHub from research laboratories around the world, but gmapping is maintained
by OSRF. When the environment is known (a 2D map is available), you may prefer
to use the ROS package for adaptive Monte Carlo localization (AMCL). This one
uses a particle filter to find the best candidates in position when simulating your laser
scan from the map provided. This is the strategy deployed in the assessments 4 and
5 of Project Chap. 18.

5.6.2 ROS Navigation and MoveIt!

Let us assume that the perception stack grants us with the position of the robot
and a map of its environment. In order to fulfill any mission, the robot will need to
move in this environment, either by finding an optimal trajectory (mobile robot) or
by computing an optimal posture for a manipulator to reach a given pose with its
tool (i.e., gripper). For mobile robots, conventional methods of indoor path planning

13 https://github.com/leggedrobotics/darknet_ros.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 6285 40505 a 6285 40505 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://github.com/leggedrobotics/darknet_ros
 -1104 56901
a -1104 56901 a

https://github.com/leggedrobotics/darknet_ros

5 The Robot Operating System (ROS1&2): Programming . . . 121

Fig. 5.8 Kinova Gen3 lite manipulator controlled by interactive markers andMoveIt! planner from
RViz

often refer to the optimal path as the shortest path that can be obtained from various
algorithms such as A*, Dijkstra’s (Palacz et al., 2019) or rapid-exploring random
trees (RRT). These algorithms, and a lot more, are available out of the box from
public ROS packages.

For manipulators, many numerical solvers for multibody dynamics have been
proposed over the past decades and along with them path planners that either use
sampling-based algorithms or optimization-based algorithms. These algorithms and
several otherswere integrated in theOpenMotionPlanningLibrary,14 itself integrated
in the MoveIt! ROS planning package.15

Figure 5.8 showsMoveIt! in action through RViz using interactive markers. These
markers can simply be dragged to the desired goal and then the left menu grants the
user access to different planners and their configurable parameters. MoveIt! can also
consider static objects in the scene to plan a solution considering collision avoidance.
These objects can be added manually or imported from the Gazebo simulator.

5.6.3 Gazebo Simulator

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed
simulator makes it possible to rapidly test algorithms, design robots, perform regres-
sion testing, and train artificial intelligence systems using realistic scenarios. Gazebo

14 https://ompl.kavrakilab.org/.
15 https://moveit.ros.org/.

https://ompl.kavrakilab.org/
 -1104 59195
a -1104 59195 a

https://ompl.kavrakilab.org/
https://moveit.ros.org/
 -1104 60523 a -1104 60523 a

https://moveit.ros.org/

122 D. St-Onge and D. Herath

Fig. 5.9 View from Gazebo simulator with the mobile manipulator of the assignment in Project
Chap. 18

offers the ability to accurately and efficiently simulate robots in complex indoor and
outdoor environments. It encompasses a robust physics engine, with convenient pro-
grammatic and graphical interfaces. Best of all, alike ROS, Gazebo is free, open
source, and has a vibrant community.

Gazebo simulator can load any mesh in obj or dae format and then use it with
realistic dynamics to simulate robot motion and collisions. Alike ROS, Gazebo is
modular, so the simulation plugins for dynamics, can be customized as well as any
sensor data. Several manufacturers provide plugins (e.g., Intel cameras) and models
(e.g., Kinova robots) to simulate their hardware within Gazebo. Figure 5.9 shows
a simulation environment from the Project Chap. 18, including Intel cameras, the
fully actuated Kinova Gen3 lite manipulator, the differential drive Clearpath Dingo
mobile base, and a world made out of walls, furniture, and functional doors.

Gazebo is by far the most popular simulator for ROS users, but it lacks realistic
rendering and can be pretty heavy to run for a large number of robots (swarms).
To address the first limitation, Gazebo is being phased out in favor of Ignition.16

Nevertheless, developers in vision-based machine learning will prefer more realistic
environments such asUnreal17 andUnity18 (which has aROSplugin19). For the latter,
swarm roboticists will use dedicated simulators, such as ARGoS20 (which also has
a ROS plugin21).

16 https://ignitionrobotics.org/.
17 https://www.unrealengine.com/.
18 https://unity.com/.
19 https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/.
20 https://www.argos-sim.info/
21 https://github.com/BOTSlab/argos_bridge/.

http://dx.doi.org/10.1007/978-981-19-1983-1_18
 409
21934 a 409 21934 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
http://dx.doi.org/10.1007/978-981-19-1983-1_18
 20488 37857 a 20488 37857 a

http://dx.doi.org/10.1007/978-981-19-1983-1_18
https://ignitionrobotics.org/
 -1104 53882
a -1104 53882 a

https://ignitionrobotics.org/
https://www.unrealengine.com/
 -1104 55210 a -1104 55210 a

https://www.unrealengine.com/
https://unity.com/
 -1104 56538 a -1104 56538 a

https://unity.com/
https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
 -1104 57867
a -1104 57867 a

https://resources.unity.com/unitenow/onlinesessions/simulating-robots-with-ros-and-unity/
https://www.argos-sim.info/
 -1104 59195
a -1104 59195 a

https://www.argos-sim.info/
https://github.com/BOTSlab/argos_bridge/
 -1104 60523 a -1104 60523 a

https://github.com/BOTSlab/argos_bridge/

5 The Robot Operating System (ROS1&2): Programming . . . 123

5.7 Linux for Robotics

We mentioned previously that ROS is not exactly an operating system, but rather a
middleware. Still, many people are referring to it as the Linux for robotics (Wyrobek,
2017). There is some truth in this name, as ROS is extending the Linux operating
system to robotic applications. Until ROS2, it was only able to run properly on
Linux. It means that the majority of ROS users must know their way around in a
Linux environment.

We will take for granted that you start on a computer already set up with Linux
(Dell sells certified computers preloaded with Linux22) or that you know how to
launch a Linux virtual machine in Windows or OSX (although virtual machines are
not recommended for hardware experiments and computer-intense simulations).

As we mentioned earlier, when installing ROS on a Linux system, look into the
ROS-Linux compatibility matrix first.23 In all of Linux distributions, you will need
to input some terminal commands to get things done. Knowing the basic commands
in a Linux terminal is also rather essential for embedded development, as the most
popular on-board computers (e.g., Raspberry Pi, NVidia) will run a version of Linux
and can be accessed through a remote terminal session (e.g., ssh). Themost essentials
terminal commands are as follows:

• cd: Change Directory. cd .. is used to get to the parent directory.
• ls: List Files.ls -la:will list all files (hidden ones too) alongwith the properties
(permissions and size).

• mv: MoVe file.
• cp: CoPy file.
• rm: ReMove file.
• df: Disk Filesystem (disk usage). df -h allows to see the memory usage on all
disks in human readable format.

• reset: to remove all output from the terminal screen and remove any local
environment variables changes.

To edit and compile your ROS code, you want an integrated development envi-
ronment (IDE) that can help you find the right names and definitions of functions,
as well as compile and even debug your code. IDEs are like glasses: you need to try
them to find the one that fits you best. A lot of IDEs are available for Python (Atom,
Eclipse, PyCharm, etc.) and C/C++ (Visual Code, CLion). Linux experts sometimes
prefer the highly configurable text editors such as Sublime, Emacs, and Vim, for
which plugins and tutorials are available for ROS. However, the majority of the ROS
developers seems to prefer Eclipse, for its user-friendly interface, its support for sev-
eral programming languages, and its ROS plugin seamlessly integrated. Other more
recent options are drawing attention: Microsoft Visual Code, or its open-source ROS
version, Roboware, and the web-based ROSDevelopment Studio (RDS). While they

22 https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/.
23 https://www.ros.org/reps/rep-0003.html#platforms-by-distribution.

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
 -1104 56538 a -1104 56538
a

https://www.dell.com/en-us/work/shop/overview/cp/linuxsystems/
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
 -1104 57867
a -1104 57867 a

https://www.ros.org/reps/rep-0003.html#platforms-by-distribution

124 D. St-Onge and D. Herath

all have pros and cons, they also all do essentially the same thing. If you are looking
for an IDE, we suggest VS Code. If you just want a code editor, we like Sublime
Text.

5.8 Chapter Summary

This chapter introduced the Robotic Operating System, ROS. We first discussed
the motivation for its conception by going through its origin and then we gave an
overview of its core advantages, leading to its current popularity. The chapter covered
both ROS1 and ROS2, with a short stopover on the centralized versus decentralized
differences between them.We then covered the essential features from the ROS Core
and third-party additions. Finally, we gave essential hints to new Linux users, as this
operating system is still the best suited one for ROS development.

5.9 Revision Questions

Question #1
In ROS1, what is the result of the command rosrun robot_manip dingo_
control?

1. It launches the robot_manip node of the dingo_control package, but a
roscore must have been started beforehand.

2. It launches the dingo_control node of the robot_manip package, but a
roscore must have been started beforehand.

3. It launches the robot_manip node of the dingo_control package and a
roscore if none is present.

4. It launches the dingo_control node of the robot_manip package and a
roscore if none is prese[]nt.

Question #2
Associate the following ROS concepts:

1. Topic
2. Service
3. Message

with their definition:

A A link created by a node to post information to those who subscribe to it.
B A standardized container for the exchange of information between nodes.
C A blocking communication that awaits the response of the called node.

Question #3
Is ROS1 a completely decentralized software ecosystem? Explain why.

5 The Robot Operating System (ROS1&2): Programming . . . 125

Question #4
Give the relative path in the ROS workspace to a C++ node source file (doit.cpp)
of a package named realsense_occupancy.

5.10 Further Reading

The best way to learn ROS is to play with it. ROS wiki24 is a great place to start
learningmore about the core packages. ROSwiki also contains several basic tutorials
to practice with topics, services, actions, and launch file either in C++ or in Python.
If you are looking for an extension to this chapter, including more explanations on
the functionalities of ROS, the open access online book of Jason M. O’Kane, A
Gentle Introduction to ROS25 is a perfect resource. For the one that prefers physical
books, going in depth in all of the ROS components, along with detailed example,
look into the book of Quigley, Gerkey, and Smart, Programming Robots with ROS.
Unfortunately, there is still a lack of good books specific to ROS2, but the online
official documentation is always a great resource.26

References

Bruyninckx,H. (2001).Open robot control software: The orocos project. InProceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), vol. 3, pp.
2523–2528, vol. 3. https://doi.org/10.1109/ROBOT.2001.933002

Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The player/stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings of the 11th International Conference on Advanced
Robotics, pp. 317–323.

Huang, A. S., Olson, E., & Moore, D. C. (2010). LCM: lightweight communications and mar-
shalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4057–4062. https://doi.org/10.1109/IROS.2010.5649358

Huet, E. (2017). The not-so-secret code that powers robots around the globe. Bloomberg The Quint.
Jackson, J. (2007). Microsoft robotics studio: A technical introduction. IEEE Robotics Automation
Magazine, 14(4), 82–87. https://doi.org/10.1109/M-RA.2007.905745

Kramer, J., & Scheutz, M. (2007). Development environments for autonomous mobile robots: A
survey. Autonomous Robots, 22(2), 101–132. https://doi.org/10.1007/s10514-006-9013-8

Metta, G., Fitzpatrick, P., & Natale, L. (2006). Yarp: Yet another robot platform. International
Journal of Advanced Robotic Systems, 3(1), 8.

Montemerlo, M., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile robot
programming: The carnegie mellon navigation (carmen) toolkit. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453),
vol. 3, pp. 2436–2441. https://doi.org/10.1109/IROS.2003.1249235

24 https://docs.ros.org/.
25 https://www.cse.sc.edu/~jokane/agitr.
26 such as https://docs.ros.org/en/rolling/.

https://doi.org/10.1109/ROBOT.2001.933002
 6114 31964 a 6114 31964 a

https://doi.org/10.1109/ROBOT.2001.933002
https://doi.org/10.1109/IROS.2010.5649358
 3519 38606 a 3519 38606 a

https://doi.org/10.1109/IROS.2010.5649358
https://doi.org/10.1109/M-RA.2007.905745
 8317
41926 a 8317 41926 a

https://doi.org/10.1109/M-RA.2007.905745
https://doi.org/10.1007/s10514-006-9013-8
 15982 44140 a 15982 44140
a

https://doi.org/10.1007/s10514-006-9013-8
https://doi.org/10.1109/IROS.2003.1249235
 7526 50782 a 7526 50782 a

https://doi.org/10.1109/IROS.2003.1249235
https://docs.ros.org/
 -1104 55210 a -1104 55210
a

https://docs.ros.org/
https://www.cse.sc.edu/protect unhbox voidb@x penalty @M {}jokane/agitr
 -1104 56538 a -1104 56538 a

https://www.cse.sc.edu/~jokane/agitr
https://docs.ros.org/en/rolling/
 1875 57867
a 1875 57867 a

https://docs.ros.org/en/rolling/

126 D. St-Onge and D. Herath

Palacz, W., Ślusarczyk, G., Strug, B., & Grabska, E. (2019). Indoor robot navigation using graph
models based on bim/ifc. In International Conference on Artificial Intelligence and Soft Com-
puting, Springer, pp 654–665.

Wyrobek, K. (2017). The origin story of ros, the linux of robotics. In IEEE Spectrum.
Wyrobek, K. A., Berger, E. H., Van der Loos, H. M., & Salisbury, J. K. (2008). Towards a personal
robotics development platform: Rationale and design of an intrinsically safe personal robot. In
2008 IEEE International Conference on Robotics and Automation, pp. 2165–2170. https://doi.
org/10.1109/ROBOT.2008.4543527

David St-Onge (Ph.D., Mech. Eng.) is an Associate Professor in the Mechanical Engineering
Department at the École de technologie supérieure and director of the INIT Robots Lab (ini-
trobots.ca). David’s research focuses on human-swarm collaboration more specifically with respect
to operators’ cognitive load and motion-based interactions. He has over 10 years’ experience in the
field of interactive media (structure, automatization and sensing) as workshop production director
and as R&D engineer. He is an active member of national clusters centered on human-robot inter-
action (REPARTI) and art-science collaborations (Hexagram). He participates in national training
programs for highly qualified personnel for drone services (UTILI), as well as for the deployment
of industrial cobots (CoRoM). He led the team effort to present the first large-scale symbiotic inte-
gration of robotic art at the IEEE International Conference on Robotics and Automation (ICRA
2019).

Damith Herath is an associate professor in Robotics and Art at the University of Canberra. He is
a multi-award winning entrepreneur and a roboticist with extensive experience leading multidis-
ciplinary research teams on complex robotic integration, industrial, and research projects for over
two decades. He founded Australia’s first collaborative robotics start-up in 2011 and was named
one of the most innovative young tech companies in Australia in 2014. Teams he led in 2015 and
2016 consecutively became finalists and, in 2016, a top-ten category winner in the coveted Ama-
zon Robotics Challenge—an industry-focused competition among the robotics research elite. In
addition, he has chaired several international workshops on Robots and Art and is the lead edi-
tor of the book “Robots and Art: Exploring an Unlikely Symbiosis”—the first significant work to
feature leading roboticists and artists together in the field of Robotic Art.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1109/ROBOT.2008.4543527
 30714 6061 a 30714 6061 a

https://doi.org/10.1109/ROBOT.2008.4543527
https://doi.org/10.1109/ROBOT.2008.4543527
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	5 The Robot Operating System (ROS1&2): Programming Paradigms and Deployment
	5.1 Learning Objectives
	5.2 Introduction
	5.3 Why ROS?
	5.4 What Is ROS?
	5.4.1 ROS1&2: ROSCore Versus DDS
	5.4.2 ROS Industrial

	5.5 Key Features from the Core
	5.5.1 Communication Protocols
	5.5.2 Launch and Run
	5.5.3 ROS Bags
	5.5.4 Transforms and Visualization

	5.6 Additional Useful Features
	5.6.1 ROS Perception and Hardware Drivers
	5.6.2 ROS Navigation and MoveIt!
	5.6.3 Gazebo Simulator

	5.7 Linux for Robotics
	5.8 Chapter Summary
	5.9 Revision Questions
	5.10 Further Reading
	References

