
Chapter 8
How to Move? Control, Navigation
and Path Planning for Mobile Robots

Jiefei Wang and Damith Herath

8.1 Learning Objectives

You will learn about:

• Controllers and control techniques used in robotics, including the PID controller
• Mobile robot locomotion types
• Robot path planning and obstacle avoidance.

8.2 Introduction

When we think of robots, we think of them as manipulators, such as in manufac-
turing facilities where they are fixed to a location or robots that are moving about
(Fig. 8.1). Robots that move around in the environment are called mobile robots.
This chapter looks at mobile robots, how to control them, different locomotion types
and algorithms used for planning paths, and obstacle avoidance while navigating.
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Fig. 8.1 A Kinova Gen3 lite robot arm mounted on a Clearpath Dingo Indoor mobile robotic
platform (left) alongside a Jackal Unmanned Ground Vehicle used for outdoor navigation. (right)
(Credits Clearpath/Kinova)

An Industry Perspective

Dana Leslie
Former Clearpath Robotics’ Employee

Like many young engineers, I have my parents to thank for enabling me to
explore the world through robotics. The enjoyment of playing with lego, elec-
tronics kits, and computer programming at a young age, was undoubtedly the
catalyst that resulted in my career trajectory.

After studying electrical engineering at the University of Victoria, I was
fortunate to get a start in the industry by landingmyfirst job at CellulaRobotics,
a subsea robotics company. It was here that our team designed, manufactured,
and deployed robots to the darkest depths of the ocean, studying and learning
about the undersea world!
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From water onto land, the robots I’ve helped design continued to evolve;
developing wheeled terrestrial systems at Clearpath Robotics in Ontario, and
most recently legged humanoids at Agility Robotics in Oregon.

During the design of amobile robot, diodeswere incorporated into the power
system to enable battery hot-swapping. Consequently, the energy generated by
back-EMF from the motors (while braking or being pushed) could not be
absorbed by the battery. The result was an uncontrolled increase in voltage,
causing various subsystems to glitch, with the robot lifelessly rolling to a halt…

This type of challenge is trivial to conceptualise, butmuchharder to quantify.
It’s only apparent in a fully integrated system, is correlated to things outside
of your control, and is intensified when carrying heavy payloads or traveling
down ramps. (Increased mechanical to electrical energy conversion.)

In the end, through comprehensive and iterative testing, the solution was a
combination of reducing deceleration rates, varying system capacitance, and
utilising transient-voltage-suppression diodes.

It’s nice to be able to power your robot by giving it a push, but it’s critical
that your robot behaves when it’s in a hurry to stop.

Innovation in embedded sensing, processing, power electronics, and battery
chemistries have collectively advanced the robotics industry throughout my
career.

Precise and energy-dense servo-actuators have recently enabled cutting-
edge humanoid robotic development that is poised to redefine the workforce;
automating the dullest and dangerous of human tasks.

These same actuators have advanced robotic manipulation, enabling the
technology to emerge from the factory line and onto the front lines. Robotic
arms are no longer just being used to assemble cars, they’re being used to flip
hamburgers and pack your groceries!

8.3 Mobile Robots

Mobile robots have receivedmuch attention in the last few decades due to their ability
to explore complex environments such as space, rescue operations, and accomplish
tasks autonomously without human effort. Mobile robots can be broadly categorised
as wheeled, legged, and flying robots.
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8.3.1 Wheeled Robots

Wheeled robots traverse around the ground using motorised wheels to propel them-
selves and a comparatively easier to design, build, and operate for movement in flat
or rocky terrain than robots that use legs or wings. They are also better controlled
as they have fewer degrees of freedom than flying robots. One of the challenges of
wheeled robots is that they cannot operate well over certain ground surfaces, such
as sharp declines, rugged terrain, or areas with low friction. Nevertheless, wheeled
robots are themost popular in the consumer market due to the low cost and simplicity
of differential steering mechanisms they employ. Although wheeled robots can have
any number of wheels, the mechanisms need to be modified to keep dynamic balance
based on the number of wheels. Three or four wheels are the most popular and suffi-
cient for static and dynamic balance among all wheeled robots, which are widely
used in research projects.

8.3.1.1 Kinematic Modelling

This book primarily discusses two types of robots and their motions, mobile robots
and arm type robots. In either type, we need to understand how the movements
generated by the actuators translate into complex body movements. To design a
robot to act in the environment, we need to understand these geometric relationships
of motion.

Kinematics is the study of motions of points, bodies, and systems of bodies (such
as robots) without considering the forces acting on these systems. In this chapter,
we will discuss some common wheel configurations and their respective kinematic
models used in mobile robots that use motors to drive them around. Then, Chap. 10
will delve into modelling kinematics of arm-type robots.

8.3.1.2 Holonomic Drive

Holonomic refers to the relationship between controllable and total degrees of
freedom of a robot. If the controllable degree of freedom is equal to the total degrees
of freedom, then the robot is said to be Holonomic. A robot built on castor wheels
or omniwheels is a good example of a holonomic drive. It can freely move in any
direction, and the controllable degrees of freedom is equal to total degrees of freedom.

If the controllable degree of freedom is less than the total degrees of freedom, it
is known as non-holonomic drive. For example, a car has three degrees of freedom:
its position in two axes and orientation. However, there are only two controllable
degrees of freedom: acceleration (or braking) and the turning angle of the steering
wheel. This makes it difficult for the driver to turn the car in any direction (unless it
skids or slides).
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For a typical differential drive robot (see Fig. 8.4), the non-holonomic constraint
could be written as:

ẋ sin φ − ẏ cosφ = 0

8.3.1.3 Three-Wheeled Robots

One of the most common actuator configurations to drive a mobile robot is the
three-wheeled configuration (also known as the tricycle model).

There are two types of three-wheeled robots:

• Differentially steered—two separately powered wheels with an extra free rotating
wheel. The robot direction can be changed by varying the relative rate of rotation
of the two separately driven wheels. If both the wheels are driven in the same
direction and speed, the robot will go straight. Otherwise, depending on the speed
of rotation and its direction (Fig. 8.2).

• Two wheels powered by a single actuator and a powered steering wheel.

The centre of gravity in this type of robot has to lay inside the triangle formed by the
wheels. If too much weight is allocated to the side of the free rotating wheel, it will
cause an imbalance that could make the robot tip over.

Let us now explore how a differentially steered three-wheeled robot could be
modelled kinematically.

The model presented in Fig. 8.3 introduces a virtual wheel for the front set of
differential drive wheels. The twowheels along the centreline of the robot essentially
represent the whole system. With the said constraints, the robot can only exercise
two degrees of freedom. Thus, the derivation of the kinematic model refers to the
robot’s simplified model. The instantaneous centre of rotation (also known as the
instantaneous velocity centre) in this model refers to an imaginary point attached to
the robot where at a given point in time has zero velocity while the rest of the robot
body is in planar motion. You could imagine the robot to be rotating around this
point at the time instance being considered.

It can be shown that the continuous time form of the vehicle model (with respect
to the centre of the front wheel) can be derived as follows:

ẋ(t) = V (t) cos(φ(t) + γ (t))

ẏ(t) = V (t) sin(φ(t) + γ (t))

ϕ̇(t) = V (t) sin(γ (t))

B

where x(t) and y(t) denote the position of the vehicle, the angle φ(t) is the orientation
of the robot with respect to the x-axis, and V (t) represents the linear velocity of the
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Fig. 8.2 Differentially steered three-wheeled robot. The front two wheels (top) are powered by
two DC motors. A back castor wheel is free to rotate around and is not powered

front wheel. The angle γ is defined as the steer angle of the vehicle. B is the base
length between the two sets of wheels.

A simpler kinematic model can be derived from the model discussed earlier in
many simple robot configurations where the system makes the velocity of the robot
V (t) and the angular velocity of the robot φ̇(t) directly available (e.g. via wheel
encoders). Then the process model for the corresponding system can be represented
as follows (Fig. 8.4):

Following simpler equations can be derived then:

ẋ(t) = V (t) cos(φ(t))

ẏ(t) = V (t) sin(φ(t))

ϕ̇(t) = ω(t)
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Fig. 8.3 Vehicle geometry of a typical three-wheeled robot

Fig. 8.4 Simplified robot
model

8.3.1.4 Two-Wheeled Robots

Two-wheeled robots are harder to balance than other types because they must keep
moving to maintain upright. The centre of gravity of the robot body is kept below the
axle. Usually, this is accomplished by mounting the batteries below the body. They
can have their wheels parallel to each other, and these vehicles are called dicycles,
or one wheel in front of the other, tandemly placed wheels (bicycle). Two-wheeled
robots must keep moving to remain upright, and they can do this by driving in the
direction the robot is falling. To balance, the base of the robot must stay under its
centre of gravity. For a robot that has left and right wheels, it needs at least two



212 J. Wang and D. Herath

B 

Instantaneous centre of 

rotation 

Rr

Ø 

α 

Ø 

Fig. 8.5 Wheel configuraiton of a two-wheeled bicycle robot

sensors. A tilt sensor is used to determine tilt angle and wheel encoders that keep
track of the position of the robot’s platform (Fig. 8.5).

where Rrr = B
tan ø , α + ø + 90◦ = 180◦.

8.3.1.5 Four-Wheeled Robots

There are several configurations possible with four wheels.

• Two powered and two free rotating wheels

Same as the differentially steered ones mentioned previously but with two free
rotating wheels for extra balance.

Four-wheeled robots are more stable than three-wheeled ones as the centre of
gravity has to remain inside the rectangle formed by the four wheels instead of
a triangle. Still, it is advisable to keep the centre of gravity to the middle of the
rectangle as this is the most stable configuration, especially when taking sharp turns
or moving over a non-even surface.

• Two-by-two powered wheels for tank-like movement

This type of robot uses two pairs of powered wheels, and each pair turns in the same
direction. The tricky part of this kind of propulsion is getting all the wheels to turn
with the same speed. If the wheels in a pair are not running at the same speed, the
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Fig. 8.6 Ackerman drive

slower one will slip. If the pairs do not run at the same speed, the robot is not able to
drive straight. A good design has to incorporate some form of car-like steering.

• Car-like steering (Ackerman drive)

This method allows the robot to turn the same way a car does (Fig. 8.6). However,
this system does have an advantage over previous methods where it only needs one
motor to drive the rear wheels and a servo for steering. The previous methods would
require either two motors or a highly complex gearbox since they require two output
axles with independent speed and direction of rotation.

where Rrr = B
tan ø .

8.3.1.6 Omnidirectional Wheels

Omnidirectional (Omni) wheeled robots fall under a class of unconventional mobile
robots (Fig. 8.7).

An omniwheel could be thought of as having many smaller wheels making up a
large one, and the smaller ones are mounted at an angle to the axis of the core wheel.
This allows the wheels to move in two directions and move holonomically, which
means it can instantaneously move in any direction, unlike a car, which moves non-
holonomicallly and has to be in motion to change heading. In addition, omniwheeled
robots can move in at any angle in any direction without rotating beforehand. Some
omniwheel robots use a triangular platform, with the three wheels spaced at 60-
degree angles. The advantage of using omniwheels is that they make it easier for
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Fig. 8.7 A set of Mecanum wheels (a type of omniwheel) on a home robot

robots to be designed with wheels mounted on an unaligned axis. The disadvantage
of using omniwheels is that they have poor efficiency due to not all the wheels
rotating in the direction of movement, which also causes loss from friction, and are
more computationally complex because of the angle calculations of movement.

8.3.2 Walking Robots

Legged robots are inspired by human beings, legged animals or insects which
use leg mechanisms to provide locomotion. Compared with wheeled robots, they
are more versatile. They can traverse extreme environments such as unstructured,
uneven, unstable, rugged terrain and complex confined spaces such as underground
environments and industrial structures.

Legged robots can be categorised by the number of limbs they use. Robots with
more legs tend to bemore stable, while fewer legs lend themselves to greatermanoeu-
vrability. For a legged robot to keep its balance, it requires maintaining its centre
of gravity within its polygon of stability. The polygon of stability is the horizontal
surface defined by the leg-ground contact points made by the robot. These multide-
grees of freedom legs are usually modelled as kinematics chains which is covered in
Chap. 10.
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8.3.2.1 Robot Gait

The periodic contact of the robot’s legswith the ground is called the gait of thewalker.
The specific gait depends on the leg configuration of the robot and parameters such
as the speed, terrain the robot is moving, intended task and power limitations of the
robot. Milton Hildebrand was one of the earliest zoologists to study animal gaits.
Various researchers have since adopted his method for gait-pattern specification in
robotics, providing a formal method for studying and improving robot gait.

8.3.2.2 Two-Legged Robots

Two-legged robots are also called bipedal robots. The fundamental challenges for
two-legged robots are stability andmotion control, which refers to balance andmove-
ment control. In advanced systems, accelerometers or gyroscopes provide dynamic
feedback to control the balance. Such sensors are also used for motion control,
walking, jumping, and even running, combined with technologies such as machine
learning. On the other hand, the passive walker is a bipedal mechanism that “walks”
without actuation, simply using gravity as its energy source (Fig. 8.8).

Fig. 8.8 A bipedal robot
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Fig. 8.9 Pepper robot (left)—a wheeled semi-humanoid robot used in retail marketing. The HRP-
1 (right)—an early Humanoid Robot Prototype developed by the National Institute of Advanced
Industrial Science and Technology (AIST), Japan, on public display at its premises

8.3.2.3 Humanoid Robots

If you close your eyes and think about a robot, what would you picture in your mind?
Most likely a fictional creature like Arnold Schwarzenegger in the Terminator series
movies or C-3PO from Star Wars. It is likely a humanoid—a humanlike robot with
a head and body with arms and legs, probably painted metallic silver. Humanoid
robots are expected to imitate human motion and interaction (Fig. 8.9) and have their
roots in longing and mythmaking, as discussed in our first chapter. With years of
research, they are becoming commercially available in several application domains,
including in competitive game-playing (such as in the RoboCup humanoid league1)
and social and interactive robots such as the Pepper (Fig. 8.9) by Softbank Robotics.
Strictly speaking, Pepper is a semi-humanoid robot with a wheeled robot base and
not a bipedal robot. As mentioned earlier, a wheeled robot is much simpler, stable

1 https://humanoid.robocup.org/.

https://humanoid.robocup.org/
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and economical to produce. How these robots are deployed are constantly expanding,
and with the development of new technology, the market will follow suit.

8.3.2.4 Four-Legged Robots

Four-legged robots are also called quadruped robots. They have better stability
compared to two-legged robots during movement. Also, the lower centre of gravity
and four legs keep them well balanced when they are not moving. They can move
either by moving one leg at a time or by moving the alternate pair of legs (Fig. 8.10).

Types of Gait for Four-Legged Robots

Four-legged robots can walk with statically and dynamically stable gaits. In the
statically stable gait, each leg of the robot is lifted up and down sequentially, and
there are three stance legs at least at any moment. This type of gait is called creeping
gait (Zhao et al., 2012).Dynamically stable gaits are often used in four-legged robots
to walk and run due to their efficiencies, such as trotting, pace, bounce, and gallop
gait (Fukuoka & Kimura, 2009). In trotting gait, two of the legs are in the same
diagonal lift, and the two legs are in contact with the ground until the other two legs
lift off, and then repeat the motion two by two in order.

Fig. 8.10 Sony Aibo robot dog—One of the early versions of Sony’s four-legged robot dog series
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Fig. 8.11 A robot hexapod (Credit Bryce Cronin)

8.3.2.5 Six-Legged Robots

Six-legged robots are also called hexapods. They are designed to mimic the
mechanics of insects. Their legsmove in a “wave” form from the back to the front. As
a result, six-legged robots offer greater stability while moving and standing, they can
operate just on three legs, and the remaining legs provide flexibility and increase their
capabilities. In Chaps. 12 and 17, you will explore the design and implementation of
a hexapod robot (Fig. 8.11).

Types of Gait for Six-Legged Robots

One by one is the simplest gait, which moves each leg forward one after the other
in a clockwise or anticlockwise direction while the remaining five legs are in the
stance phase—not moving. For a quadruped gait (Fig. 8.11), the robot moves the
front two legs (1 and 2) forward, and the rest (3, 4, 5, 6) support the body, then the
robot moves the middle two legs (3, 6) to push the body forward while the rest of
the legs (1, 2, 4, 5) support, then swing the last two legs (4 and 5) forward while
the other legs support (1, 2, 3, 6) the robot. The pattern is then repeated. The tripod
gait uses two legs on one side and another on the other side (e.g. 1, 5, and 3), as in
a tripod, to hold the robot steady while moving the three remaining legs forward (2,
4, and 6) together.

8.3.2.6 Eight-Legged Robot

Spiders and other arachnids inspire eight-legged robots. Compared with other legged
robots, eight-legged robots offer the greatest stability with potential use in more
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challenging environments such as in hazardous areas to perform reconnaissance,
identify structural damages, and perform maintenance tasks.

8.3.3 Flying Robots

Much effort has been devoted to improving the flight endurance and payload of
Unmanned Aerial Vehicles (UAVs), commonly known as drones, which has resulted
in various configurations in different sizes, capabilities, and endurance.Unlike legged
and wheeled robots, flying robots are free to utilise the full six degrees of freedom,
allowing for different types of flight for a drone. These are known as Yaw, Pitch, and
Roll (Fig. 8.12).

Yaw (ψ) – This is the rotation of the drone’s head to either right or left. It is the basic
movement to spin the drone. In a remotely piloted drone, this is usually achieved using the
left throttle stick by moving to either the left or right.

Pitch (θ ) – This is the drone’s movement, either forward or backward. The forward pitch is
generally achieved in a remotely piloted drone by pushing the throttle stick forward, making
the drone tilt and move forward, away from you. Backward pitch is achieved by moving the
throttle stick backwards.

Roll (Ø) – Roll makes the drone fly sideways to either left or right. The right throttle stick
controls the roll in a remotely piloted drone.

8.3.3.1 Multicopters

Amulticopter is a type of flying vehicle with propellers driven by motors (Fig. 8.13).
Themain rotor blade(s) produces a forceful thrust used for both lifting and propelling
the vehicle. Multirotor uncrewed aerial vehicles are capable of vertical take-off and
landing (VTOL) and may hover at a place, unlike fixed-wing aircraft. Their hovering

Fig. 8.12 Roll, pitch, and
yaw
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Fig. 8.13 Different types of multicopper (clockwise from top left—A quadrotor—DJI MAVIC
PRO, A hexacopter—Custom built model, DJI Phantom Model and An octocopter—Custom built
model)

capability and ability to maintain speed make them ideal for civilian fields, moni-
toring, surveillance, and aerial photography work. One of the challenges with multi-
copters is that they consume more power, leading to limited endurance. Also, multi-
copters, unlike fixed-winged counterparts, are inherently aerodynamically unstable
and requires an on-board flight controller (an autopilot) to maintain stability.

Multicopters can be divided into specific categories based on the number and
positioning of motors, and each category has its own mission (Fig. 8.14). And based
on the mission requirements, they are classified in various configurations such as
Monocopter (1 rotor), Tricopter (3 rotors), quadcopter (4 rotors), hexacopter (6
rotors) (X/+ configurations),Octacopter (8 rotors) (X/+ configurations), X8-rotor,
and Y6-rotor. A quadrotor is a multirotor helicopter lifted and propelled by four
rotors. It is a useful tool for university researchers to test and evaluate new ideas in
several fields, including flight control theory, navigation, real-time systems.

8.3.3.2 A Quadrotor Example

A quadrotor (drone) is able to perform three manoeuvres in the vertical plane: hover,
climb, or descend.

Hover—To hover, the net thrust of the four rotors push the drone up and must be
exactly equal to the gravitational force pulling it down.
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Fig. 8.14 Various configurations possible with the hoverfly multirotor control board (Ed Darack,
2014)

Climb (Ascend)—Increasing the thrust (speed) of the four rotors so that the upward
force is greater than the weight and pull of gravity.

Descend—Dropping back down requires doing the exact opposite of the climb,
decreasing the rotor thrust (speed) so the net force is downward.

To fly forward, an increase in the quadcopter motor rpm (rotation rate) of rotors
3 and 4 (rear motors) and a decrease in the rate of rotors 1 and 2 (front motors) is
required. The total thrust force will remain equal to the weight so that the drone will
stay at the same vertical level. To rotate the drone without creating imbalances, a
decrease in the spin of motors 1 and 3 with an increase in the spin of rotors 2 and 4
is required (Fig. 8.15).

Mathematical Model of a Quadcopter

The structure of the quadcopter is presented in the below figure, including the
corresponding angular velocities, torques and forces created by the rotors (Fig. 8.16).

The absolute linear position ξ of the quadcopter is defined in the inertial frame.
Angular position is defined with three Euler angles η. Vector q contains the linear
and angular position vectors.
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Fig. 8.15 A quadcopter
rotor configuration

Fig. 8.16 Inertial and body frames of a quadcopter

ξ =
⎡
⎣
x
y
z

⎤
⎦, η =

⎡
⎣
Ø
θ

ψ

⎤
⎦, q =

[
ξ

η

]

The origin of the body frame is in the centre of mass of the quadcopter. In the
body frame, the linear velocities are determined by VB and the angular velocities by
ν

VB =
⎡
⎣

vx , B
vy, B
vz, B

⎤
⎦, v =

⎡
⎣
p
q
r

⎤
⎦

The rotation matrix from the body frame to the inertial frame is

R =
⎡
⎣
CψCθ CψSθ SØ − SψCθ CψSθCØ + SψSθ

SψCθ SψSθ SØ + CψCθ SψSθCØ − CψSθ

−Sθ Cθ SØ CθCψ

⎤
⎦
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where Sx = sin(x) andCx = cos(S). The rotation matric R is orthogonal thus R−1 =
RT which is the rotation matrix from the inertial frame to the body frame. The
transformationmatric for angular velocities from the inertial frame to the body frame
is Wη, and from the body frame to the inertial frame is W−1

η :

η̇ = W−1
η v then v = Wηη̇,

The quadcopter is assumed to have a symmetric structure with the four arms
aligned with the body x- and y-axes. Thus, the inertia matrix is diagonal matrix I in
which Ixx = Iyy

I =
⎡
⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤
⎦

The inverse of the following equation could be used to solve for the required
rotor speeds to achieve the desired thrust (T�) and moments τ = (τ1, τ2, τ3) of the
quadcopter (Mahony et al., 2012);

⎛
⎜⎜⎝

T�

τ1

τ2

τ3

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

CT CT CT CT

0 dcT 0 −dcT
−dcT 0 dcT 0
−Cq Cq −Cq Cq

⎤
⎥⎥⎦

⎛
⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎠

where CT (>0) and Cq are two coefficients that can be experimentally determined
for the considered quadcopter using thrust tests.

8.3.3.3 Fixed Wings

Fixed-wing UAVs require a runway for take-off and landing and also, unlike multi-
copters, cannot hover and maintain flight at low speeds. However, they have longer
endurance and can fly at high cruising speeds because of the successful generalisation
of larger fixed-wing planes with slight modifications and improvements.

Fixed wings are the main lift generating elements in response to forward accel-
erating speed. The velocity and steeper angle of air flowing over the fixed wings
controls the lift produced. Fixed-wing drones require a higher initial speed and a
thrust to load ratio of less than 1 to initiate a flight. If fixed-wing and Multirotor are
compared for the same amount of payload, fixed-wing drones are more comfortable
with less power requirement and thrust loading of less than 1. Rudder, ailerons, and
elevators control aircraft orientation in yaw, roll, and pitch angles.
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8.3.3.4 Other Flying Robots

There are also some non-conventional configurations of UAVs used for scientific
research. They include hybrid, convertible and flapping wing drones that can take off
vertically or act as an insect for spying missions. Flapping wing drones inspired by
insects such as small dragonflies2 and birds3 have regularly appeared in the research
literature and at times as commercial prototypes. Due to the lightweight and flexible
wings, the flapping drones can contributewell to stable flight in awindy environment.
A large amount of research work on flapping wing drones has been carried out
by researchers and biologists because of their exclusive manoeuvrability benefits.
Blimps and airships are other categories of flying robots that utilise a lifting gas that
is less dense than the environment it is operating.

8.4 Controlling Robots

Using the Sense, Think, Act framework, the robot’s controller can be thought of as
the component within the Think element responsible for the robot’s movements. It
is usually a microcontroller or an onboard computer or a mix of these used to store
information about the robot and its surrounding environment and execute designated
programmes that operate the robot. The control system includes data processing,
control algorithms, logic analysis, and other processing activities which enable the
robot to perform as designed. Based on the different requirements,more sophisticated
robots have more sophisticated control systems.

The control system involves all three aspects of the sense, think, and act loop
during execution. First, the perception system provides information about the envi-
ronment, the robot itself, and the relationship between the robot and the environment.
Based on the information from the sensors and the robot’s objectives, the cognition
and control system must then decide on how to act and what to do to achieve its
objectives. The appropriate commands are then sent to the actuators, which move
the mechanical structure. The control system coordinates all the input data and plans
the robot’s motion towards the desired goal.

Various control techniques have been proposed and are being researched. The
control strategies of mobile robots can be divided into open-loop and closed-loop
feedback strategies. When it comes to open-loop control, human operators are
involved in sending instructions. The robot relays information to the operator only to
perform as instructed. An example of such a system is piloting a drone using a drone
controller. The robot’s success in achieving its mission is essentially dependent on
your piloting skills—the controller simply relays your “intent” to the drone. Most
of the time, control commands such as velocities or torques are calculated before-
hand, based on the knowledge of the initial and end position (“Goal pose”) of the

2 https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo.
3 https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift.

https://spectrum.ieee.org/somehow-an-incredible-robotic-dragonfly-is-now-on-indiegogo
https://spectrum.ieee.org/festo-bioinspired-robots-bionicswift
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Fig. 8.17 A typical closed-loop feedback controller

robot. However, this strategy cannot compensate for disturbances and model errors
(“Error”).

On the other hand, closed-loop control strategies could provide the required
compensation since the inputs are functions of the actual state of the system and not
only of the initial and endpoints. Therefore, disturbances and errors causing devia-
tions from the predicted state are compensated by real-time sensor data (“Feedback”)
(Fig. 8.17). Formally, we could define a feedback controller as enabling a robot to
reach and maintain the desired state (called a set point) by repeatedly comparing its
current state with the desired goal state. Here, feedback refers to the information that
is literally “fed back” into the system’s controller. When a system is operating at the
desired state, it is said to be operating at the steady state.

8.4.1 PID Controllers

A PID controller is a control loop feedback mechanism that calculates the difference
between a desired value (setpoint) and the actual output from a process and use that
result to apply a correction to the process. The term PID stands for Proportional–
Integral–Derivative feedback control, and it is one of the most commonly used
controllers in the industry. It is the best starting point when designing an autonomous
control system and is very popular in commercial autopilot systems and open-source
developments.

Themain goal of this process is tomaintain a specified setpoint value. For example,
you may want a DCmotor to maintain a setpoint value r(t) of 600 encoder pulses per
second. The actual motor speed y(t), called the process variable, is subtracted from
the setpoint value 600 to find the error value e(t). The PID controller then computes
the new control value u(t) to apply to the motor based on the computed error value. In
the case of a DCmotor, the control value would be a pulse-width-modulated (PWM)
signal. The (t) represents a time parameter being passed into the process (Fig. 8.18).

Let us now look at how each of the three elements, P, I, D, contributes to the
overall controller.
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Fig. 8.18 APID controller—r(t) is the reference setpoint, e(t) is the difference between the process
output and the desired setpoint, u(t) is the process input control value, y(t) is the process output

8.4.1.1 Proportional Control (P)

This element takes some proportion of the current error value. The proportion is
specified by a constant called the gain value, and a proportional response is repre-
sented by the letters Kp. As an example, Kp may be set to 0.25, which will compute
a value of 25% of the error value. This is used to compute the corrective response
to the process. Since it requires an error to generate the proportional response, there
is no proportional part of the corrective response if there is no error. For example,
when controlling a drone autonomously, increasing the P gain Kp typically leads
to shorter rise time (i.e. the drone reaches the required altitude quickly) and larger
overshoots. Although it can decrease the system’s settling time, it can also lead the
drone to display highly oscillatory or unstable behaviour (Fig. 8.19).

8.4.1.2 Derivative Control (D)

The derivative term is used to estimate the future trends of the error based on its
current rate of change. It is used to add a dampening effect to the system such that
the quicker the change rate, the greater the controlling or dampening effect. In that
sense, increasing the D gain Kd typically leads to smaller overshoot and a better-
damped behaviour. However, increasing Kd could lead to larger steady-state errors
(Fig. 8.20).

8.4.1.3 Integral Control (I)

Element I takes all past error values and integrates themover time. The term integrates
simply means to accumulate or add up. This results in the integral term growing
until the error goes to zero. When the error is eliminated, the integral term will
stop growing. If an error still exists after the application of proportional control, the
integral term tries to eliminate the error by adding in its accumulated error value.
This will result in the proportional effect diminishing as the error decreases, and
the growing integral effect compensates for this. Increasing the I gain Ki leads to a
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Fig. 8.19 An example showing the effects of increasing Kp—shorter rise time but oscillatory
behaviour increasing. (No Integral and Derivative control)

reduction in the steady-state error (often elimination) but also could lead to larger
oscillations (Fig. 8.21).

Another issue to be mindful of when using the integral term in a controller refers
to Integral windup. This is common in most physical systems (nonlinear systems),
where a significant change in the setpoint (either positive or negative) results in the
integral term accumulating significant errors that cannot be offset by errors in the
opposite direction leading to a loss of control. Researchers have developed several
anti-windup techniques over the years to counter the phenomenon. One common
technique is setting boundaries for the integral term depending on the known system
limitations, such as actuator operational range.

8.4.1.4 Tuning a PID Controller

As understood from this brief overview of the role of each element of the PID
controller, it is not possible to independently tune the three different gains. Each of
them aims to offer the desired response characteristic (e.g. faster response, damped
and smooth oscillations, near-zero steady-state error) but has a negative effect that
must be compensated by re-tuning another gain. Therefore, PID tuning is a highly
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Fig. 8.20 An example showing the effects of increasingKdwith a constantKp (No Integral control)

coupled and iterative procedure. The PID controller consists of the additive action of
the Proportional, the Integral, and the Derivative component. Not all of them have to
be present; therefore, we often employ P controllers, PI controllers or PD controllers
when a simpler controller yields the desired result.

8.4.2 Fuzzy Logic Controllers

The fuzzy logic theory was developed in the mid-1960s as a way to deal with the
imprecision and uncertainty inherent to perception systems. Since then, it has been
used in many engineering applications. Designers consider it one of the simpler
solutions available for many nonlinear control problems, including most robotics
navigation and control problems. Fuzzy logic is more advantageous than traditional
solutions because it allows computers to actmore like humans, responding effectively
to complex inputs to deal with linguistic notions such as “too hot”, “too cold” or
“just right”. Furthermore, fuzzy logic is well suited to low-cost implementations
based on cheap sensors, low-resolution analog-to-digital converters, and 4-bit or 8-
bit microcontroller chips. Such systems can be easily upgraded by adding new rules
to improve performance or by adding new features. In many cases, fuzzy control can
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Fig. 8.21 An example showing the effects of increasing Ki with a constant Kp and Kd

improve existing traditional control systems by adding an extra layer of intelligence
to the current control method.

8.4.2.1 A Simple Example

Consider a ground robot moving towards a target.
The fuzzy logic controller (FLC) used has two inputs: error in distance (ed ) and

error in the angle of orientation (ea) of the robot. The controller’s output (that is,
the control signals) would be pulse-width-modulated signals to control the angular
velocity of the two servo wheels. Therefore, the fuzzy logic controller is a two-input,
two-output system. The block diagram of the robotic system is shown in Fig. 8.22.

8.5 Path Planning

Path planning is the means of finding a suitable (optimal) path for a moving platform
to travel from its starting point to the goal point in a given environment. Earlywork on
path planning focused on planning paths for robotic manipulators, where a perfect
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Fig. 8.22 Fuzzy logic
control system
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world model and precise knowledge of the joint angles were assumed. However,
these assumptions cannot be made for mobile robots operating in partly known or
unknown environments and with localisation uncertainties.

Classical algorithms, such as Dijkstra’s algorithm (Dijkstra, 1959), A and A*
algorithms (Hart et al., 1968), apply a global graph search to find the least-cost
path from the starting point to the target point. There are also other methods for
sampling the local environment to determine the least-cost path (Kuffner & LaValle,
2000). The main purpose of obtaining the best path is to find the shortest path with
minimal energy usage and maximum coverage of an area or optimised predicted
perception quality. In some situations, it is beneficial to choose from a given set
of trajectories that can be followed by the robot’s controller rather than planning
a specific and maybe impossible path (Dey et al., 2011). Therefore, different path
planning algorithms are used for different situations, with most algorithms relying
on heuristic and probabilistic techniques.

8.5.1 Heuristic Path Planning Algorithms

Heuristic methods use an estimated cost function for target-oriented path searching
which considerably reduces the computational time. These algorithms calculate the
path based on the fewest number of grid cells in the queue by assigning a cost to each
node with respect to the difference of its distance from that of the minimal distance
between the starting and goal nodes.

8.5.1.1 A* Algorithm

The most well-known path planning algorithm is the A* algorithm (Hart et al., 1968)
which uses a best-first search method to find the least-cost path from the starting
to the goal node. Unlike other path planning techniques, we can consider that the
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A* algorithm has a “brain” that can do the calculations. It is widely used for games
and web-based maps to find the shortest path in a very efficient way. The vehicle
traverses towards the goal node until it either reaches it or determines that there is no
available path with a heuristic function used to evaluate the goodness of each node.

Considering a graph map with multiple nodes, what the A* algorithm does is that
at each step, it picks the node according to the value “f ”, which is equal to the sum of
“g” and “h”. At each step, it picks the node having the lowest “f ” value and proceeds
to the next until it finds the goal point.

f (node) = g(node) + h(node)

where:

g(node) is the travelling cost from the initial point to the current point; h(node) is the
heuristic function that includes the cost from the starting node to the current location,
c(n, n′) and estimated cost from the current location to goal h(n′).

A* (star) Pathfinding Pseudocode

// Initialise both open and closed list
let the openList and closedList equal empty list of nodes

// Add the start node
put the startNode on the openList (leave it’s f at zero)

// loop until find the end
while the openList is not empty

// Get the current node
let the currentNode equal the node with the least f value
remove the currentNode from the openList
add the currentNode to the closedList

// Found the goal
if currentNode is the goal
Goal found! Backtrack to get path

// Generate children
let the children of the currentNode equal the adjacent nodes
for each child in the children
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// Child is on the closedList
if child is in the closedList
continue to beginning of for loop

// Create the f, g, and h values
child.g = currentNode.g + distance between child and current
child.h = distance from child to end
child.f = child.g + child.h

// Child is already in openList
if child.position is in the openList’s nodes positions
if the child.g is higher than the openList node’s g
continue to beginning of for loop

// Add the child to the openList
add the child to the openList

For example:
We would like to find the shortest path between A to K in the following map. The
number written with red is the distance between the nodes, and the number in the
blue circle written in black is the heuristics value. A* uses f (n) = g(n) + h(n) to find
the shortest path.

Let’s start with start point A. A has three nodes: B, E, and F, then we can start
calculate f (B), f (E), and f (F):

f (B) = 3 + 8 = 11

f (E) = 1 + 1 = 2

f (F) = 5 + 4 = 9

f (E) < f (F) < f (B), so we will choose E as the new start node.
For node E, it two nodes F and H, f (F) = 7 (1 + 6) + 4 = 11, f (H) = 3 (1 + 2)

+ 4 = 7, f (H) < f (F), so we will choose H as the new start node.
For node H, it has two nodes J and I, f (J) = 5 (1 + 2 + 2) + 3 = 8, f (I) = 4 (1

+ 2 + 1) + 2 = 6, f (I) < f (J), so we will choose I as the new start node.
For node I, it has two nodes D and K, f (D) = 10 (1 + 2 + 1 + 6) + 5 = 15, f (K)

= 6(1 + 2 + 1 + 2) + 0 = 6, f (K) < f (D), so we will choose K as the next node, as
K is the goal point, the algorithm stop here.

The shortest path from A to K is A—E—H—I—K (Fig. 8.23).
The A* algorithm is similar to Dijkstra’s algorithm (Dijkstra, 1959), except that

it guides its search towards the most promising states, which can save a significant
amount of computational effort. The limitation of the above approaches is that they
need a complete map of the area under exploration. However, when operating in
real-world scenarios, as new information might be added to the map, replanning is
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Fig. 8.23 A* algorithm example

essential. While A ∗ could be used to plan from scratch for every update, this is
computationally expensive.

Instead, the D* Lite (Koenig & Likhachev, 2005) and Focussed Dynamic A* (D*)
(Stentz et al., 1995) algorithms search for a path from the goal towards the start and
update nodes only when changes occur. An updated path is calculated based on the
previous path, which is much more effective than the A ∗ algorithm and Dijkstra’s
algorithm. D* Lite algorithm is one of the most popular goal-directed navigation
algorithms that is widely used formobile robot navigation in unknown environments.
It is a reverse searching method and can replan from the current position when new
obstacles are blocking the path.

Finally,Field D* is an interpolation based path planning and replanning algorithm
(Ferguson&Stentz, 2006). In contrast to othermethods inwhich nodes are defined as
the centres of grids, it defines nodes on the corners of grids. Then linear interpolation
is used to create waypoints along the edges of grids which allows the planning of
direct, low-cost, smooth paths in non-uniform environments. D* and its variants are
widely used for autonomous robots, including Mars rovers and autonomous cars
(Stentz & Hebert, 1995; Urmson et al., 2008).
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8.5.2 Probabilistic Path Planning Algorithms

Probabilistic approaches sample the configuration space randomly, which helps
to decrease the path planning time and memory usage. However, their main
disadvantage is that they cannot always be guaranteed to find the optimal path.

Much work has been conducted based on probabilistic path planning methods.
One of the most popular approaches is the probabilistic roadmap (PRM) algorithm
(Kavraki & Latombe, 1998; Kavraki et al., 1996) which generally consists of two
phases: firstly, it randomly samples points in the configuration space to build a
roadmap graph and then connects the sampled configurations to their neighbours; and
secondly, in the query phase, the starting and goal nodes are connected to their neigh-
bours in the graph and the path calculated using a heuristic method. Although any
existing path can be found if there is a sufficiently increasing number of samples,
as situations such as narrow corridors in large environments can rapidly increase
the path planning time, deliberate sampling strategies are necessary. While multiple
queries can be executed on the same graph-based on PRMs, some pre-processing is
needed during which, in some cases, obstacles are defined.

8.6 Obstacle Avoidance

In mobile robotics, the goal of obstacle avoidance is generally to navigate from one
location to the goal location while avoiding collisions with obstacles during the robot
motion in a known or unknown environment. Therefore, obstacle avoidance is almost
always is combined with path planning. The process requires an understanding of the
environment, such as a full map or partial map, a target location and robot’s location
(localisation) (discussed in the next chapter), and sensors such as cameras or laser
sensors to provide obstacle information.

Obstacle avoidance is always comprised of obstacle detection and collision avoid-
ance. There are varieties of algorithms that use different kinds of sensors and tech-
niques to achieve the goal of obstacle detection. The processed data received from
sensors are then sent to the controller to operate the robot to avoid obstacles. There
are some widely used obstacle avoidance algorithms such as bug algorithms, VFH,
and other proximity-based techniques (e.g. sonar, bumper sensors).

8.6.1 Bug Algorithm

The bug algorithms are the simplest obstacle avoidance method among all obstacle
avoidance methods. In the bug algorithm, the main idea is to track the contour of the
obstacles found in the robot’s path and make the robot circumnavigate it (Lumelsky,
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2005; Lumelsky & Stepanov, 1987). There are several modified versions of the bug
algorithm, such as Bug 1, Bug 2, DistBug, and Tangential Bug algorithm.

Bug 1 algorithm is the simplest of all Bug algorithm variations. It reaches the goal
almost all the time with high reliability. But the matter of concern with this method
is efficiency. The robot moves on the shortest path joining the robot’s position X and
goal location until it encounters a hurdle in the path. When an obstacle confronts it,
it starts revolving around its surface and calculates the distance from the destination
point. After one complete revolution, it figures out the point of departure closest to
the goal. Then, it maintains or changes the direction of motion depending on the
distance of leaving point from the hit point. This method can be illustrated in the
following steps:

• Head towards the goal
• If an obstacle is encountered, circumnavigate it and remember how close you get

to the goal
• Return to that closest point and continue

Robot revolves around every obstacle on the way towards the goal, increasing
the computational efforts. But ease of implementation makes it worth it when only
completion of the task is required irrespective of time.

Generally speaking, the bug algorithms work well with single obstacle avoidance.
However, these bug algorithms are not very reliable in a more complex and cluttered
environment, and in some tricky conditions, one version works better than the other
version.

8.6.2 The Vector Field Histogram (VFH)

Vector field histogram is a real-time obstacle avoidance method for mobile robots
developedbyBorenstein andKoren (1991). Thismethod contains threemajor compo-
nents that help to achieve obstacle avoidance. Firstly, the robot generates a two-
dimensional sensory histogram around its body or within a limited angle and starts
updating the histogram data at every stage. Secondly, the two-dimensional histogram
data are converted into a one-dimensional polar histogram. Finally, it selects the lower
polar dense area and moves the vehicle, calculating the direction.

This approach overcomes the issue of sensor noise.Ahistogram is a graph between
probabilities of the presence of obstacles to the angle associated with the sensor
reading. The probabilities are obtained by creating a local occupancy grid map (see
Chap. 9) of the environment of the robot’s surroundings. The histogram is used
to discover all the passages large enough to allow the robot to pass through. The
selection of path is based on a cost function which is a function of the alignment
of the robot’s path with the goal and on the difference between the current wheel
orientation and the new direction. A minimum cost function is desirable. One of
the advantages of using VFH is that it conquers the problem of sensor noise by
making a polar histogram that represents the probability of obstacle of a particular
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angular direction. Some demerits need to be taken into consideration when using this
technique, such as VFH does not guarantee the completeness, which can lead to an
unfinished task. It can be problematic to pass through a narrow passage using this
method. Moreover, it does not consider the robot’s dynamics and its environment,
making it not ideal for use in a complex dynamic environment.

8.7 Chapter Summary

Robots thatmove around in the environment instead of being fixed to a single location
are calledmobile robots. These canbe categorised according to the typeof locomotion
they utilise, such as wheeled, legged, or flying.

A robot controller essentially provides the controlling commands to its actuators
to drive the robot towards the desired goal. A common control loop is the PID
(proportional–integral–derivative) controller, which uses sensor feedback to update
the control signal in a repeated manner. Essentially the controller applies a correction
to a control function where the correction could be proportional to the error (P) or
reflective of the cumulative error (I) or the change in the error rate (D). A PID
controller requires tuning of its parameters, which usually requires an iterative trial
and error approach or sophisticated tuning algorithms to realise optimal performance.

For a robot to move from a given point to the desired goal point, it needs to plan
a path between the two points using some optimal criteria, for example, shortest
distance, the lowest energy consumption, or the largest area coverage. Many tech-
niques have evolved over the years, including heuristic and probabilistic techniques,
each having its own merits and concerns. Additionally, a complimentary problem in
path planning is the obstacle avoidance problem. Again, researchers have come up
with various strategies and techniques to solve the problem.

As a roboticist developing a mobile robot, your task is to select, develop, and
implement techniques, algorithms, and platforms based on the ideas discussed in
this chapter to suit the requirements of the job at hand.

8.8 Review Questions

• If using a PID controller for a drone, increasing the P gain Kp typically leads to
shorter or longer rise times?

• If using a PID controller for a drone, increasing the I gain KI, would it result in
smaller or larger oscillations?

• Comparing two-wheeled, three-wheeled, four-wheeled robots, which one is the
most unstable type?

• What does pitch, yaw and roll mean in a drone?
• What is the difference between classic and heuristic path planning algorithms?
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8.9 Further Reading

The chapter covered introductory material on several related topics. Once the basic
concepts are well understood, you can explore these topics in more depth and expand
onto advanced topics. Following titles, Introduction to Robotics: Mechanics and
Control (3rd Edition) by John Craig, Modern Robotics Mechanics, Planning, and
Control byKevinM. Lynch andRoboticsModelling, Planning and Control by Bruno
Siciliano provide some excellent reading. Another highly recommended book on
mobile robots is the book by Roland Siegwart, Introduction to autonomous mobile
robots.
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