Chapter 15)
Managing the World Complexity: From Gzt
Linear Regression to Deep Learning

Yann Bouteiller

15.1 Objectives of the Chapter

At the end of this chapter, you will:

— understand the fundamentals of modern ML, and in particular deep learning,
— become familiar with linear regressions, MLPs, CNNs, and RNNs,

— be aware of the supervised techniques that are most relevant for robotics,

— understand the fundamentals of deep reinforcement learning,

— become familiar with Gym environments and DQN,

— be aware of the deep RL algorithms that are most relevant for robotics.

15.2 Introduction

Classical robot algorithms for perception and control are often based on simple, linear
models of the world. These approaches are very effective for simple tasks where the
system reasonably satisfies the corresponding assumptions in its domain of opera-
tion. However, they become inoperative in many high-level reasoning tasks where the
complexity of the real world is relevant and needs to be captured. A typical example
is the task of driving autonomously from camera pixels, which requires a deep, con-
ceptual understanding of the environment. How can an autonomous car detect other
agents such as vehicles and pedestrians, often partially when not entirely occluded?
How to predict their individual behaviors and react accordingly? How to reliably
detect traffic signalization in all possible variations of the environment, including

Y. Bouteiller (<)
Department of Computer and Software Engineering, Polytechnique Montréal, Montreal, Canada
e-mail: yann.bouteiller @polymtl.ca

© The Author(s) 2022 441
D. Herath and D. St-Onge (eds.), Foundations of Robotics,
https://doi.org/10.1007/978-981-19-1983-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-1983-1_15&domain=pdf
mailto:yann.bouteiller@polymtl.ca
 854 56538 a 854 56538 a

mailto:yann.bouteiller@polymtl.ca
https://doi.org/10.1007/978-981-19-1983-1_15
 -2047 60726 a -2047
60726 a

https://doi.org/10.1007/978-981-19-1983-1_15

442 Y. Bouteiller

light and weather? Over the past decade, the state-of-the-art solutions to these prob-
lems have emerged from statistical approximation techniques, nowadays referred
to as machine learning (ML). Instead of relying on engineered representations of
the world, ML approaches build their own representations automatically from large
amounts of data, collected either directly from the real world, or from a simulator.
The process of building these representations is called learning (or, equivalently,
training). In modern ML, learnt representations can be so abstract that they are often
interpreted as being similar to a human-like, conceptual understanding of the world.
For instance, ML algorithms are able to learn high-level concepts such as pedestrian
and car by analyzing a large number of images featuring road scenes and can then
be used to complete tasks in which these concepts are relevant.

An Industry Perspective

Jonathan Lussier
Director, Intellectual Property and Innovation

Kinova inc.

I graduated in mechanical engineering and started my career in the aerospace
industry, mainly in system engineering over 10 years both in simulation and in
the product. Meanwhile, in my free time, I was building robots on the side (in
my basement) as I saw it as the wave of the future coming. So I started with
online resources, 3D printing, and sheet metal work in order to start building
some small and subsequently some larger robots arms. It was at this moment
that I found out about Kinova (a company close to where I live) and the great
work they were doing in the assistive field and decided to apply.

My first task when I started at Kinova was to build the proof of concept
for what is now our Gen3 lite robot. Over a span of eight months, I read as
much as I could and benefitted from the extremely high level of expertise from
Kinova engineers to ramp up and design and build it. Afterward, I transitioned
into a role ensuring the Gen3 robot was launched on time, which was very
challenging but a great experience especially from the collaborations between
different groups within the company, which is so great about robotics—the
integration of mechanical and electrical hardware, quality assurance, and of
course all the different software disciplines.

15 Managing the World Complexity: From Linear Regression to Deep Learning 443

The field of machine learning in robotics is changing extremely quickly.
One aspect I love is that, contrary to some other fields or even other aspects
of robotics where research and development are heavily either industry-led or
academic-led, we are seeing many practical applications based on the integra-
tion of machine learning and robotics launched commercially, often by people
still in academia. These advances, built off the back of thousands of researchers
doing more segmented Al (natural language processing, image recognition or
classification, etc.), can be combined into the robotic system in an integrated
way. As mentioned above, there are so many different disciplines that need
to be combined when launching a robotic or automation product that there
are opportunities for hardware, traditional software (e.g., machine vision), and
Al-led approaches at all the different levels—it is very exciting!

Start small and simple! When working on robotics, getting a complete
system up and running can be a challenge in itself. Limiting the number of
hardware and software components is key and that applies to Al as well. Take
advantage of existing libraries (e.g., Gym, Stablebaselines, etc.) which often
combine different options for simulators, datasets, and algorithms wrapped in
an easy to use and (most importantly) well-documented interface.

15.3 Definitions

ML is a vast field consisting of many techniques developed for various purposes.
We can roughly separate these techniques under two categories: supervised and
unsupervised.!

Supervised learning consists of using a set of labeled data points to train a model.
In other words, given a dataset D = {x;, y;} of data points x; (e.g., camera images
...) and corresponding labels y; (e.g., type of the closest agent present in the image,
position estimate of this agent ...), the goal is to find a model f mapping data
points to labels such that f(x) & y for all data point x and corresponding label y ...
including those not present in the dataset! This last property is a central objective of
ML, called generalization: A good model is not a model that fits the dataset, but a
model that fits the real phenomenon (of which the dataset is only a comparatively
tiny sample). You will often hear that a good model is one that “generalizes well”.
Depending on the nature of the labels, the task is called classification or regression. A
classifier produces categorical outputs (e.g.,is it acar or acat?). This is typically done

! This is a very rough categorization. In particular, semi-supervised learning and reinforcement
learning are other important ML categories, which borrow aspects from both supervised and unsu-
pervised learning.

444 Y. Bouteiller

by outputting a vector of probabilities where each dimension represents a category
of interest. For instance, a vector of dimension 3 could represent three classes of
interest such as “pedestrian”, “car”, and “none”. The output f(x) = [0.1, 0.8, 0.117
could then mean that the closest agent in the x input image is most likely a car. A
regressor instead produces a real-valued output (e.g., the three-dimensional relative
position of the closest agent). In this case, the model directly outputs the value
of interest. For instance, the output f(x) = [3.5, —1.0, 0.0]" could mean that the
closest agent is 3.5 m ahead and 1.0 m on the right. In classifiers and regressors alike,
the model usually consists of a set of tunable parameters 6. Thus, finding a good model
essentially consists of finding good values for these parameters. Among the most
relevant types of parametric models, we can cite decision trees/random forests, which
are simple ML algorithms with good properties in terms of interpretability, linear
regressions, and neural networks. In this chapter, we will denote parametric models
as fy, and we will focus our attention on neural networks, which are omnipresent in
modern ML. Note that there also exist ML algorithms using nonparametric models,
where the model is typically the dataset itself. For instance, the K-nearest neighbors
(KNN) algorithm compares new data points to the whole dataset, so as to infer their
corresponding labels from the closest labeled data available.

The locution unsupervised learning refers to all ML techniques that instead
use an unlabeled dataset D = {x;}. Famous examples of unsupervised methods
are generative adversarial networks (GANSs), intensively used in image genera-
tion/transformation, and trained with unlabeled pictures. While GANs are definitely
useful for robotics, they are used in very advanced situations that we will only briefly
cite in this chapter.

An alternative to the aforementioned categories, called reinforcement learning
(RL), will be covered with greater attention in the second part of this chapter. RL algo-
rithms learn a controller from their own experience, in a near-unsupervised fashion.
However, this is done by leveraging an external reward signal that remotely resem-
bles a label, and thus RL stands somewhere in between supervised and unsupervised
approaches.

In robotics, supervised methods are typically useful for perception. In particular,
we use neural networks for image analysis, spatial perception, speech recognition,
signal processing. ... Supervised learning is also possible for control, in particular
through behavioral cloning, which consists of imitating the policy’ of an expert.
However, behavioral cloning is inherently limited by the expert level. Thus, policy
optimization strategies based on trial-and-error, such as RL and genetic algorithms,
are often preferred for learning a controller.

2 A policy is a set of relations that maps observations to actions.

15 Managing the World Complexity: From Linear Regression to Deep Learning 445

15.4 From Linear Regression to Deep Learning

15.4.1 Loss Optimization

The goal of supervised learning is to find a model f such that, for all input x and
desired output y, f(x) = y. In ML, the quality of the model f is typically evaluated
in terms of a loss function. A loss function takes a model and a dataset as input and
outputs a real value that represents how bad the model is performing on the dataset. In
this chapter, we will denote loss functions as L (f, D) in the general case and L (8, D)
for parametric models. The smaller the loss is, the better the model is considered. In
other words, the goal of ML is almost always an optimization problem consisting of
minimizing a loss function. Many different loss functions exist, each with their own
properties in terms of what they consider being a good model and how easy they are
to optimize. The most common losses are the mean squared error (MSE) loss and
the cross-entropy (CE) loss.

Mean Squared Error Loss
The MSE loss is typically used for regression. It is defined as follows:

1 n
Luse(f, D) =~ 3 (1 f(xi) = 5il’)

i=1

where n is the size of the dataset D (i.e., the number of (x;, y;) pairs in D).

An important property of the MSE loss is that it strongly penalizes models that
have a large prediction error | f (x;) — y;| for some data point x;. In other words, the
MSE loss prefers models that do not ignore any data point. Although this is desirable
in general, this also has the drawback of being strongly impacted by outliers.>

Cross-Entropy Loss
The CE loss is typically used for classification. It is defined as follows:

1 n
Lee(f,D) = — 3 —In(fy, (x)

i=l1

where n is the size of the dataset and where fy, (x;) is the probability that f(x;)
outputs for the class y;.

A reason why the CE loss is widely used is that its gradient* is easy to compute (we
will see why this is important later in this chapter). Since f), (x;) is a probability,’ its

3 In ML, outliers are data points whose labels are far from what is expected.

‘A gradient is the Jacobian of a single multivariate function, i.e., with one row. Note that, in
deep learning, we often transpose the gradient to work with column vectors only. For instance,
Vias(@+b%) =[1,20]".

3 In practice, this is not really a probability, but the output of a softmax function, which also sums
to 1.

446 Y. Bouteiller

value lies between 0 and 1 (0 being excluded in practice). The closer this probability
is to 1, the smaller the loss is, while a probability close to O is strongly penalized.
Indeed we want f,, (x;) to be 1, since the label of x; is y; in our dataset.

15.4.2 Linear Regression

One of the oldest and most fundamental supervised ML techniques is the linear
regression. Linear regression was introduced by Legendre and Gauss who used it
to predict astronomical trajectories in the early 1800s (Stigler, 1981), way before
the term “machine learning” was introduced and popularized. Performing a linear
regression consists of fitting a parametric linear model to a labeled dataset D =
{xj, y;} where the labels y; € R are single real values. As seen in Chap.6, a linear
model is of the form fy(x;) = wW'x; + b, where w is a vector of weights and b is a
single bias. The set of tunable parameters is 8 = {w, b}.

Interestingly, it is possible to find the optimal solution to the linear regression
problem using matrix calculus. For this matter, a useful trick is to write 8 as the
concatenation of w and b, and to append a 1 to the x; vector:

wq Xi 1
0= - and X; =

wm xl m

b 1

This allows us to write the linear model as a simple vector multiplication:
T—
fo(xi) = 0%

Now we can minimize the MSE loss of our parametric f, model. For our dataset D
of n (x;, y;) pairs, we define X € R+ a5 the matrix formed by the “augmented”
data points and Y € R” as the vector formed by the n labels:

=T
X1 M1

X = : and Y=
Xn Y

This enables us to write the MSE loss in matrix form:

Luse (8, D) = %(Xo -Y) (X6 —-Y)

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 30285
16688 a 30285 16688 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

15 Managing the World Complexity: From Linear Regression to Deep Learning 447

To minimize this loss, we take its gradient with respect to our vector of tunable
parameters @, which can be shown to be (the proof is out of this chapter scope):

2 _T— _
Vo Lise (0, D) = ;(xTxo ~X'Y)

We then set this derivative to 0 to find the minimum (the convexity of the loss
with respect to @ is easy to prove), which yields our optimal vector of parameters®:

=X X)"'X'Y

on the condition that X' X is invertible. Note that this is the left MPGI of X multiplied
by Y, as we have essentially minimized the Euclidean norm of X6 — Y (c.f. Chap. 6).

15.4.3 Training Generalizable Models

Overfitting
As seen in the previous section, the linear regression problem has an optimal solution
that can be written analytically. This solution is not really straightforward, though,

since computing the inverse of X'X can be challenging, especially when the x; are
high dimensional. Moreover, linear regressions are a very simple and special case.
In advanced ML approaches, such analytical solution is virtually never available.
Indeed, to find the optimal vector of parameters 8*, we have computed the gradient
of the loss function with respect to # and found where this gradient was equal to zero.
The reason why this worked is that, in a linear regression, the MSE loss is convex
with respect to 8. This property is generally not satisfied in complex models such
as neural networks, and thus it is not possible to apply the same strategy. But more
importantly, this is not even a suitable thing to do!

Remember that we are *not* looking for the model that best fits our dataset (which
is exactly what we have computed in the previous section), but the model that best fits
the real world. In fact, the “optimal” set of parameters that we have computed is the
worst possible example of overfitting that one can commit with a linear regression:
We have selected our set of parameters 6* not because it is best at describing the real
world, but because it is best at describing the dataset.

This is usually not a big deal when using linear regressions: If the phenomenon
of interest is indeed linear, any linear approximation using a reasonable number
of data points is likely to be a good approximation. However, practical problems
are scarcely ever linear. In fact, high-level reasoning tasks—such as driving from
pixels—are highly nonlinear and require nonlinear models like neural networks (try
to imagine what would happen if you performed a linear regression on a dataset of

6 The scikit-learn Python library can be used to compute this set automatically: scikit-learn.org.

http://dx.doi.org/10.1007/978-981-19-1983-1_6
 33604 15319 a 33604 15319 a

http://dx.doi.org/10.1007/978-981-19-1983-1_6

448 Y. Bouteiller

Fig. 15.1 Overfitting. Given - :
-4 EETRLE linear regression
data points sampled from a) .
. -—- overfit non-linear model
nonlinear phenomenon, a :

—— good non-linear model
model that perfectly
describes all the data points
is likely to generalize poorly

e data

“-

camera images x; to compute outputs fy(x;) that represent, say, the distance to the
nearest car ...).

Typically, nonlinear models do not have strong inductive biases’ like linearity and
have a much bigger capacity.® They are able to represent crazily complex shapes,
which can fit the dataset exactly and yet generalize horribly. For instance, in Fig. 15.1,
we are trying to model a nonlinear phenomenon from which a dataset has been
sampled (each black circle represents a data point and its label: the x; are the values
on the x axis and the y; are the values on the y axis). Linear regression (dotted)
performs poorly on this simple nonlinear problem. Using a complex nonlinear model
instead and minimizing the MSE loss all the way down to zero produce a strongly
overfit model (dashed). The model represented with a full line has a slightly bigger
MSE loss when evaluated on our dataset, but it is likely to generalize much better to
unseen data.

Minimizing a loss in ML is not a typical optimization problem where one seeks
to actually find the minimum of the loss. Instead, the loss minimization procedure is
merely a tool to find a good set of parameters for our model. But how exactly do we
find this set of parameters, and how do we know that it is a good one?

Stochastic Gradient Descent
Although the loss function for nonlinear models is typically not strictly convex, it can

usually be considered approximately pseudoconvex’ in practice. Complex nonlinear
models such as neural networks have many tunable parameters (i.e., a very high-
dimensional @), and we are unlikely to find a vector that cannot be improved in any
of its dimensions. Thus, despite being unable to find the analytical solution to the loss
minimization problem, we can select a random parameter vector 6y and iteratively
optimize our loss from there by following the negative gradient. For a given value of
0,, we compute the local negative gradient of the loss:

7 An inductive bias is an assumption about the structure of the world that we force into our model.
8 The capacity of a model indicates the degree of complexity that it is able to represent.
9 A pseudoconvex function increases forever in the direction of any of its local gradients.

15 Managing the World Complexity: From Linear Regression to Deep Learning 449

Fig. 15.2 Gradient descent.
The GD algorithm optimizes
the loss by iteratively
descending its slope in the
directions of its local
gradient with respect to 0
(arrows)

Vi =—-VyL(6:, D),
and we update our parameter vector in the direction of this local negative gradient:
041 =0; +aV,,

where the learning rate « is an hyperparameter.'’ This procedure is illustrated in
Fig.15.2.

Computing the true local gradient of the loss at each gradient descent iteration
is very computationally intensive. The gradient needs to be averaged over the entire
dataset at each iteration, which is not suitable. A better way of performing gradient
descent is stochastic gradient descent (SGD), an important key of modern ML suc-
cess. In its “pure” (vanilla) version, SGD is the same algorithm as gradient descent,
except instead of averaging the local gradient over the whole dataset, the gradient is
taken with respect to a single (x;, y;) pair sampled from the dataset. This technique
produces a very rough estimate of the gradient, at a much smaller computational cost.
But despite this estimate being rough, a small optimization step can still be taken in
its direction. This operation can be performed rapidly and repeated over many times.
Moreover, the stochastic nature of the gradient estimate enables SGD to escape from
local extrema and saddle points'! easily where vanilla gradient descent would fail.
These properties make SGD much more efficient than gradient descent in practice.

However, this version of SGD is still computationally inefficient. In fact, com-
puting an average gradient over several samples is a parallelizable task, and thus it

10 Hyperparameters are parameters not learnt by the optimization algorithm (often just set manually).

1 Point where the gradient is close to zero on all dimensions (Vg L(6;) = 0), but that is not a local
extremum.

450 Y. Bouteiller

is not really a good idea to use something as extreme as one single (x;, y;) pair for
our local gradient estimate. Modern GPUs enable using several of them at no addi-
tional cost in terms of computation. This is why, in practice, we never use one single
sample from the dataset, but a certain number of them. The number of samples per
gradient estimate is an hyperparameter, called the batch size. Batch sizes between
16 and 4096 are common choices. As a rule of thumb, small batches yield rough
gradient estimates and work best with smaller learning rates, whereas larger batches
yield better'? estimates and can afford larger learning rates (He et al., 2019). The
resulting algorithm, called minibatch gradient descent (or also SGD), is the basis
of most state-of-the-art loss optimizers, such as Adam (Kingma & Ba, 2014) and
RMSProp.

Algorithm 1 Minibatch gradient descent (SGD)

Require: D, fy, L, o, n > dataset, model, loss function, learning rate, batch size

Ensure: 0 ~ 6* > near-optimal parameters for the model

0 < random values > initialize parameters
repeat

batch <— n (x, y) pairs sampled from D > sample minibatch from dataset

V « —VyL(#, batch) > estimate gradient on minibatch

0 <—6+aV > update parameters by descending gradient

until convergence of L (8, D) > once in a while, evaluate actual loss on dataset

Training, Validating, and Testing

As long as the local gradient can be computed for any value @ of the parameter
vector, SGD enables minimizing the loss of approximately pseudoconvex nonlinear
models. However, when optimized by SGD, the loss on our dataset will still eventually
converge too close to its true minimum. In other words, if not stopped early enough,
SGD will overfit!

Fortunately, there is a way of stopping convergence right before this happens.
This technique, called early stopping, also enables evaluating the true performance
of the model on unseen data. The main idea is that we do not train our algorithm on
the entire available dataset. Instead, we shuffle the dataset D and split the result into
three disjoint subsets:

e a training set Diqin,
e avalidation set Diidations
o a test set Diey.

We then perform SGD by estimating gradients only on the training set, with a small
change: instead of stopping the algorithm when we think the loss has converged on
the training set, we stop the algorithm when the loss stops improving on the validation
set.

12 In the sense of being closer to the true gradient and thus less stochastic, which is only partly
suitable!

15 Managing the World Complexity: From Linear Regression to Deep Learning 451

Fig. 15.3 Early stopping.
The validation set enables
finding when to stop training
before overfitting starts
harming the generalization
properties of the model

— training loss
- validation loss
e early stopping

loss

training iteration

This is because, when the model starts overfitting, its performance on the valida-
tion set (on which it is not trained) starts decreasing (i.e., the validation loss starts
increasing). Figure 15.3 displays a typical example of this phenomenon over training.

Note that the loss function is not necessarily what people use to determine when
early stopping should happen. It is possible to use metrics we are more directly
interested in. For instance, in classification tasks, we often use the accuracy or the
F1-score.

Finally, you may wonder why we have split our dataset into three parts rather than
two. Indeed, we have not used D at all. And there is a good reason for this: You
should never use the test set before your system is final and ready for production!
There are many subtle ways in which it is possible to overfit on our dataset in an
ML project, and early stopping is one of them. Because we have selected our best
model based on its performance on the validation set, we have slightly overfit on
this subset. To really evaluate our performance, the only unbiased way is to do it on
the unseen test set once the model is final. In supervised learning, this is important
as a last sanity check. Of course, this can be replaced by testing the model directly
in the real world when possible, in which case the real world becomes the test set.
Typically, the performance on the test set is slightly worse than the performance on
the validation set, which is noticeably worse than the performance on the training set.

Regularization

On top of early stopping, many existing techniques, called regularizers, help improve
the generalization performance of a model. Some of these techniques, such as LI and
L2, add a term to the loss in order to penalize large parameter values and promote
models that use as few parameters as possible (this avoids crazy models similar to
Fig. 15.1). Others, such as dropout, introduce noisy modifications to the model during
training in order to promote robustness.

452 Y. Bouteiller

0 Full representation | Compact representation

w1 i

@ e
X wa

/w"”/

Fig. 15.4 Simple neuron

15.4.4 Deep Neural Networks

ML has attracted a lot of attention over the past few years. The main reason for this
surge of interest is that modern GPUs (and, more recently, TPUs/IPUs) have provided
enough computational power to train a class of complex nonlinear models invented
in the 1940s—1960s (Fitch, 1944; Ivakhnenko & Lapa, 1965), whose potential had
remained unknown for several decades (Krizhevsky et al., 2012). These models,
called deep neural networks (DNNSs), are an algorithmic attempt to mimic the brain.
They project their input into successive, more and more abstract representations,
that eventually map to the desired output. DNNs are today at the core of most ML
successes. In fact, they have become so prominent that modern ML is often simply
called deep learning.

The atomic component of a DNN is a very simple, usually nonlinear model,
called neuron. A neuron is made of a linear model,'® directly followed by an easily
differentiable, usually nonlinear function, called activation. Using the same notation
as for linear regressions, the operation performed by a neuron is

fo(xi) =0 (0'%;)

where o is the activation function. We often represent a neuron as a graph, which helps
visualize the flow of operations. In particular, we will use the compact representation
to understand more complex DNNs (Fig. 15.4).

The only structural difference with a linear regression model is the activation o,
which plays a central role in deep learning. Many activation functions exist in the
literature, the most common being the sigmoid and the rectified linear unit (ReLU).

The sigmoid is defined as follows:

Slngld((l) = m

13 The same model as used by linear regression.

15 Managing the World Complexity: From Linear Regression to Deep Learning 453

Fig. 15.5 Sigmoid 1.0 1
activation e
el
=l
2 0.5
E
=y
w
00 L T T T T T
=10 -5 0 5 10
a
Fig. 15.6 ReLU activation 1.0
=
3 0.5
[}
[«
0-0 L T T T T T
-1.0 =0.5 0.0 0.5 1.0

a

The sigmoid is generally used when one needs to squash an output between 0
and 1. However, its derivative is near zero everywhere except around the origin,
which is harmful to the convergence of SGD. Plus, compared to ReLU, the sigmoid
is relatively costly to compute (Fig. 15.5).

The ReLU is a simple clipping operation:

ReLU(a) = max(x, 0)

Computing a ReLU is blazing fast and so is computing its derivative (0 for neg-
ative numbers, and 1 for strictly positive numbers, the derivative at the origin being
arbitrary) (Fig. 15.6).

The point of using such a simple nonlinearity may seem unclear at first: A neuron
with a ReLU activation is just a crippled linear model unable to output anything neg-
ative! But contrary to linear models, a neuron is never used alone: Its representational
power comes from being coupled with other neurons to form a DNN. In its simplest
form, called multilayer perceptron (MLP), a DNN is a stack of layers, each made of
several parallel neurons (Fig. 15.7).

Remember that each individual neuron has a vector of tunable weights and a
single tunable bias as parameters. Since a layer has several parallel neurons, this
translates to each layer having a matrix of tunable weights and a vector of tunable
biases. The set of tunable parameters of an MLP is thus 8 = {W;, b;};—1._x+1. The
operation performed by an MLP is as follows:

hi(xi) = o1 (Wixj + by)
ha(hy) = 02(W2hy + by)

foxi) = f(hy) = 031 (Wigthg + bryr)

454 Y. Bouteiller

X; hi(xi) ha(hi) hy(he—1) f(hi) = fo(xi)

Wi,b; W;, b, Wi, b, Wit 1, by
RS RS

hidden layers output layer

Fig. 15.7 Multilayer perceptron

Despite their fairly simple structure, DNNs perform extremely complex nonlinear
projections and are typically treated as black boxes. Thus, we say that layers other
than the last one are hidden. On the other hand, the last layer has a special role and is
typically a simple linear layer with no activation (i.e., o3+ is the identity function).
This layer projects the output of the last hidden layer into the output space of the
DNN (for instance, into a 3D vector if we are predicting a position ...).

Notice that, without nonlinear activation functions, this structure would only be
a crazy way of building a linear model. This is because combining linear combina-
tions yields other linear combinations. Yet, simple nonlinearities such as ReLUs make
DNNs much more powerful. In fact, a famous result called the universal approxi-
mation theorem (Hornik, 1991) shows that, even with a single (large enough) hidden
layer, a neural network can approximate any continuous function arbitrarily well.'*
This includes mappings from raw camera images to conceptual information about
their content, or even directly to optimal control commands for our robot!

15.4.5 Gradient Back-Propagation in Deep Neural Networks

We know that DNNs can approximate virtually any complicated nonlinear mapping
of interest, such as mappings from camera images to conceptual descriptions of their
content. Moreover, we know a way of searching for this mapping: SGD with early
stopping. The only ingredient we are missing for applying this strategy is an estimate
of the gradient of the loss with respect to all tunable weights and biases of our DNN.

The key to the success of DNNS is an algorithm introduced in 1970 (Linnainmaa,
1970) and made practical by the use of modern GPUs/TPUs/IPUs, called gradient
back-propagation (or backprop for short). Backprop is a dynamic programming
algorithm that efficiently computes the gradient of the loss. To perform a backprop,

14 For an animated illustration of this result: http://neuralnetworksanddeeplearning.com/chap4.html
(Nielsen, 2015).

http://neuralnetworksanddeeplearning.com/chap4.html
 14137
56760 a 14137 56760 a

http://neuralnetworksanddeeplearning.com/chap4.html

15 Managing the World Complexity: From Linear Regression to Deep Learning 455

L(0, (zi, i)

OL| 0L ba
db| Oa 0b

Fig. 15.8 Gradient back-propagation

one first needs to perform a forward propagation in the DNN, i.e., compute the
fo(x;) output. Then, backprop uses the chain rule of partial derivatives to propagate
gradients backward in the graph. For simplicity, let us visualize this process on a
single neuron.

In Fig. 15.8, we want to compute the gradient of the loss L with respect to the
weights w; and the bias b. Once the output f has been computed by a forward
propagation, it is straightforward to compute the derivative of the loss with respect
to this output, ﬁ We can then use the result to compute 57 aL ,13 which, according to

the chain rule, is equal to 3—fL A Indeed is just the derrvatlve of the activation o.
The result can then be propagated further back to compute the partial derlvatlves we

are interested in: ;’—L = AL a gpq 8 aL = aL a“ Indeed is x, and is 1. To
w; a ()w, J
generalize this procedure to DNNs, we also use = to compute ‘T = % a"x—” where
1]
_da__

T is wj, and we repeat this process in prev1ous neurons. Note that intermediate

results such as 2% are computed only once and reused many times. This makes this
dynamic programmlng procedure very efficient in DNNs.

We now master the basics of deep learning! In practice, we will not implement
SGD and backprop manually, because highly optimized libraries have done all the
work for us. Nowadays, the most popular such libraries are PyTorch and Tensor-
Flow. !¢

15.4.6 Convolutional Neural Networks

We have seen how DNNs can learn extremely complex nonlinear tasks such as
mapping camera pixels to relevant high-level information ... in theory. In reality,
using an MLP to process camera images is bound to fail.

15 Here, a denotes the intermediate forward value after the sum and before the activation.

16 pytorch.org and tensorflow.org.

456 Y. Bouteiller

a convolutional filter is a tensor of tunable weights

o[olo[o[o]e

convolution

pixel-wise
convolutional
filter

output

Fig. 15.9 Neural convolution

To understand why, let us consider a small 100 x 100 RGB image input. When flat-
tened with all three color channels concatenated, this becomes a 30,000-dimensional
vector. For an MLP to be able to extract meaning of this vector, it should have at
least about as many neurons in its first layer; otherwise, a near-linear regression on
pixels would happen. The number of weights in an MLP layer being the number
of inputs multiplied by the number of parallel neurons, this would require around
9 x 108 tunable weights in the first layer alone. Computing their individual partial
derivatives at each SGD iteration would be painfully slow.

Furthermore, deep learning is never guaranteed to converge to anything inter-
esting. The convergence and generalization properties of SGD rely on the pseudo-
convexity assumption and depend on many hyperparameters (structure of the neural
network, learning rate, initial set of parameters ...). Thus, it is often a good idea
to help our models learn meaningful mappings by enforcing inductive biases when
possible, similar to how linearity makes linear models efficient for linear problems.
In particular, camera images have a strong spatial structure that we can use to our
advantage. Convolutional neural networks (CNNs) are an effective way of doing so.
Instead of connecting each color channel of each pixel to each neuron of the first hid-
den layer, CNNs borrow a much lighter technique from traditional computer vision:
image convolution.'” This technique, illustrated in Fig. 15.9, uses filters (also called
kernels) to “scan” images for specific patterns and perform local projections.

A filter is a small array of weights, plus a single optional bias,'® all tunable.
We split the image into pieces of the same size as the filter. Typically, these pieces
are overlapping (e.g., shifted by only one pixel), although for the sake of clarity
they do not overlap in Fig. 15.9 (they form the white “grid”). We apply the filter to

17 The mathematical operation is actually a cross-correlation, but ML practitioners call it “convo-
lution”.

18 Another (less common) version exists in which there is one bias per output pixel.

15 Managing the World Complexity: From Linear Regression to Deep Learning 457

Fig. 15.10 Convolution stride: 1 padding: 1

options > —
] dilation: 3

kernel size: 3

each piece individually. This is done by multiplying each pixel of the piece with the
corresponding weight of the filter, then summing the results into a single value, and
adding the bias (NB: This operation is a linear combination).

The result is then fed to an activation function, which produces a new pixel value.
Together, new pixels form an output image called feature map. More precisely, a
2D convolutional filter is in fact a 3D tensor'® whose depth is the number of input
channels (e.g., 3 when the input is a RGB image). It combines all input channels into
a single output feature map. CNNs commonly use hundred of filters in parallel, each
producing a different feature map depending on the weights and bias of the filter.
These feature maps then become the input channels of the next convolutional layer.
Using CNN filters greatly reduces the number of trainable parameters when compared
to MLPs: Only the weights and bias of each filter are trainable, and convolutional
filters are often of size 3 x 3 in practice. Typically, we find that filters become edge
detectors or pattern detectors during training. For instance, in Fig. 15.9, the trained
filter has naturally taken the shape of a flower so as to detect flower patterns.

Additionally, we commonly use the following operations in convolutional layers:

— Zero padding: We append zeroes to the border of the input image.
— Stride: We shift pixels between convoluted pieces of the input image.
— Dilation: We shift pixels between elements of the convolutional filter.

These options are illustrated in Fig. 15.10 (integer values describe both dimen-
sions).

Finally, kernel-based operations other than image convolution are often used in
CNNSs. The most common is max pooling, which reduces the size of a feature map
by selecting the pixel with the maximum value in the area of the kernel, as illustrated
in Fig. 15.11.

CNNss are typically made of alternating convolutional and max pooling layers and
are often very deep (i.e., they have many layers). They are by far the current state of
the art in a wide range of computer vision tasks, some of which we will highlight
later in this chapter. CNNs are a building block of many GANs used for image

19 A tensor is a multidimensional array, for instance a matrix is a 2D tensor.

458 Y. Bouteiller

Fig. 15.11 Max pooling 0110 loalo1Toalo 2
max pooling
00| 0]0.1/0.2]/0.3
0.1]0.1]0.2]0.3|0.3]0.3|
0 |0.1{0.2|0.2
0|0([0]0.2 0.2]0.3]
0|0(0]0.1 01]0.2
input output

manipulation and generation, and they are not limited to 2D image processing. For
instance, 1D convolutions can be used for signal processing, and 3D convolutions
can be used for video processing.

15.4.7 Recurrent Neural Networks

Time series are often central in robotics: We need them to analyze the past and plan
in the future. Thus far, we have seen how DNNs can analyze the present, but can
they keep track of the past? Is it possible to predict and plan in the future? Can we
generate coherent sequences such as paths, or even sentences? Can we process time
series such as video streams, or even sound and voice?

In deep learning, the past can be analyzed by feeding the whole history of rel-
evant observations to a DNN. For instance, a self-driving car would be unable to
output a relevant command from one camera image only, as this would contain little
information about the dynamics of the world (i.e., only contextual information ...).
On the other hand, a history of the last few camera images equally spaced in time
is enough to infer simple dynamics. This concern is more generally known as the
Markov property: The history fed as input to the model must be long enough so that
any earlier observation is irrelevant to the task.

Planning in the future can be done by recursively feeding a DNN with its own last
few outputs. For instance, let us imagine a model that takes a target position and a
path as input. The model appends a waypoint to the path so that it gets closer to the
target. The updated path can then be fed back to the model. This procedure repeated
several times yields a path planning algorithm. A similar procedure can be used to
generate speech or music. ...

Although feeding a history of observations directly to a vanilla DNN is possible,
this quickly gets inefficient and impractical. Naively processing the whole history of
relevant observations at each forward propagation is computationally intensive and
may perform poorly due to the lack of inductive biases. Fortunately, a better alterna-
tive exists: Recurrent neural networks (RNNs) are able to automatically detect and
keep track of only the relevant information from past observations. Instead of being
fed the whole history at each forward propagation, they take a single observation
as input and store the relevant information directly in their hidden layers, within a
persistent hidden state.

15 Managing the World Complexity: From Linear Regression to Deep Learning 459

implementation-wise view time-wise view

7)(x0) £ £0 D) 19 (x®)

.. hidden state I I T I
00- 050070 00 0000000

R s SR

MO x© x® <@

Fig. 15.12 Recurrent layer

Figure 15.12 describes a simple RNN layer. For the sake of clarity, arrows rep-
resent matrix multiplications, i.e., connections between layers, instead of individ-
ual connections between neurons (I is the identity matrix). Time is discretized into
timesteps. The output fgt) of the layer at timestep ¢ is computed from both the input
x® and the output from the previous timestep fét_l). An additional set of parameters
W}, and by, handles how memorized information is combined with new information.

Mathematically, the output at timestep ¢ is as follows:
£ = o (Wx® + b+ Wyt ™ + by)

To train an RNN, all observations in the relevant portion of the history are fed to
the model one by one. Then, the gradient of the loss can be back-propagated through
time. This operation is similar to how back-propagation is performed in MLPs, except
the gradient also flows back through the horizontal arrows in the time-wise view of
Fig.15.12.

RNNSs not only make the forward propagation computationally efficient (since
only one observation is fed to the model at each timestep), but also constitute an
inductive bias that promotes memorization of high-level concepts rather than raw
inputs. Indeed, the persistent information consists of the values projected by hidden
layers. In deep learning, these projections are typically seen as extracted concepts.

15.4.8 Deep Learning for Practical Applications

The field of deep learning is very competitive and evolving rapidly. This yields many
high-performance models that practitioners can use directly in robot applications.
Due to Python being particularly popular in the deep learning community, most
readily available implementations are found in Python. Nevertheless, it is always
possible, although a bit cumbersome, to extract readily trained weights and biases
from Python in order to implement the model in more efficient languages for produc-
tion. In fact, PyTorch and TensorFlow both provide ways of facilitating the transfer
of Python models to C++. We provide a non-exhaustive list of supervised and unsu-
pervised approaches that are relevant for robotics.

460 Y. Bouteiller

CNNs and GANs
CNNs and GANSs have attracted a large portion of the ML research focus over the
past few years. They are particularly often used in modern computer vision.

— ImageNet: ImageNet (Deng et al., 2009) is a benchmark on which many high-
performance CNNs are compared for pure image classification. At the moment
of writing this book, the best-performing such models are the EfficientNet family
(Pham et al., 2021; Tan & Le, 2019).

— YOLO: YOLO (You Only Look Once) (Bochkovskiy et al., 2020; Long et al.,
2020; Redmon et al., 2016) is a very popular family of CNNs combining image
classification and bounding boxes. YOLO finds all instances of known categories
in an image and draws a bounding box around each instance.

— Mask-R CNN: Mask-R CNN (He et al., 2017) is similar to YOLO, but even more
evolved. On top of detecting all class instances with their bounding boxes in an
image, Mask-R CNN draws the actual segmentation of each instance.

— PoseNet: PoseNet (Kendall et al., 2015; Moon et al., 2018) is a CNN able to extract
human poses from camera images, e.g., for non-verbal communication with the
robot.

— Super-resolution: Super-resolution models (Wang et al., 2020) are able to improve
the resolution of input images, e.g., for low-quality cameras. They are often based
on GANS.

— Image inpainting: Image inpainting models (Elharrouss et al., 2020) are able to fill
gaps in images. For example, they can be used to fill gaps in depth maps generated
by LIDARS, or to reconstruct partially occluded subjects. They are also often based
on GANS.

— Domain adaptation: Domain adaptation models (Wang & Deng, 2018) enable
transforming data from one domain (e.g., data from a simulator) into data from
another domain (e.g., real-world data!). CycleGAN (Zhu et al., 2017) is a popular
example.

Sequential Modeling
The RNN structure that we have described in the previous section is often informally
called “vanilla RNN”. In practice, much more efficient types of RNNs are available.

— LSTM: A long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is
a special type of RNN with a more complicated, gated structure. In particular, it is
able to selectively forget pieces of information and keep what it thinks is relevant
for many timesteps.

— GRU: A gated recurrent unit (GRU) (Chung et al., 2014) is similar to an LSTM,
but computationally lighter.

— Autoregressive models: Autoregressive models are not really RNNs, but evolved
forms of the naive recursive procedure described in the previous section for gen-
erating sequences with vanilla DNNs. These models use their own previous out-
puts directly as an input sequence and implement inductive biases to process this

15 Managing the World Complexity: From Linear Regression to Deep Learning 461

sequence efficiently. They can be used to generate human voice for example, as
done by WaveNet (Oord et al., 2016).

— Transformers: Transformers (Vaswani et al., 2017) are not really RNNs either. They
also take whole sequences as input. Nevertheless, they are the current state of the
art in many sequence processing tasks. Transformers use an attention mechanism
to efficiently process sequences by focusing only on relevant parts of the input.
For instance, GPT-3 (Brown et al., 2020) is an autoregressive transformer able
to generate human-like text. Another example is BERT (Devlin et al., 2018), a
transformer used for language understanding. Both BERT and GPT-3 are immense
models readily pretrained that one needs to fine-tune for their application.

Note that training LSTMs and GRUs is not fully parallelizable and is thus slow,
but using them is fast once trained. On the other hand, training transformers is
parallelizable and is thus fast, but they are slow to use once trained. This is an
important concern in practice for robotic applications where the model needs to run
as fast as possible once deployed.

Behavioral Cloning

Behavioral cloning is a supervised technique that can be used with any DNN to
train a robot controller. First, an expert remotely controls the robot to perform a task
many times. Everything is recorded into a dataset D = {x;, y;}, where the x; are
sensor readings and the y; are expert commands. We then use this dataset to train
a DNN as seen previously. The resulting DNN maps sensor observations to expert
commands. We call this DNN a policy network and denote its output my instead of
fo, by convention.

15.5 Policy Search for Robotic Control

15.5.1 Limitations of Supervised Learning for Control

While behavioral cloning enables learning a policy, it is inherently limited by its
supervised nature. Behavioral cloning only tries to “imitate” the expert policy from a
dataset of demonstrations, and thus it is unable to really match (let alone outperform)
the expert level. Moreover, expert demonstrations are likely to be concentrated around
a small number of interesting trajectories from which they never deviate. Robots not
being perfect, they do deviate from these known trajectories and get lost in unexplored
situations.

This is where the paradigm of policy search comes into play. Unlike supervised
methods, policy search algorithms learn from their own experience. They are not lim-
ited by the expert level, and they learn in a way that is arguably closer to how natural
intelligence arises. For example, evolutionary algorithms are inspired from natural
genetics. They learn their own policy by continuously applying random mutations
to their model, evaluating the new performance on the task after each mutation, and
choosing to keep or discard the new model based on this evaluation. These algorithms

462 Y. Bouteiller

Fig. 15.13 RL transition transition

environment

: action reward observation

are able to easily find reasonable solutions to theoretically very complex scenarios,
such as multi-robot tasks. However, because their mutations are random, they are
often less efficient than the informed mutations performed by SGD. Deep reinforce-
ment learning is a class of policy search algorithms able to find high-performance
policies by leveraging SGD instead.

15.5.2 Deep Reinforcement Learning

Deep reinforcement learning is the modern conjunction of deep learning and RL
(Sutton & Barto, 2018), a subfield of ML inspired from behavioral psychology,
and more particularly from the concept of reinforcement. Reinforcement partially
explains living organisms’ behavior as the result of a history of positive and negative
stimuli. Simply put, when facing a given situation, living organisms would try differ-
ent actions and experience different outcomes. When later facing similar situations,
they would become more likely to retry the actions that yielded the best outcomes
and less likely to retry the actions that yielded the worst. RL emulates these outcomes
by mean of a reward signal, which is a measure of how well the robot performs.

Interaction with the Environment
In RL, the world is framed as a special type of state machine called Markov decision
process (MDP), or, less formally, environment° (Fig. 15.13).

Robotic environments usually discretize time into timesteps. At each timestep, the
robot, called agent, retrieves an observation of the current state of the environment
and uses its policy to compute an action from this observation. Once the action is
computed, it is applied in the environment, which transitions to a new state. The agent
observes this new state and receives an instantaneous reward. The new observation

20 More precisely, real-world environments are usually partially observable Markov decision pro-
cesses.

15 Managing the World Complexity: From Linear Regression to Deep Learning 463

Gym
T
D X = reset() Actual
a; system
<—) x, 1, d,i=step(a) %
T, iy diy 4

Fig. 15.14 Gym interface

can then be used to compute a new action from the agent’s policy and so on. As
implied by the name, the observations outputted by an MDP must have the Markov
property. In other words, the observation actually fed to the policy must contain the
whole history of past observations reasonably relevant to the task. Alternatively, the
policy can be an RNN ...

In practice, most RL environments are implemented using the Gym Python inter-
face (Brockman et al., 2016) (Fig. 15.14).

The Gym interface is very simple and essentially consists of two methods. The
reset method sets the environment to its initial state and returns an initial observation.
The agent computes an action from this observation and feeds this action to the step
method. The step method performs a transition of the environment and returns four
values: a new observation, an instantaneous reward, a Boolean that tells whether the
task is complete, and a Python dictionary that can usually be ignored (it may contain
debugging information).

Importantly for robot applications, note that MDPs do not naturally take real-time
considerations into account. The world is simply “stepped” from one fixed state to
the next, and time is supposed to be “paused” between transitions. We can achieve
a real-time behavior by means of a timer that clocks our Gym environment, but this
comes with delayed dynamics that we need to handle properly.?!

Reinforcement Learning Objective

The general philosophy of RL is to maximize the accumulated reward signal that
the agent gets from the environment. More precisely, we want to find an optimal
policy which, from any given observation, maximizes the sum of future rewards that
the agent can expect. In other words, we want to find optimal parameters 0* for the
policy of the agent, such that:

0" = argmax Z Elr],

=ty

where E[r,] is the expectation over the instantaneous reward r, received from the
environment at timestep # when following the policy 7y, starting from an arbitrary
initial observation.

21 For a helper that handles these dynamics automatically, see rtgym (pypi.org/project/rtgym/).

464 Y. Bouteiller

Note that this sum can be infinite (e.g., if 7, > O for all ¢), and thus 6* may be
undefined. To alleviate this issue, we introduce a discount factor 0 < y < 1 in the
rewards. This hyperparameter is very often used in RL, and understanding its role is
important. Instead of trying to achieve the maximum sum of expected rewards, the
agent tries to achieve the maximum sum of expected y -discounted rewards:

o0
f* = argmax Z Ely'r].

1=ty

Since y < 1, this makes the optimal policy relatively greedy: instead of optimizing
for long-term rewards, we give more importance to the rewards that are not too far
in the future. The closer y is to 0, the greedier the optimal policy becomes. We
usually set y very close to 1 (0.95 or 0.99 are common values), but the effect is still
noticeable. For instance, let us imagine we design the reward to be 0 everywhere
except for the single timestep when the robot completes the task, where the reward is
1. Without a discount factor (i.e., with y = 1), any policy would be optimal as long
as it completes the task someday, and it should take ten thousand years. On the other
hand, when y < 1, the only optimal policies are the ones that complete the task as
fast as possible.

Several ways of maximizing this sum exist. We will focus on an algorithm pub-
lished in 2015, called “Deep Q-Network” (DQN) (Mnih et al., 2015), because it
introduces many of the basic concepts that more advanced deep RL techniques used
nowadays.

Deep Q-Network Policy
In the DQN algorithm, we train a near-deterministic policy that maps complex obser-
vations to discrete actions.?? For this matter, we use the concept of Q-value.

In RL, the state-value function Vy, (x) maps the observation x to the sum of y-
discounted rewards that the agent can expect from following its current policy my
after observing x. It is defined recursively as follows:

V?Te (x) =]EaNm,(-Ix)Ex’,r’~p(<|x,a) [r/ + va, (-x/)]a

where p is the transition distribution of the environment, i.e., the statistical distribu-
tion of the new observation x” and the new reward »’ when observing x and taking
action a. The policy 7y is also written as a distribution because it is not deterministic.
The Q-value, or action-value function, is almost the same thing, except it “forces”
the first action:

Qm; ()C, Cl) - IE:x’,r’~p(~|x,a) [7‘/ + VVT[g (X/)].

22 Determinism is not really suitable for robotics in practice: We may get stuck in unseen situations.
More advanced deep RL techniques are able to train stochastic policies that output real-valued
actions.

15 Managing the World Complexity: From Linear Regression to Deep Learning 465

Q* (ﬁ, al)

*(r.a estimated
@ (’ 2) optimal Q-value
of each action

observation x

Q*(xv as)

Fig. 15.15 Deep Q-network model

In plain English, the Q-value Q, (x, a) is the sum of discounted rewards that the
robot can expect when it observes x, takes action a, and then follows it current policy
1y ever after. We use the Q-value to discriminate good and bad actions from a given
observation.

Let us imagine that we magically have access to the optimal Q-value function Q*,
i.e., the Q-value function under the optimal policy my-. When actions are discrete,
the optimal policy 7y is obviously to choose the action with the highest O* at each
timestep, i.e.,

7+ (x) = argmaxQ*(x, a).
a

This is exactly how the DQN policy works. We train a DNN with parameters 6
that maps observations to the optimal Q-value Q* of each action (Fig. 15.15).

Once the DQN model is trained, the robot uses it with the observation received
from the environment at each timestep. The optimal policy my- is simply to select
the action with the highest estimated Q*. Ties are broken randomly, which is why
the DQN policy is not entirely deterministic.

Deep Q-Network Training

Of course, we do not magically have access to the optimal Q-value function for
training our DQN model in practice. But there is a well-known method for approxi-
mating this function: Q-learning. The previous equations can be combined into the
following form:

£2>'< (X, Cl) = IE:x’,r’wp(~|x,a) [V/ + Y I’IlaE/lX Q*(X,, a/)]-

This identity, called the Bellman equation, is very important for RL. It enables
identifying the optimal Q-value function by performing Bellman backups. For any
transition (x, a, x’, r") performed in the environment, we can improve our approxi-
mator (e.g., DQN model) of the optimal Q-value function with a simple operation:

0*(x,a) < r' + y max Q*(x', a’)
o
Let us take a moment to unveil the full potential of this operation. The Bellman

backup improves the estimate of Q*(x, a) by aggregating the actual reward r’ and
the estimated best Q* under the next observation x’. We can select any transition

466 Y. Bouteiller

(x, a, x’, r") to perform this backup, as long as the transition has been sampled from
the environment at some point. This includes transitions collected under a policy that
is not the current policy of the robot. In particular, we can use transitions collected by
an expert, or simply by an older version of the current policy. In RL, this important
property is called off-policy. An off-policy algorithm, such as DQN, is able to improve
the current policy with transitions collected under another policy. This is in contrast
to on-policy algorithms, which can only use transitions collected under the current
policy. The main reason why the off-policy property is important is that it enables
reusing old transitions several times at different stages of training. This is particularly
important in robotic applications, where it is costly to collect environment transitions.

‘We want to use the Bellman backup for training our DQN model, which is a DNN.
Therefore, we need to translate this backup into a loss function, so as to enable SGD.
This is pretty straightforward: We can simply use the MSE loss. We select a transition
(x,a,x’,r"),wefeed x and x’ separately to our DQN model so as to retrieve Q*(x, a)
and Q*(x’,), and then we perform an SGD step for the Q*(x, a) output only, using
the following loss:

Lyse(Q%, {(x,a,x", r)) = Q" (x,a) — (' + Vn}f,‘xg*(x'v a))?

The reason why we underline Q* in the right-hand part of this equation is a bit
subtle. Notice that, in supervised learning, the quantity between parenthesis would
correspond to the ground truth label y, which would be a constant. Here, however,
this quantity depends on the parameters of the DNN, because the DNN is used to
compute Q*(x’, -). Thus, if we are not careful, performing SGD will modify the
DNN parameters such that our “ground truth” gets closer to our estimate rather than
the other way round! To avoid this issue, we do not back-propagate gradients through
the computation graph of Q* 23 However, this leaves yet another issue: Updating our
DNN parameters still updates the very target that we are trying to reach! Indeed,
we are updating these parameters such that our estimate of Q*(x, a) gets closer to
the quantity between parentheses, but this collaterally changes Q* and thus this very
quantity, making training unstable. We instead keep an old copy of our DQN model
that we periodically update. This copy, called the target network, is used to compute
Q*(x’, -). Since it is only updated once in a while, it becomes easier to track.
~ Itis straightforward to generalize our loss to minibatch gradient descent. Using a

minibatch M = {(x;, a;, x/, r])} of n transitions, the MSE loss becomes

1 n)
Lyse(Q*, M) = = Y " |Q*(xi, @) — (r] + y max Q*(x], a))[".
oo “@

Since DQN is off-policy, we can sample these transitions randomly from a dataset,
as we would do in supervised learning. Sampling from a fixed dataset (e.g., of expert
demonstrations) is possible and known as offline RL. Theoretically, this could match

23 In PyTorch and TensorFlow, the “no gradient” option ensures this constant-like behavior.

15 Managing the World Complexity: From Linear Regression to Deep Learning 467

and even outperform the expert level, because we are not imitating the expert any-
more: We are literately learning from their experience. However, this approach comes
with practical difficulties, in particular because it tends to overestimate the value of
unexplored situations. We often prefer letting the agent collect its own experience,
by exploring the environment while learning. In this situation, there is virtually no
theoretical limit to how good the agent can get.

In DQN, the agent explores its environment by following an e-greedy policy:
With a certain probability €, the agent selects a random action, and with probability
(1 — €), it selects the best action as estimated by the DQN model. This scheme
exploits the current knowledge of the environment by drawing exploration toward
promising trajectories only. A higher € yields a higher tendency to explore and thus
slower convergence, whereas a smaller ¢ yields faster convergence at the price of
being more likely to converge to local optima, i.e., to poor policies. This trade-off is
known as the exploration/exploitation dilemma.

In practice, we store the transitions collected by the agent in a huge circular dataset
called replay buffer (1-100 million transitions are common sizes). In parallel, we
randomly sample minibatches of transitions from this buffer, and we train our DQN
model by minimizing the Lysg(Q*, M) loss via SGD.

15.5.3 Improvements of Deep Q-Learning

DQN was published in 2015 and has popularized the idea of deep Q-learning, which
is leveraged in many state-of-the-art deep RL algorithms nowadays. Over the years,
improvements have been introduced that increased the performance of these methods.
In particular, we usually dampen the updates of the target network and train two DQN
models in parallel.

Slowly Moving Target

Using an old copy of our DQN model that we only periodically update makes the
target easier to track. An even better strategy is to update the target slowly in a
dampened fashion, by mean of an exponentially moving average. Instead of only
periodically updating the target parameters, we update them with each SGD step,
but only by pulling them weakly toward those of the current DNQ model. More
precisely, the parameters of the target are updated according to:

0« (1 —-1)0+ 10,

where 6 are the parameters of the current Q-network, 0 are those of the target network,
and 7 is a small attraction coefficient (commonly 0.005). With this strategy, the Q*
target does not move erratically due to the stochasticity of SGD updates.

Double Q-Networks
Another well-known issue of the original DQN algorithm is that the Q-network
tends to converge to overestimated values for some actions. This issue, known as the

468 Y. Bouteiller

overestimation bias, comes from the fact that the target network Q™ is an estimator
and has a noisy error. When selecting the maximum Q* over all actions, we also
select the maximum over ... the noisy error! o

To tackle this issue, we train two DQN models in parallel, with different sets of
initial parameters. This yields two target networks, each with different error distri-
butions. In recent algorithms, we compute the value of each action as its minimum
across both networks, which cancels the overestimation bias.

15.5.4 Deep Reinforcement Learning for Practical
Applications

Despite DQN being relatively recent (2015), the research effort has been so intense in
the deep RL community over the last few years that it is already vastly outperformed
by more advanced techniques.

— Soft Actor Critic (SAC). Since its publication in 2018, SAC (Haarnojaet al., 2018a,
2018b) has been one of the main players in deep RL for robotics. SAC is an Actor
Critic algorithm. This means that two neural networks are trained in an interleaved
fashion: an actor (policy network similar to behavioral cloning) and a critic (Q-
network similar to DQN). The policy trained by SAC is stochastic and able to
output continuous actions. Moreover, its entropy>* is maximized in parallel to the
RL objective. This yields a policy that is very robust to unseen situations, which
is particularly important in the real world. SAC is also an off-policy algorithm.

— Model-based reinforcement learning. More recently, another class of deep RL
algorithms, called model based, has seen a dramatic surge of interest from the com-
munity. Model-based algorithms use a model of the world to predict the response
of the environment from a given observation. In state-of-the-art approaches, this
model is learnt from interacting with the environment. Once learnt, the policy can
be trained without interacting with the environment anymore, and the model can be
used for planning. The MuZero (Schrittwieser et al., 2020) algorithm is currently
the winning player in this field.

— Non-stationary environments. Let us point out a real-world concern that we have
silenced so far. We have focused on off-policy algorithms because these have
tremendous advantages in situations where the collection of transitions is costly,
which is typically the case in robot applications. However, “naive” off-policy
algorithms only work when the environment is stationary. Indeed, these algorithms
rely on a dataset of past transitions to train their current policy. But think of
what happens in the real world, where other agents are continuously learning
and changing their behavior. Old transitions may become obsolete, and learning
from those may become counterproductive. In this situation, you might want to
draw inspiration from on-policy approaches such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017), which only rely on the present.

24 The entropy is the amount of randomness of a stochastic function.

15 Managing the World Complexity: From Linear Regression to Deep Learning 469

— Sim-to-real. It is often practical to train an RL algorithm in simulation, especially
for robotics. RL being fundamentally based on trial-and-error, we do not want our
robot to break because of crazy random actions during training. Simulation instead
provides a safe environment where arbitrarily bad actions can be tried out. More-
over, it is possible to accelerate time in simulation and collect transitions faster
than real time. But this comes at a price: Simulation is never the same as reality,
and a policy trained in simulation typically fails in the real world. This concern,
called the sim-to-real gap, is one of the main challenges that has long kept deep RL
from being really useful in practical robotics. However, it has recently been allevi-
ated impressively by techniques such as Rapid Motor Adaptation (RMA) (Kumar
et al., 2021), which uses a combination of deep RL and supervised learning for
this matter.

15.6 Wrapping It Up: How to Deeply Understand the
World

Deep RL is an elegant illustration of how deep learning enables a robot to produce its
own understanding of the world. When learning a task such as driving autonomously
from camera images through deep RL, the robot is never explicitly told what a car,
a pedestrian, or a road is. Instead, it learns these concepts on the fly, only from
maintaining its own belief about which decisions are good or bad for each possible
observation. This belief is formed by the principle of gradient back-propagation in a
DNN. In the case of DQN, this DNN is the DQN model, which can be seen as a black
box, mapping observations to the corresponding Q-value of each available action.
For instance, an image in which there is a pedestrian would likely be mapped to low
Q-values for actions that lead to run over the pedestrian and to higher Q-values for
actions that do not. This implies that DQN builds its own way of detecting pedestrians
(with convolutional kernels that detect pedestrian features for instance) and grasps
a certain understanding of what a pedestrian is, how it moves, how it interacts with
the world, etc. Now, there is no magic at play here: This understanding is entirely
statistical, and it is defined as the complex projections performed by the DNN in its
successive layers of artificial neurons. How this fundamentally differs from a human
understanding of the world, however, is a real question.

15.7 Summary

In this chapter, an introduction to the fundamentals of modern machine learning has
been provided, in its aspects most relevant to robotics. We have started from simple
linear regressions and have built our way up to highly expressive and nonlinear deep
neural networks. This allows us to approximate complex mappings, such as opti-
mal controls from sensor readings. Furthermore, we have introduced the basics of

470 Y. Bouteiller

deep reinforcement learning, a popular approach that enables robots to look for such
controls autonomously. In the course of this chapter, we have seen how a dataset
can be used for training a model and how it is possible to ensure that this model
generalizes well. Finally, we have introduced state-of-the-art supervised models that
the reader can use out of the box for robotic perception and state-of-the-art reinforce-
ment learning algorithms that are becoming increasingly relevant for robot control.
Keep in mind however that all these techniques are uncertain in nature, due to the
use of statistical approximators (e.g., neural networks). Safety is therefore always an
important concern when applying modern ML techniques in the real world.

15.8 Quiz

Please find the quiz for this chapter in the Jupyter notebooks available online.?’

15.9 Further Reading

To learn more about deep learning, we recommend “Deep Learning” (Goodfellow
et al., 2016) by Ian Goodfellow, Yoshua Bengio, and Aaron Courville. To learn
more about reinforcement learning, we recommend “Reinforcement Learning: An
introduction” (Sutton & Barto, 2018) by Richard Sutton and Andrew Barto. Both
references are available online for free.

References

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:200410934

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W.
(2016). Openai gym. arXiv preprint arXiv:160601540

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P, Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J, Winter, C., ... Amodei, D. (2020). Language models are few-shot
learners. arXiv preprint arXiv:200514165

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:14123555

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition
(pp. 248-255). IEEE.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:181004805

25 https://github.com/Foundations-of-Robotics/ML-Quiz.

http://arxiv.org/abs/200410934
 10838 40155 a 10838 40155 a

http://arxiv.org/abs/200410934
http://arxiv.org/abs/160601540
 12458 42369 a 12458 42369 a

http://arxiv.org/abs/160601540
http://arxiv.org/abs/200514165
 7831 46797 a 7831 46797 a

http://arxiv.org/abs/200514165
http://arxiv.org/abs/14123555
 19530 49011 a 19530 49011 a

http://arxiv.org/abs/14123555
http://arxiv.org/abs/181004805
 20139 54546 a 20139 54546
a

http://arxiv.org/abs/181004805
https://github.com/Foundations-of-Robotics/ML-Quiz
 -1104 57867 a -1104 57867
a

https://github.com/Foundations-of-Robotics/ML-Quiz

15 Managing the World Complexity: From Linear Regression to Deep Learning 471

Elharrouss, O., Almaadeed, N., Al-Maadeed, S., & Akbari, Y. (2020). Image inpainting: A review.
Neural Processing Letters, 51(2), 2007-2028.

Fitch, F. B. (1944). McCulloch Warren S. and Pitts Walter. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133. Journal of Symbolic
Logic, 9(2).

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018a). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, PMLR (pp. 1861-1870).

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A.,
Abbeel, P.,, & Levine, S. (2018b). Soft actor-critic algorithms and applications. arXiv preprint
arXiv:181205905

He, F, Liu, T., & Tao, D. (2019). Control batch size and learning rate to generalize well: Theoretical
and empirical evidence. Advances in Neural Information Processing Systems, 32, 1143-1152.

He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision (pp. 2961-2969).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8),
1735-1780.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Net-
works, 4(2), 251-257.

Ivakhnenko, A. G., & Lapa, V. G. (1965). Cybernetic predicting devices. CCM Information Cor-
poration.

Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A convolutional network for real-time 6-
DOF camera relocalization. In Proceedings of the IEEE International Conference on Computer
Vision (pp. 2938-2946).

Kingma, D. P,& Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:14126980

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems (Vol. 25, pp.
1097-1105).

Kumar, A., Fu, Z., Pathak, D., & Malik, J. (2021). RMA: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:210704034

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a
Taylor expansion of the local rounding errors (Master’s Thesis), University of Helsinki, pp. 67
(in Finnish).

Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., Ding, E., &
Wen, S. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv
preprint arXiv:200712099

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I, King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529-533.

Moon, G., Chang, J. Y., & Lee, K. M. (2018). V2V-PoseNet: Voxel-to-voxel prediction network
for accurate 3D hand and human pose estimation from a single depth map. In Proceedings of the
1EEE Conference on Computer Vision and Pattern Recognition (pp. 5079-5088).

Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). Determination Press.

Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior,
A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint
arXiv:160903499

Pham, H., Dai, Z., Xie, Q., & Le, Q. V. (2021). Meta pseudo labels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 11557-11568).

http://arxiv.org/abs/181205905
 -1185 11596 a -1185 11596 a

http://arxiv.org/abs/181205905
http://arxiv.org/abs/14126980
 -1185 28200 a -1185
28200 a

http://arxiv.org/abs/14126980
http://arxiv.org/abs/210704034
 4383 33735 a 4383 33735 a

http://arxiv.org/abs/210704034
http://arxiv.org/abs/200712099
 2029 40377 a 2029 40377 a

http://arxiv.org/abs/200712099
http://arxiv.org/abs/160903499
 -1185 52553 a -1185
52553 a

http://arxiv.org/abs/160903499

472 Y. Bouteiller

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-
time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 779-788).

Schrittwieser, J., Antonoglou, L., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart,
E., Hassabis, D., Graepel, T., Lillicrap, T, & Silver, D. (2020). Mastering Atari, Go, chess and
shogi by planning with a learned model. Nature, 588(7839), 604-609.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy opti-
mization algorithms. arXiv preprint arXiv:170706347

Stigler, S. M. (1981). Gauss and the invention of least squares. The Annals of Statistics, 465-474.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.

Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks.
In: International Conference on Machine Learning, PMLR (pp. 6105-6114).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polo-
sukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems
(pp. 5998-6008).

Wang, M., & Deng, W. (2018). Deep visual domain adaptation: A survey. Neurocomputing, 312,
135-153.

Wang, Z., Chen, J., & Hoi, S. C. (2020). Deep learning for image super-resolution: A survey. [EEE
Transactions on Pattern Analysis and Machine Intelligence.

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 2223-2232).

Yann Bouteiller is an engineer from Ecole des Mines de Saint-Etienne (France) working as a
research associate at the Computer Science Department of Polytechnique Montreal (Canada). His
research focuses on machine learning (ML) and more specifically on designing deep reinforce-
ment learning algorithms for real-world applications. At the junction between theoretical and prac-
tical ML, he aims at facilitating the transfer of recent, simulation-based deep learning successes
to the industry. His work includes advances in reinforcement learning theory as well as practical
deep learning-based advances in neuroscience, autonomous driving, robot learning, video games,
real-time embedded systems, etc.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material derived from
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://arxiv.org/abs/170706347
 12407 7168 a 12407 7168 a

http://arxiv.org/abs/170706347
http://creativecommons.org/licenses/by-nc-nd/4.0/
 20870 42891 a 20870 42891
a

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	15 Managing the World Complexity: From Linear Regression to Deep Learning
	15.1 Objectives of the Chapter
	15.2 Introduction
	15.3 Definitions
	15.4 From Linear Regression to Deep Learning
	15.4.1 Loss Optimization
	15.4.2 Linear Regression
	15.4.3 Training Generalizable Models
	15.4.4 Deep Neural Networks
	15.4.5 Gradient Back-Propagation in Deep Neural Networks
	15.4.6 Convolutional Neural Networks
	15.4.7 Recurrent Neural Networks
	15.4.8 Deep Learning for Practical Applications

	15.5 Policy Search for Robotic Control
	15.5.1 Limitations of Supervised Learning for Control
	15.5.2 Deep Reinforcement Learning
	15.5.3 Improvements of Deep Q-Learning
	15.5.4 Deep Reinforcement Learning for Practical Applications

	15.6 Wrapping It Up: How to Deeply Understand the World
	15.7 Summary
	15.8 Quiz
	15.9 Further Reading
	References

