Chapter 6 ®
Mathematical Building Blocks: From oo
Geometry to Quaternions to Bayesian

Rebecca Stower @, Bruno Belzile ®, and David St-Onge

6.1 Learning Objectives

The objective at the end of this chapter is to be able to:

use vector and matrix operations;

represent translation, scaling, and symmetry in matrix operations;
understand the use and limitation of Euler’s angles and quaternions;
use homogeneous transformations;

use derivatives to find a function optimums and linearize a function;
understand the importance and the definition of a Gaussian distribution;
use t-tests and ANOVAs to validate statistical hypothesis.

6.2 Introduction

Several of the bodies of knowledge related to robotics are grounded in physics and
statistics. While this book tries to cover each topic in an accessible manner, the large
majority of these book chapters expect a minimal background in mathematics. The
following pages summarize a wide range of mathematical concepts from geometry
to statistics. Throughout this chapter, relevant Python functions are included.
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Fig. 6.1 Different
coordinate systems in 3D
space

6.3 Basic Geometry and Linear Algebra

In this section, a brief non-exhaustive summary of basic concepts in Euclidean geom-
etry is given. Moreover, some linear algebra operations, useful for the manipulations
of components in different arrays, are recalled.

6.3.1 Coordinate Systems

A coordinate system is a “system for specifying points using coordinates measured
in some specified way.”! The most common, which you have most probably used in
the past is the Cartesian coordinate system, is shown in Fig. 6.1. In this case, more
precisely in 3D space, we have an origin, i.e., the point from where the coordinates
are measured, and three independent and orthogonal axes, X, Y, and Z. Three axes
are needed and they must be independent, but they do not need to be orthogonal.
However, for practical reasons in most (but not all) applications, orthogonal axes are
preferred (Hassenpflug, 1995).

You may encounter some common alternatives to Cartesian coordinates that can be
more appropriate for some applications, such as spherical and cylindrical coordinates.
In the former, the coordinates are defined by a distance p from the origin and two
angles, i.e., 6 and ¢. In the latter, which is an extension of polar coordinates in 2D, a
radial distance r, an azimuth (angle) 6, and an axial coordinate (height) z are needed.
While a point is uniquely defined with Cartesian coordinates, it is not totally the case
with spherical and cylindrical coordinates; more precisely, the origin is defined by
an infinite set of coordinates with those two systems, as the angles are not defined at
the origin. Moreover, you can add/subtract multiples of 360° to every angle and you
will end up with the same point, but different coordinates. Moreover, you should be

! https://mathworld.wolfram.com/CoordinateSystem.html.
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careful with cylindrical and spherical coordinates, as the variables used to define the
individual coordinates may be switched, depending on the convention used, which
usually differs if you are talking to a physicist, a mathematician, or an engineer.’

6.3.2 Vector/Matrix Representation

In mathematics, a vector is “a quantity that has magnitude and direction and that
is commonly represented by a directed line segment whose length represents the
magnitude and whose orientation in space represents the direction.”® As you may
wonder, this definition does not refer to components and reference frames, which we
often come across when vectors are involved. This is because there is a common con-
fusion between the physical quantity represented by a vector and the representation
of that same quantity in a coordinate system with one-dimensional arrays. The same
word, vector, is used to refer to these arrays, but you should be careful to distinguish
the two. Commonly, an arrow over a lower case letter defines a vector, the physical
quantity, for example @ , and a lower case bold letter represents a vector defined in a
coordinate system, i.e., with components, for example, a. You should note, however,
that authors sometimes use different conventions. In this book, the coordinate system
used to represent a vector is denoted by a superscript. For example, the variable b%
is the embodiment of 7 in frame S, while b7 is the embodiment of 7 in frame 7.
They do not have the same components, but they remain the same vector.

Vectors @ and _b) in a n-dimensional Euclidean space can be displayed with their
components as

a by
az by
as b3
a=| . |, b=| . (6.1)
ap—1 bnfl
L al’l _ L bn .

—
—_ . .

For example, vectors ¢ and d are shown in Fig. 6.2. As can be seen, two reference
frames are also displayed. Their components in these frames are

s M1 - T o0 s 1 7 [-14142
¢ —M’ ¢ —[1.4142’ =13 € =1 284 62)

2 See https:/mathworld.wolfram.com/SphericalCoordinates.html.
3 https://www.merriam-webster.com/dictionary/vector.
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Fig. 6.2 Planar vectors and
their components in different
frames

import numpy as np # Import library
# arrays
a = np.array ([1,1]) # vector
A = np.array ([1,2],
[3,4]) # matrix

Similarly, tensors are used to represent physical properties of a body (and many
other things). More formally, tensors are algebraic objects defining multilinear rela-
tionships between other objects in a vector space. Do not focus to much on the
mathematical definition, but instead on what you already know. You have already
encountered some tensors in this chapter, since scalars and vectors (the physical
quantity, not the array) are, respectively, rank-0 and rank-1 tensors.* Therefore, ten-
sors can be seen as their generalization. One example of rank-2 tensors is the inertia
tensor of a rigid body, which basically represents how the mass is distributed in a
rigid body (which does not depend on a reference frame). For the sake of numerical
computation, the representation of a rank-2 tensor in a coordinate system can be done
with what we call a matrix. You should be careful, however, not to confuse matrices
and rank-2 tensors. Indeed, all rank-2 tensors can be represented by a matrix, but
not all matrices are rank-2 tensors. In other words, matrices are just boxes (arrays)
with numbers inside (components) that can be used to represent different objects,
rank-2 tensors among them. Matrices are generally represented by upper case bold
letters, eg. A. Matrices, which have components, can also be defined in specific ref-
erence frames. Therefore, the superscript to denote the reference frame also applies
to matrices in the book, e.g., HS is a homogeneous transformation matrix (will be
seen in Sect. 6.4.4) defined in S.

Other common matrices with typical characteristics include:

e the square matrix, which is a matrix with an equal number of rows and columns;

e the diagonal matrix, which only has nonzero components on its diagonal, i.e.,
components (1, 1), (2,2), ..., (n, n);

e the identity matrix 1, which is a (n x n) matrix with only 1 on the diagonal, the
other components all being equal to 0.

4 For more information on tensors and their rank: https://mathworld.wolfram.com/Tensor.html.
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6.3.3 Basic Vector/Matrix Operations

Vectors and matrices are powerful and versatile mathematical tools with several
handful properties and operations. We will recall the most useful in robotics in the
following.

Dot Product

The addition and the multiplication with a scalar operations with vectors are simply
distributed over the components. Otherwise, two most relevant operations in robotics
are the dot and cross products. The dot product is also known as the scalar product,

. . -
as the result of the dot product of two arbitrary vectors is a scalar. Let @ and b be

two arbitrary vectors and their corresponding magnitude’ be || @ || and || & ||, then
the dot product of these two vectors is

DD =7 || cos (6.3)

where 6 is the angle between those two vectors. If the two vectors are orthogonal,
by definition, the result will be zero. If components are used, then we have

a'bzalbl +a2b2+a3b3+"'+an—lbn—l +anbn (64)

iﬂport numpy as np # Import library

# dot product

np.dot (a, b) # dot product of two array-like inputs
np.linalg.multi_dot(a,b,c) # dot product of two or more arrays in a single call
# magnitude of a vector

np.linalg.norm(a)

Using the numerical values previously given in (6.2), the dot product of @ and b
is:

- -
d - b =1.4142-3.1623 cos(0.4636) =4 (6.5)
a® b’ =1-14+1-3=4 (6.6)

a? b7 =0-—1.4142 +1.4142 - 2.8284 =4 (6.7)

As you can see from this example, both the geometric and algebraic definitions of
the dot product are equivalent.

Cross Product

The other type of multiplication with vectors is the cross product. Contrary to the
dot product, the cross product of two vectors results in another vector, not a scalar.
Again, both vectors must have the same dimension. With @ and _b) used above, the
cross product is defined as

5 Length, always positive.
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— - .
A x b =|d|lb]|sin6e (6.8)

where, as with the dot product, 6 is the angle between 4 and Z} and @ is a unit
vector® orthogonal to the first two. Its direction is established with the right-hand
rule. In 3D space, the components of the resulting vector can be computed with the
following formula:

arb3 — azby
axb= (13b1 — a1b3 (69)
a1b2 — 02171

where a = [Cll ap a3]T andb = [b1 b2 b3]T.

.

The right-hand rule is used to easily determine the direction of a vector
resulting from the cross product of two others. First, you point in the direction
of the first vector with your remaining fingers, then curl them to point in the
direction of the second vector. According to this rule, the thumb of the right
hand will point along the direction of the resulting vector, which is normal
to the plane formed by the two initial vectors.

\.

mmport numpy as np # Import library
# cross product
np.cross (a,b)

Again, using the numerical values used above in (6.2), we can compute the cross
product. Of course, since these two vectors are planar and the cross product is defined
over 3D space, the third component in Z is assumed equal to zero. The result is given
below:

- . — —
d x b =1.4142-3.1623sin(0.4636) k =2k (6.10)
1-0-0-37 [0]
a’xbS=]0-1—-1-0[=]0 (6.11)
1:3-1-1] |2]
1.4142-0—0-2.8284 0]
aZ xb? = | 0--1.41421356 — 1.4142-0 | = |0 (6.12)
0-2.8284 — 1.4142- —1.4142 | | 2]

—
where k is the unit vector parallel to the Z-axis. By this definition, you can observe
that the unit vector defining the Z-axis of a Cartesian coordinate frame is simply
the cross product of the unit vectors defining the X- and Y -axes, following the order

- —
given by the right-hand rule. These three unit vectors are commonly labeled i , j
and k , as shown in Fig. 6.3. You should note that the cross product of unit vector
— —
a with J also results in k , since @ is also in the X Y-plane. Moreover, as you

6 With a magnitude of 1.
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Fig. 6.3 Unit vectors ?
defining a Cartesian frame T

can see with the cross product of _1> and ? illustrated in the same figure, a vector
is not attached to a particular point in space. As mentioned before, it is defined by
a direction and a magnitude, thus the location where it is represented does not have
any impact on the cross product result.

Matrix Multiplication

Similarly to vectors, the addition and multiplication by a scalar are also distributed
over the components for matrices. On the other hand, the matrix multiplication is
a little more complicated. Let matrix A be defined by row vectors and matrix B be
defined by column vectors, i.e.,
may ]
az

a3
A= . , B= [b1 b, b; ... b,_; bn] (6.13)

a4,
a,

Then, the matrix multiplication is defined as

a1~b| a1~b2 a1'b3 al-bn_l al'b,,
az-bl az-bz 32~b3 az-bn_l az~bn
a3-b1 a3-b2 33-b3 a3-b,,,1 a3~bn
AB = ) ) . : (6.14)

: . bl a1 b2 a1 b3 R bn—l a1 bn
| a,-b;y a,-by a,-b; ... a,-b,_1 a,-b,

While this result may seem scary at first, you can see that the (i, j) component’ is
simply the dot product of the ith row of the first matrix and the jth column of the

7The (i, j) component is the component on the ith row and jth column.
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second matrix. The number of columns of the first matrix (A) must be equal to the
number of rows of the second matrix (B).

import numpy as np # Import library

# matrix multiplication

np.matmul (A,B) # for array-like inputs
A @ B # for ndarray inputs

To illustrate this operation, let A and B be (2 x 2) matrices, i.e.,

12 10
A= [3 4}, B= [_] 2] (6.15)

then, the result of the matrix multiplication is

—14
- [_1 8} (6.16)

It is critical that you understand that matrix multiplication is not commutative,
which means the order matters, as you can see in the following example with matrices
A and B used above:

CM11=2-11-042-2
AB—[3-1—4.13.0+4-2}

14 12
AB = [_1 8], but BA = [5 6} (6.17)

Transpose of a Matrix

Another common operation on a matrix is the computation of its transpose, namely
an operation which flips a matrix over its diagonal. The generated matrix, denoted
AT has the row and column indices switched with respect to A. For instance, with a
(3 x 3) matrix C, its transpose is defined as

T
C1,1 €12 C1 3 C1,1 C2,1 €31
T
C =103 =|c2020: (6.18)
€31 €32 €33 €13 €32 €33

import numpy as np # Import library

# matrix transpose

np . transpose (A) # function for array-like input
A.transpose () # method for ndarray

A.T # attribute for ndarray

Since vectors (array of components) are basically (1 x n) matrices, the transpose can
be used to compute the dot product of two vectors with a matrix multiplication, i.e.,

a-b=a"b=ab +ab,+ -+ a,b, (6.19)
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Determinant and Inverse of a Matrix

Finally, a brief introduction to the inverse of a matrix is necessary, as it is quite
common in robotics, from the mechanics to control to optimization. Let A be a
(n x n) square matrix;® this matrix is invertible if

AB=1, and BA=1 (6.20)

Then, matrix B is the inverse of A and therefore can be written as A~'. The compo-
nents of A~! can be computed formally with the following formula:

1
Al = r 21
det(A) C ©6.21)

where det(A) is called the determinant of A and C is the cofactor matrix® of A. The
determinant of a matrix, a scalar sometimes labeled ||A ||, is equal to, in the case of
a (2 x 2) matrix,

det(A) = ad — be, where A = [‘; Z] (6.22)

Similarly, for a 3 x 3 matrix, we have

abc
det(A) = a(ei — fh) —b(di — fg) +c(dh —eg), where A= |de f
ghi
(6.23)
The determinant of a matrix is critical when it comes to the computation of its
inverse, as a determinant of 0 corresponds to a singular matrix, which does not have
an inverse. The inverse of a (2 x 2) matrix can be computed with the following

formula |
Al = [ d _b] . where A= [“ b} (6.24)
ad —bc |—c a cd

Similarly, for a 3 x 3 matrix, we have

1 (ei — fg) —(bi —ch) (bf —ce) abc
Al = TotA —di— fg) (ai—cg) —(af —cd)|, where A= |de f
et(A) (dh —eg) —(ah —bg) (ae —bd) ghi

(6.25)

8 Same number of rows and columns.

9 The cofactor matrix will not be introduced here for the sake brevity, but its definition can be found
in any linear algebra textbook.
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import numpy as np # Import library
# matrix determinant
np.linalg.det (A)

# matrix inverse

np.linalg.inv (A)

As you can see from Eq. (6.25), you cannot inverse a matrix with a determinant
equal to zero, since it would result in a division by zero. The inverse of a matrix is
a useful tool to solve a system of linear equations. Indeed, a system of n equations
with n unknowns can be casted in matrix form as

Ax=b (6.26)

where the unknowns are the components of x, the constants are the components of b
and the factors in front of each unknowns are the components of matrix A. Therefore,
we can find the solution of this system, namely the values of the unknown variables,
as

x=A"b (6.27)

Generalized Inverses

However, if we have more equations (m) than the number of unknowns (n), the
system is overdetermined, and thus A is no longer a square matrix. Its dimensions are
(m x n). An exact solution to this system of equations cannot generally be found. In
this case, we use a generalized inverse; a strategy to find an optimal solution. Several
generalized inverse, or pseudo-inverse, can be found in the literature (Ben-Israel and
Greville, 2003), each with different optimization criterion. For the sake of this book,
only one type is presented here, the Moore—Penrose generalized inverse (MPGI).
In the case of overdetermined systems, the MPGI is used to find the approximate
solution that minimized the Euclidean norm of the error, which is defined as

€y = b— AX() (628)

where X and ey are the approximate solution and the residual error, respectively.
The approximate solution is computed with

xo = Alb, AL = (ATA)'AT (6.29)

where AL is named the left Moore—Penrose generalized inverse (LMPGI), since
A’A = 1. As an exercise, you can try to prove this equation.

There is another MPGI that can be useful in robotics, but not quite as common
as the LMPGI, the right Moore—Penrose generalized inverse (RMPGI). The right
generalized inverse is defined as

AR =ATAAT)™!, AAR=1 (6.30)
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where A isam X n matrix withm < n, i.e., representing a system of linear equations
with more unknowns than equations. In this case, this system admits infinitely many
solutions. Therefore, we are not looking for the best approximate solution, but one
solution with the minimum-(Euclidean) norm. For example, in robotics, when there is
an infinite set of joint configurations possible to perfectly reach an arbitrary position
with a manipulator, the RMPGI can give you the one minimizing the joint rotations.

With both generalized inverses presented here, we assume that A is full rank,
which means that its individual columns are independent if m > n, or its individual
rows are independent if m < n. In the case of a square matrix (m = n), a full rank
matrix is simply non-singular.

6.4 Geometric Transformations

It is crucial in robotics to be able to describe geometric relations in a clear and
unambiguous way. This is done with coordinate systems and reference frames as
mentioned above. You may have studied already four kinds of geometric transfor-
mation: translation, scaling, symmetry (mirror), and rotation. We will quickly go
over each of them, as they all are useful for computer-assisted design. However,
keep in mind that transformations used to map coordinates in one frame into another
use only translation and rotation.

For clarity, we will present all geometric transformations in matrix form, to lever-
age the powerful operations and properties as well as their condensed format. Using
the vector introduction above (Sect. 6.3.2), the simplest geometric element will be
used to introduce the transformation, the point:

X

Pip(x, y) = B] , Pip(x,y,2) = |y (6.31)
Z

In fact, you only need to apply transformations to point entities in order to trans-
form any 2D and 3D geometry. From a set of points, you can define connected pairs,
i.e., edges or lines, and from a set of lines you can define loops, i.e., surfaces. Finally,
a set of selected surfaces can define a solid (Fig. 6.4).

6.4.1 Basic Transformations

Let’s start with a numerical example: given a pointinx = 1 and y = 2 that we intend
to move by 2 units toward x positive and by 4 units toward y positive. The algebraic
form of this operation is simply x" = x + 2 and y’ = y + 4, which can be written in
matrix form:
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(0,0) X P X X

Fig. 6.4 Basic geometrical transformations, from left to right: translation, scaling and mirror (sym-
metry)

, 1 2
j2 =P+T=M+M (6.32)

Similar reasoning applies in three dimensions. Now imagine we use point P to define

0 - . .
0 and that we want to stretch this line with a scaling
factor of 2. The algebraic form of this operationis x’ = x x 2and y’ = y x 2, which
can be written in matrix form:

Cep 2071
P_SP_[OZ} M (6.33)

This scaling operation is referred to as proportional, since both axes have the same
scaling factor. Using different scaling factors will deform the geometry. If, instead
of scaling the geometry, we use a similar diagonal matrix to change the sign of one
or more of its components, it will generate a symmetry. For instance, a symmetry

with respect to y is written:
;o _|-10](1
P =SSP = [ 0 1} |:2] (6.34)

These operations are simple and do not change with increasing the dimensions from
two to three. The rotations, however, are not as such.

a line with the origin Py =

6.4.2 2D/3D Rotations

A rotation is a geometric transformation that is more easily introduced with polar
coordinates (see Fig. 6.5):
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Fig. 6.5 Planar rotation and Y
polar coordinates
P'(a, o)
7 0 .
P(z,y)
‘ a
(0,0) X
| x| _ [rcos(a)
p=f] =[] 69
Then a rotation 6 applied to this vector consists in:
;_ (rcos(a+0)
P= (r sin(e +6) )’ (6.36)

which can be split with respect to the angles using common trigonometric identities

leading to
s _ [xcos(®) — ysin(@) | _ [cos(@) —sin(0) | [x
P = |:x sin(@) + ycos(@):| - |:Sin(9) cos(0) ] |:y:| (6.37)

The resulting 2 x 2 matrix is referred to as the rotation matrix, and its format is
unique in 2D. Any rotation in the plane can be represented by this matrix, using the
right-hand rule for the sign of 6. This matrix is unique because a single rotation axis
exists for planar geometry: the perpendicular to the plane (often set as the z-axis). For
geometry in three-dimensional space, there is an infinite number of potential rotation
axis; just visualize the rotational motions you can apply to an object in your hand.
One approach to this challenge consists in defining a direction vector in space and a
rotation angle around it, since Leonhard Euler taught us that “in three-dimensional
space, any displacement of a rigid body such that a point on the rigid body remains
fixed, is equivalent to a single rotation about some axis that runs through the fixed
point.” While this representation is appealing to humans fond of geometry, it is not
practical to implement in computer programs for generalized rotations. Instead, we
can decompose any three-dimensional rotation into a sequence of three rotations
around principal axis. This approach is called the Euler’s Angles and is the most
common representation of three-dimensional rotation. We only need to define three
matrices:
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1 0 0
R, = [0 cos(¥) —sin(yr) |, (6.38)
0 sin(yr) cos(y)

[ cos(¢p) 0 sin(¢)
R, = 0 1 0

| — sin(¢) 0 cos(¢)

) (6.39)

cos(8) —sin(®) 0
R, = | sin(@) cos(@) O]. (6.40)
0 0 1

If these matrices are the only ones required to represent any rotation, they still leave
two arbitrary definitions: 1. the orientation of the principal axes (x — y — z) in space,
2. the order of the rotations. Rotation matrices are multiplication operations over
geometry features, and, as mentioned above, these operations are not commutative.
The solution is to agree over a universal set of conventions:

XYX, XYZ, XZX, XZY, YXY, YXZ, YZX,
YZY, ZXY, ZXZ, ZYX, and ZY Z. (6.41)

These twelves conventions still need their axes orientation to be defined: Each axis
can either be fixed to the inertial frame (often referred to as extrinsic rotations) or
attached to the body rotating (often referred to as intrinsic rotations). For instance,
the fixed rotation matrix for the XY Z convention is:

COSg COSy COSp SiNg Siny — Sing COSy, COSp SiNg COSy, + Sing siny,
R:R R, = | sing cosy sing sing siny, — c0Sy COSy, Sing sing cosy, — €OSy Siny
—sing COSg Siny, COSg COSy;
(6.42)
While using a fixed frame may seem easier to visualize, most embedded controllers
require their rotational motion to be expressed in the body frame; one attached to the
object and moving with it. The same convention XY Z, but in mobile frame is:

COSy COSy — COoS ¢ sing sing
R R/ R’ = | cosy sing + siny sing cosy cosy coss — siny sing sing — siny, cos
siny sing — coSy, Sing COSy Siny COSy + COSy SiNg Siny  COSy COSy

(6.43)

In aviation, the most common convention is the ZYX (roll-pitch—yaw) also

called the Tait—Bryan variant. In robotics, each manufacturer and software devel-

oper decides on the convention they prefer to use, for instance, FANUC and KUKA

use the fixed XYZ Euler angle convention, while ABB uses the mobile ZYX Euler

angle convention. As for computer-assisted design, the Euler angles used in CATIA
and SolidWorks are described by the mobile ZYZ Euler angles convention.
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Fig. 6.6 Vector i
representation of planar

rotation using the imaginary I 2= _1
axis i

Euler’s angle representation is known to have a significant limitation: gimbal lock.
In a glimpse, each convention suffers from singular orientation(s), i.e., orientation
at which two axes are overlaid, thus both having the same effect on rotation. With
two axes generating the same rotation, our three-dimensional space is no longer fully
reachable; i.e., one rotation is not possible anymore. Gimbal lock has become a rather
popular issue in spacecraft control since Apollo’s mission suffered from it (Jones
and Fjeld, 2006). Nevertheless, Euler’s angles stay the most common and intuitive
representation of three-dimensional rotation and orientation, but others, often more
complex, representation were introduced to cope with this limitation.

6.4.3 Quaternion

One such gimbal-lock-free representation is the quaternion. Quaternion is a rather
complex mathematical concept with respect to the level required for this textbook. We
will not try to define exactly the quaternion in terms of their mathematical construc-
tion, and we will not detail all of their properties and operations. Instead, you should
be able to grasp the concept thanks to a comparison with the imaginary numbers, a
more common mathematical concept.

We recall that the imaginary axis (i) is orthogonal to the real numbers one (see
Fig. 6.6), with the unique property i> = —1. Together they create a planar reference
frame that can be used to express rotations:

R(0) = cos() + sin(8)i. (6.44)

In other words, we can write a rotation in the plane as a vector with an imaginary
part. Now, imagine adding two more rotations as defined above with Euler’s angles:
we will need two more “imaginary” orthogonal axes to represent these rotations.
Equation 6.44 becomes:

R(©) = cos(0) + sin(0)(xi +yj + zk). (6.45)
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While this can be easily confused with a vector-angle representation, remember that
i — j — k define “imaginary” axes; not coordinates in the Cartesian space. These
axes hold similar properties as the more common i/ imaginary axis:

i, j, kll =1, ji ==k, ij =k, i*=—1. (6.46)

For most people, quaternions are not easy to visualize compared to Euler angles, but
they provide a singularity-free representation and several computing advantages. This
is why ROS (see Chap. 5) developers selected this representation as their standard.

In Python, the scipy library contains a set of functions to easily change from one
representation to another:

# Import the library
from scipy.spatial.transform mport rotation as R
# Create a rotation with Euler angles

mat = R.from_euler (’'yxz’, [45, 0, 30], degrees=True)
print(”Euler: ", mat.as_euler (’'yxz’', degrees=True))
# Print the resulting gquaternion

print(”ouaternion: ", mat.as_quat ())

6.4.4 Homogeneous Transformation Matrices

A standardized way to apply a transformation from one coordinate system to another,
i.e., to map a vector from one reference frame to another, is to use homogeneous
transformation matrices. Indeed, a homogeneous transformation matrix can be used
to describe both the position and orientation of an object.

The (4 x 4) homogeneous transformation matrix is defined as

HI = [Q p] (6.47)

where Q is the (3 x 3) rotation (orientation) matrix, p is the three-dimensional vec-
tor defining the Cartesian position [x, 1y, z] of the origin and 0 is the three-
dimensional null vector. As can be seen with the superscript and subscript of H, the
matrix defines the reference frame 7 in the reference frame S. While being composed
of 9 components, there are not all independent, since the position and orientation in
the Cartesian space add up to 6 degrees-of-freedom (DoF). Whereas the translation
introduced above were defined as additions, the homogeneous matrix merges it with
rotation and makes it possible to use only multiplications.


http://dx.doi.org/10.1007/978-981-19-1983-1_5
 8480 10046 a 8480 10046 a
 
http://dx.doi.org/10.1007/978-981-19-1983-1_5

6 Mathematical Building Blocks: From Geometry to Quaternions to Bayesian 143

6.5 Basic Probability

6.5.1 Likelihood

When we talk about probability, we are typically interested in predicting the likeli-
hood of some event occurring, expressed as P (event). On the most basic level, this
can be conceptualized as a proportion representing the number of event(s) we are
interested in (i.e., that fulfill some particular criteria), divided by the total number of
equally likely events.

Below is a summary of the notation for describing the different kinds and combi-
nations of probability events which will be used throughout the rest of this section
(Table 6.1).

As an example, imagine we have a typical (non-loaded) 6-sided die. Each of the
six sides has an equal likelihood of occurring each time we roll the die. So, the
total number of possible outcomes on a single dice roll, each with equal probability
of occurring is 6. Thus, we can represent the probability of any specific number
occurring on a roll as a proportion over 6.

For example, the probability of rolling a 3 is expressed as:

1
PG) = ¢ (6.48)

The probability of an event not occurring is always the inverse of the probability
of it occurring, or 1 — P (event). This is known as the rule of subtraction.

P(A)=1-P(A) (6.49)
So in the aforementioned example, the probability of not rolling a 3 is:

P3 1 L_2 6.50
(3) = 5§ ¢ (6.50)
We could also change our criteria to be more general, for example to calculate
the probability of rolling an even number. In this case, we can now count 3 possible
outcomes which match our criteria (rolling a 2, 4, or 6), but the total number of
possible events remains at 6. So, the probability of rolling an even number is:

Table 6.1 Common probability notations

P(A) Probability of A occurring

P(A") Probability of A not occurring

P(ANB) Probability of both A and B occurring
P(AUB) Probability of either A or B occurring
P(A|B) Probability of A occurring given B occurs
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3 1
P(even) = ) (6.51)

Now, imagine we expanded on this criterion of rolling even numbers, to calculate
the probability of rolling either an even number OR a number greater than 3. We
now have two different criteria which we are interested in (being an even number
or being greater than 3) and want to calculate the probability that a single dice roll
results in either of these outcomes.

To begin with, we could try simply adding the probability of each individual
outcome together:

6
=-=1 6.52
g (6.52)

AN W

3
P(evenU > 3) = 8+

We have ended up with a probability of 1, or in other words, a 100% chance of
rolling a number which is either even or greater than 3. Since we already know there
are numbers on the die which do not meet either of the criteria, we can deduce that
this conclusion is incorrect.

The miscalculation stems from the fact that there are numbers which are both
even numbers AND greater than 3 (namely 4 and 6). By just adding the probabilities
together, we have “double-counted” their likelihood of occurring. In Fig. 6.7, we can
see that if we create a Venn diagram of even numbers and numbers > 3, they overlap
in the middle with the values of 4 and 6. If we think of probability as calculating the
total area of these circles, then we only need to count the overlap once.

So to overcome this double-counting, we subtract the probability of both events
occurring simultaneously (in this example, the probability of rolling a number which
is both an even number AND greater than 3) from the summed probability of the
individual events occurring;

33 2 4 2
P(CVGHU>3)=8+8—626=§ (653)

More generally, this is known as the rule of addition and takes the general form:
P(AUB)=P(A)+ P(B)— P(ANB) (6.54)
Fig. 6.7 Venn diagram of Even Numbers ~ NMumbers >3

even numbers and numbers
greater than 3
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In the case where two outcomes cannot happen simultaneously (i.e., there is no
overlap in the venn diagram), then P(AU B) = P(A) + P(B),as P(AN B) = 0.
This is known as mutually exclusive events.

Finally, imagine we slightly changed our criteria again, so that we are now inter-
ested in the probability of rolling both an even number AND a number greater than
3. You might have noticed we actually already used the probability of both an even
number and a number greater than three occurring in the previous equation to calcu-
late the probability of either of the two events occurring, P(even N > 3) = = = %
This is because in this example we have a small number of outcomes, meamng it
is relatively easy to just count the number of outcomes which match our criteria.
However, in more complicated scenarios the calculation is not as straightforward.

So, to begin thinking about the question of how to calculate the probability of two
events happening simultaneously, we can first ask what is the probability of one of
the events occurring, given the other event has already occurred. In this example,
we could calculate the probability of rolling a number greater than 3, given that the
number rolled is already even. That is, if we have already rolled the die and know that
the outcome is an even number, what is the likelihood that it is also greater than 3?

We already know that there are three sides of the die which have even numbers
(2, 4, or 6). This means our number of possible outcomes, if we know the outcome
is even, is reduced from 6 to 3. We can then count the number of outcomes from
this set which are greater than 3. This gives us two outcomes (4 and 6). Thus, the
probability of rolling a number greater than 3, given that it is also even is:

2
P(> 3leven) = 3 (6.55)

However, this calculation still overestimates the probability of both events occur-
ring simultaneously, as we have reduced our scenario to one where we are 100% sure
one of the outcomes has occurred (we have already assumed that the outcome of the
roll is an even number). So, to overcome this, we can then multiply this equation
by the overall probability of rolling an even number, which we know from before is
P=2

3 2 6 1
PevenN>3)=-x-=— = — (6.56)
6 3 18 3
This gives us the same value, P(AN B) = 3 that we saw in our previous equation.

This is also called the rule of multiplication, w1th the general form:
P(ANB) = P(A)P(B|A) (6.57)

One additional factor to consider when calculating probability is whether events
are dependent or independent. In the dice example, these events are dependent, as
one event happening (rolling an even number) affects the probability of the other
event happening (rolling a number greater than 3). The overall probability of rolling
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a number greater than 3 is %, but increases to % if we already know that the number
rolled is even.
If events are independent, i.e., do not affect each other’s probability of occurring,

the rule of multiplication reduces to:
P(ANB) = P(A) x P(B) (6.58)

The rule of multiplication also forms the basis for Bayes’ theorem, to be discussed
in the next section.

6.5.2 Bayes’ Theorem

Bayes’ rule is a prominent principle used in artificial intelligence to calculate the
probability of a robot’s next steps given the steps the robot has already executed.
Bayes’ theorem is defined as:

P(ANB) = % (6.59)

Robots (and sometimes humans) are equipped with noisy sensors and have limited
information on their environment. Imagine a mobile robot using vision to detect
objects and its own location. If it detects an oven it can use that information to infer
where it is. What you know is that the probability of seeing an oven in a bathroom is
pretty low, whereas it is high in a kitchen. You are not 100% sure about this, because
you might have just bought it and left it in the living room, or your eyes are “wrong”
(your vision sensors are noisy and erroneous), but it is probabilistically more likely.
Then, it seems reasonable to guess that, given you have seen an oven, you are “more
likely” to be in a kitchen than in bathroom. Bayes’ theorem provides one (not the
only one) mechanism to perform this reasoning.

P(room) is the “prior” belief before you’ve seen the oven, P(oven|room) pro-
vides the likelihood of seeing an oven in some room, and P (room|oven) is your
new belief after seeing the oven. This is also called the “posterior” probability, the
conditional probability that results after considering the available evidence (in this
case an observation of the oven).

6.5.3 Gaussian Distribution

Moving away from our dice example, we know that in real-life things do not always
have an equal probability of occurring. When different outcomes have different prob-
abilities of occurring, we can think about these probabilities in terms of frequencies.
That is, in a given number of repetitions of an event, how frequently is a specific
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Fig. 6.8 Normal distribution

outcome likely to occur? We can plot these frequencies on a frequency histogram,
which counts the number of times each event has occurred. This logic forms the basic
of frequentist statistics, which we discuss more of in Sect. 6.7.

The Gaussian, or normal, distribution (aka the “Bell Curve”) refers to a fre-
quency distribution or histogram of data where the data points are symmetrically
distributed—that is, there is a “peak” in the distribution (representing the mean)
under which most values in the dataset occur, which then decreases symmetrically
on either side as the values become less frequent (see Fig. 6.8). Many naturally
occurring datasets follow a normal distribution, for example, average height of the
population, test scores on many exams, and the weight of lubber grasshoppers. In
robotics, we can see a normal distribution on the output of several sensors. In fact, the
central limit theorem suggests that, with a big enough sample size, many variables
will come to approximate a normal distribution (even if they were not necessar-
ily normally distributed to begin with), making it a useful starting point for many
statistical analyses.

We can use the normal distribution to predict the likelihood of a data point falling
within a certain area under the curve. Specifically, we know thatif our data is normally
distributed, 68.27% of data points will fall within 1 standard deviation of the mean,
95.45% will fall within 2 standard deviations, and 99.73% will fall within 3 standard
deviations. In probability terms, we could phrase this as “there is a 68.27% likelihood
that a value picked at random will be within one standard deviation of the mean.”
The further away from the mean (the peak of the curve) a value is, the lower its
probability of occurring. The total probability of all values in the normal distribution
(i.e., the total area under the curve) is equal to 1.

Mathematically, the area under the curve is represented by a probability density
function, where the probability of falling within a given interval is equal to the area
under the curve for this interval. In other words, we can use the normal distribution to
calculate the probability density of seeing a value, x, given the mean, w, and standard

deviation, o2,

1 ,
p(xlp, 0%) = ——=e 2 »* (6.60)
2102
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Fig. 6.9 Derivative of a flx)
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We can see that there are actually only two parameters which need to be input,
w, and o2, The simplicity of this representation is also relevant to computer science
and robotics applications.

In a classic normal distribution, the mean is equal to 0, and the standard deviation
is 1. The mean and standard deviation of any normally distributed dataset can then
be transformed to fit these parameters using the following formula:

X —

7= (6.61)
o

These transformed values are known as z-scores. Thus, if we have the mean and
standard deviation of any normally distributed dataset, we can convert it into z-
scores. This process is called standardization, and it is useful because it means we
can then use the aforementioned properties of the normal distribution to work out the
likelihood of a specific value occurring in any dataset which is normally distributed,
independent of its actual mean and standard deviation. This is because each z-score is
associated with a specific probability of occurring (we already know the probabilities
for z-scores at exactly 1, 2, and 3 standard deviations above/below the mean). You
can check all z-score probabilities using z-tables.'” From these, we can calculate the
percentage of the population which falls either above or below a certain z-score. A
z-score can then be considered a fest statistic representing the likelihood of a specific
result occurring in a (normally distributed) dataset. This becomes important when
conducting inferential statistics, to be discussed later in this chapter.

6.6 Derivatives

Differential calculus is an essential tool for most of the mathematical concepts in
robotics: from finding optimal gains to the linearization of complex dynamic systems.

10 https://www.ztable.net/.
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The derivative of a function f(x) is the rate at which its value changes. It can be
approximated by f’(x) = %. However, several algebraic functions have known
exact derivatives, such as vx"x = nx"~!. In robotics, we manipulate derivatives for
physical variables such as the velocity (x), the derivative of the position (x), and
the acceleration (X), the derivative of the velocity. On top of this, derivative can be
helpful to find a function optimum: when the derivative of a function is equal to
zero we are either at a (local) minimum or a (local) maximum (see Fig. 6.9). Several
properties are useful to remember, such as the derivative operator can be distributed
over addition:

[f () + g0 = f'(x) + &' (x), (6.62)

and distributed over nested functions:

f(g() = f'(g(x)g'(x). (6.63)

Finally, derivative operators can be distributed over a multivariate function, using
partial derivatives, i.e., derivatives with respect to each variable independently. For
instance:

d[Ax; + Bxy]x; = A. (6.64)

6.6.1 Taylor Series

Robotics is all about trying to control complex dynamic systems in complex dynamic
environments. Most often these systems and models present nonlinear dynamics. For
instance, airplane and submarines drag forces impact the vehicle acceleration with
regard to the (square of) its velocity. One way to cope with this complexity is to sim-
plify the equation using polynomial (an addition of various powers) approximation.
The most popular is certainly the Taylor series:

f'(a) r—a)+ f"(a) x—a) + f"(a)

3
T 21 3 @At

(6.65)
which approximate f(x) around the point x = @ using a combination of its deriva-
tives. If we want our approximation to linearize the function, we will keep only the
first two terms:

f®la = fla)+

f@) = f@@)+ f@x —a) (6.66)

6.6.2 Jacobian

Now instead of a single function depending of a single variable, you will often find
yourself with a set of equations each depending of several variables. For instance,
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fi=Axy, L =Cy*+ Dz, and f3 = E/x + Fy + Gz (6.67)

which can be written as a vector:

fi
F=|/ff. (6.68)

f

You can linearize this system of equations using Taylor’s series:

X — X,
F~F@)+J|y—ya|, (6.69)
Z_Za

where J is the matrix of partial derivatives of the functions, often referred to as the
Jacobian, in this case:

df1x 8 f1y 0 fiz Ay Ax 0
J=|ofxofydfiz|=| 0 2cyD]. (6.70)
df3x df3y df3z —E/x> F G

In Chap. 10, the Jacobian is leveraged as a matrix to relate the task space (end effector
velocities) to the joint space (actuator velocities). A Jacobian matrix derived for a
single function, i.e., a single row matrix, is called a gradient, noted (for a geometric
function in Cartesian space):

Vf=[arx afy afz]. (6.71)

The gradient is a useful tool to find the optimum of a function by traveling on it; a
stochastic approach very useful in machine learning (see Chap. 15).

6.7 Basic Statistics

When conducting research in robotics, and especially user studies, you will often
have data you have collected in pursuit of answering a specific research question.
Typically, such research questions are framed around the relationship between an
independent variable and a dependent variable. For example, you might ask how the
number of drones (independent variable) in a mission affects the operator’s cognitive
workload (dependent variable). Being able to analyze the data you have collected
is then necessary to communicate the outcomes from your research. Chapter 13
gives more detail on how to design and conduct user studies, for now we will begin
explaining some of the analyses you can perform once you have obtained some data!
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Table 6.2 Common parameter notations for samples versus populations

Parameter Sample Population
Mean X %
Standard deviation s o
Variance 52 o?
Number of data points n N

The first step of analyzing any dataset is usually to describe its properties in a way
that is meaningful to your audience (descriptive statistics). This involves taking the
raw data and transforming it (e.g., into visualizations or summary statistics). The
second step is then to determine how you can use your data to answer a specific
research question and/or generalize the results to a broader population (inferential
statistics). Here, it is important to distinguish between a sample of data collected,
and the population the data is intended to generalize to (see also Chap. 13). Criti-
cally, descriptive statistics only relate to the actual sample of data you have collected,
whereas inferential statistics try to make generalizations to the population. Typically,
formulas relating to calculating values of a sample use Greek letters, whereas for-
mulas relating to a population use Roman letters. Below is a table with some of the
most common notations for both samples and populations (Table 6.2).

When we collect data our samples can either be independent (the data is from two
different groups of people) or repeated (from the same group). For example, imagine
we wanted to test robotics students’ knowledge of basic geometry and linear algebra.
We could either take a single sample of students, and test their knowledge before and
after reading this chapter—this would be a within-groups study, as the same students
were tested each time. Alternatively, we could take a sample of students who have
read this book chapter and compare them against a sample who have not read this
chapter. There is no overlap between these two groups; thus, it is a between-groups
study design.

You can first begin describing the properties of your sample using three different
measures of central tendency; the mean, the median, and the mode. The mode
represents the most common response value in your data . That is, if you took all of
the individual values from your dataset and counted how many times each occurred,
the mode is the value which occurred the most number of times. For example, imagine
we asked 10 robotics professors how many robots they have in their laboratory (see
Table 6.3).

We can see that the most common value reported is 12 robots—this is the mode.
The mode can be most easily identified by creating a frequency distribution of the
values in your dataset (see Fig. 6.10).

The median is the value which is in the middle of your range of values. Using the
aforementioned example, if we ranked the number of robots in each laboratory from
smallest to largest, the median is the value which falls exactly in the middle (or, if
there is an even number of data points, the sum of the two middle values divided by
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Table 6.3 Sample data of robots per professor

Professor ID

Number of Robots

1

5

7

10

10

12

12

12

O| 0 [ Q| ||| N —

15

—_
]

20

Frequency

1

0

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Robots

Fig. 6.10 Frequency distribution of the number of robots per laboratory
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2). In this case, we have 10 values, so the median is the average of the 5th and 6th
values, % =11.

However, the median and the mode both rely on single values, and thus, ignore
much of the information which is available in a dataset. The final measure of central
tendency is then the mean, which takes into account all of the values in the data
by summing the total of all the values, and dividing them by the total number of

observations. The formula to calculate the mean of a sample is expressed as:

PIREY
5= &=t (6.72)
n
where x represents the mean of the sample, x represents an individual value, and
n represents the number of values in the dataset.
In our example, this would be:

I1+5+74+104+104+12+124+12415420
X robots = Rkl s +10+ Al =104 (6.73)

Conversely to the median and the mode, this value does not actually have to exist
in the dataset (e.g., if the average number of robots in the laboratory is actually 10.4,
some students probably have some questions to answer . . .)

Many basic statistics can be computed in Python using the numpy library:

import numpy as np # Import the library

mu = np.mean (data) # Mean of the sample ‘'‘data’’
mod = np.mode (data) # Mode of the sample ‘'‘data’’
med = np.median (data) # Mode of the sample ‘‘data’

In the classic normal distribution, the mean, the median, and the mode are equal
to each other. However, in real life, data often does not conform perfectly to this
distribution, thus, these measures can differ from each other. In particular, while the
median and the mode are relatively robust to extreme values (outliers), the value of
the mean can change substantially. For example, imagine our sample included one
professor who works with microrobots who reported having hundreds of robots in
their lab. This would obviously skew the mean by a lot while not being representative
of the majority of the sample.

Let’s say we asked another 90 robotics professors about the number of robots they
have, so we now have sampled a total of 100 robotics professors. Our results now
show the frequency distribution shown in Fig. 6.11.

We can see that although the mean is still 10.4, the mode is now 8 robots, and
the median is 10. These values, although similar to each other, are not identical,
although the data is normally distributed. We can check this using the probability
density function. Again, this is not perfectly represented by the normal distribution,
but it makes a very good approximation of the data.
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Fig. 6.11 Frequency histogram and probability density function for a normally distributed dataset.
The graph on the left shows the measures of central tendency, with the dark purple bar representing
the model, the dashed purple line representing the median, and the solid black line representing the
mean. The graph on the right shows the actual probability distribution of the data contrasted with
the normal distribution

6.7.1 Variance

The sensitivity of our dataset descriptive metrics to new data points can be grasped in
terms of its variability. We can measure the amount of variance in any given sample,
as well as detect outliers, in multiple different ways. The first one is the standard
deviation. This represents on average, how far away values are from the mean. The
smaller the standard deviation, the closer the values in the sample are on average to
the mean, and the more accurate the mean is at representing the sample. We can also
use the standard deviation to create a cutoff for extreme values—any value which
falls above or below 3 standard deviations from the mean is likely to be an outlier
(i.e., not representative of the population) and can often be excluded.

To calculate the standard deviation of a variable, we first take each individual
value and subtract the mean from it, resulting in a range of values representing the
deviances from the mean. The total magnitude of these deviances is equal to the
total variance in the sample. However, given that some individual values will be
above the mean, and some below, we need to square these values so that they are
all positive, to avoid positive and negative values canceling each other out. We then
sum the squared deviances to get a total value of the error in the sample data (called
the sum of squares). Next, we divide by the number of data points in the sample
(n), minus one. Because we are calculating the sample mean, and not the population
mean, n — 1 represents the degrees of freedom in the sample. This is because we
know both, the sample mean and the number of data points. Thus, if we have the
values of all the data points bar one, the last data point can only be whatever value
is needed to get that specific mean. For example, if we go back to our first sample of
10 robotics professors, and took the values of the first 9, knowing that the mean is
10.4 and that we sampled 10 robotics professors total, the number of robots in the
laboratory of the last professor must have a fixed value.
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1+5+7+10+10+ 124+ 124124+ 15+x
10 (6.74)

104 =
x =20

That is, this value of x is not free to vary. So, the degrees of freedom are always
one less than the number of data points in the sample.

Finally, since we initially squared our deviance values, we then take the square
root of the whole equation so that the standard deviation is still expressed in the same
units as the mean.

The full formula for calculating the standard deviation of a sample is described
below. Note that if we were to calculate the standard deviation of the population

mean instead, the first part would be replaced with %, rather than ﬁ

n
1 )2
s = E (x; — X) (6.75)
n—1~4
i=1
In Python, we can compute this using:
import numpy as np # Import the library
stddev = np.std(data) # Standard deviation of the sample ‘'‘data’’

If we don’t take the square root of the equation, and instead leave it as is, this is
known as the variance, denoted by s2.

In statistical testing, we are interested in explaining what causes this variance
around the mean. In this context, the mean can be considered as a very basic model
of the data, with the variance acting as an indicator of how well this model describes
our data. Means with a very large variance are a poor representation of the data,
whereas means with a very small variance are likely to be a good representation.

The variance for any given variable is made up of two different sources; systematic
variance, which is variance that can be explained (potentially by another variable),
and unsystematic variance, which is due to error in our measurements.

We therefore often in our experiments have more than one variable, and we might
be interested in describing the relationship between these variables—that is, as the
values in one variable change, do the values for the other variable also change? This
is known as covariance.

The total variance of a sample with two variables is then made up of the vari-
ance attributed to variable x, the variance attributed to variable y, and the variance
attributed to both. Remembering that variance is simply the square of the formula
for the standard deviation, or s2, we can frame the sum of the total variance for two
variables as:

(Sx + 5% =52 + 5,2 4 2854y (6.76)

It is this last term, 2s,, that we are interested in, as this represents the covariance
between the two variables. To calculate this, we take the equation for variance, but
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rather than squaring the deviance of x, (x — x), we multiply it by the deviance of the
other variable, y — y. This ensures we still avoid positive and negative deviations

canceling each other out. These combined deviances are called the cross product
deviation.

l n
Cov(x, y) = — 3 (i = D) — F) 6.77)
i=1

To get the covariance between two variables in Python, we can use:

:I.mport numpy as np # Import the library
cov = np.cov(data,ddof=0) #compute the covariance matrix

6.7.2 General Population and Samples

In the aforementioned example, we have a specific population that we are interested
in robotics professors. However, as it would be difficult to test every single robotics
professor in the world, we took only a subset of robotics professors and asked them
about the number of robots they have in their laboratories. In this case, the mean
number of robots is an estimation of the general population mean. This is different
from the true population mean, which is the mean we would get if we actually were
able to ask every single robotics professor how many robots they have. In an ideal
world, the sample you have collected would be perfectly representative of the entire
population, and thus, the sample mean would be equal to the true mean. However,
as there is always some error associated with the data, the sample mean will likely
always vary slightly from the true mean.

If we were to take several different samples of different robotics professors, these
samples would each have their own mean and standard deviation, some of which
might over or underestimate the true population mean. If we were to plot the means
of each of our samples in a frequency distribution, the center of this distribution
would also be representative of the population mean. Importantly, if the population
is normally distributed, the distribution of samples will also be normally distributed.
Thus, knowing the variance in a distribution of samples would allow us to know
how likely it is that any one specific sample is close to the true population mean,
exactly the same as the standard deviation of individual values around a sample mean
allows to estimate the error in that sample. The standard deviation of a distribution
of samples around the population mean is then known as the standard error and is
expressed as.

(6.78)

o =

Jn
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The standard error allows us to determine how far away, on average, the mean
of a sample taken at random from the population is likely to be from the population
mean. Of course, when we conduct experiments, we cannot actually repeatedly take
different samples from the population—normally we only have one sample. However,
the concept of the standard error is theoretically important to understand how we can
generalize our results from our sample to a population. Going back to the central limit
theorem, if you have a large enough sample size, the sample mean will become more
similar to the true population mean. Similarly, the standard error will also come to
approximate the standard error of the population. For this reason, the standard error
is often used in place of the standard deviation when using inferential statistics.

6.7.3 The Null Hypothesis

Hypothesis testing involves generating some prediction about our data and then
testing whether this prediction is correct. Normally, these predictions relate to the
presence or absence of an effect (i.e., there is some relationship between variables,
or not).

The null hypothesis, typically denoted as Hy, is the assumption that there will be
no effect present in the data. For example, if you are comparing two different robots
on some feature (e.g., appearance) and how much appearance affects the robots’
likability, Hy would state that there is no difference between the two robots. Relating
this back to our normal distribution, Hy is the assumption that the data from the two
groups come from the same population (i.e., are represented by the same distribution,
with the same mean). That is, do we happen to have two samples that vary in their
mean and standard deviation by chance, but are actually from the same population,
or, is their a systematic difference between the two (see Fig 6.12)?

In contrast, the alternative hypothesis, or H\, relates to the presence of some
effect (in the aforementioned example, H; would be that there is an effect of robot
appearance on likeability). Again putting this in context of the normal distribution,
H; is the idea that the data comes from two different population distributions, with
different means and standard deviations. In this context the “populations” can also
refer to an experimental manipulation—e.g., is a population of people who saw a
robot with glowing red buttons and aggressive beeping more likely, on average, to
rank this robot as less likeable than a population of people who saw a robot with
colorful lights and calm beeping?

In inferential testing, we work on the basis that Hj is true by default. Thus, the
goal is not to prove that H; is true, but rather to try and demonstrate that Hj is false.
That is, we want to show that it is very unlikely that the two (or more) groups come
from the same population distribution.

So, when we have two sample means of different values, we can test whether
the differences in these values are due to chance (i.e., random variation), or, if
they actually come from different populations. The likelihood that we would have
obtained these data, given the null hypothesis is true, is represented by the p-value,
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— Sample 1
— Sample 2

Fig. 6.12 Two overlapping bell curves from different samples

Fig. 6.13 p-values in relation to the normal distribution

see Fig. 6.13. Typically, the threshold for this likelihood is set at 95%. That is, if
we assume the null hypothesis is true, and the results from our model indicate that
the likelihood of observing these results is 5% or less, then the null hypothesis is
likely not the correct explanation for the data. In this case, we would reject Hy and
accept H;. In other words, we call the result statistically significant. The smaller the
p-value, the lower the probability that Hj is true. Although p < .05 is the minimum
threshold that is typically accepted, p < .01 and p < .001 may also be used.

Note that all these thresholds still leave some margin for error—it is possible that
we could observe these results even if Hj is true, just unlikely. That is, by chance
we have picked two samples that differ substantially from each other (remember
that our distribution of samples from the general population also follows a normal
distribution, thus, there is always the chance to have a sample that is not actually
representative of the population). This is called a Type-I error, or a false positive—we
have incorrectly deduced that the samples come from different populations, when in
fact they come from the same one. The inverse of this, if we incorrectly conclude
that the samples come from the same population, when in reality they come from
different ones, is called a Type-II error; see Table 6.4.
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Table 6.4 Type I and II errors

Hy is true Hj is false
Reject Hy Type I error « Correct 1 — B
Accept Hy Correct 1 — o Type-II error B

An additional factor to consider when setting the p-value threshold is the direc-
tionality of our test. If we predict that there will be a significant difference between
our two sample means, we could choose to test precisely whether one of the two sam-
ples, specifically, will have a higher mean than the other. For example, we could test
whether an older versus newer model of a robot have different levels of battery per-
formance, or we could test specifically whether the newer model has a better battery
performance than the older model. In the former scenario, we would use two-tailed
hypothesis testing. That is, we don’t know which side of the normal distribution our
test statistic (e.g., the z-value) will fall, so we consider both. In the latter scenario, we
are specifically saying that the mean for the newer robot model will be higher than
the mean of the old model, thus, we only look at the probabilities for that side of the
distribution with a test statistic in that direction, called one-tailed hypothesis testing.
However, one-tailed hypothesis testing is generally used sparingly, and usually only
in contexts where it is logistically impossible or irrelevant to have results in both
directions. That is, even if we have a directional hypothesis (e.g., that the newer
model has a better battery performance), if it is theoretically possible that the older
model has a better battery performance, we need to test both sides of the probability
distribution. In this example, if we used a one-tailed hypothesis test assuming that the
newer model is better, and in fact it is actually worse than the older model, we would
likely get a non-significant result and incorrectly conclude that there is no difference
in battery performance between the two models. For this reason, most hypothesis
testing in robotics is two-sided.

6.7.4 The General Linear Model

So far, we have discussed measures of central tendency and different measures of
variance as ways of describing variables. However, as mentioned at the beginning
of this section, we are usually interested in not only describing our data, but using
it to predict some outcome. That is, we want to create a model of our data so that
we can accurately predict the outcome for any given set of parameters. We can then
conceptualize any outcome or variable we are trying to predict as a function of both
the true value of the model and the error, such that:

outcome; = model; + error; (6.79)
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Where model; can be replaced with any number of predictor variables. This forms
the basis for the general linear model. Mathematically, this model can be expressed
as:

Where Y; represents the outcome variable, b is where all predictors are 0, and w
represents the strength and direction of an effect.

As mentioned before, this can then be expanded to any number of predictor vari-
ables:

Yi=bo+ b X; +bX; +---+b,X; +¢ (6.81)

Once we have defined a model, we want to test how well it actually predicts the
data that we have. We can do this by comparing the amount of variance in the data that
is explained by our model, divided by the unexplained variance (error) to get different
test statistics. We can then use the normal distribution to check the likelihood that
we would have obtained a specific test statistic, given the null hypothesis is true.

.. variance explained by model
test statistic =

; ; (6.82)
unexplained variance (error)

To get the ratio of explained to unexplained variance, we start by calculating the
total variance in our sample. To do this, we need to go back to the formula for the
sum of squares, which is simply:

n

SSiotal = Z(xi - )_Cgrand)z (6.83)

i=1

Where x; is an individual data point, X gang 18 the grand mean, or the mean of the
total dataset, and » is the number of datapoints.

We also know that variance is equal to the sum of squares divided by the degrees
of freedom, so, the sum of squares can be rearranged as:

1 n
2 = 2
s = E (xi _xgrand)

n—1~4 -

=

1 (6.84)
SStolal

52:

n—1
S S0t =s*(n — 1)

This gives us the total amount of variation in the data (the sum of the deviation
of each individual data point from the grand mean). We are interested in how much
of this variation can be explained by our model (remembering that total variation =
explained variation + unexplained variation).
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To get the amount of variation explained by our model, we then need to look at
our group means, rather than the grand mean. In this case, our model predicts that
an individual from Group A will have a value equal to the mean of Group A, an
individual from Group B will have a value equal to the mean of Group B, etc.

We can then take the deviance of each group mean from the grand mean, and
square it (exactly the same as calculating normal sums of squares). We then multiply
each value by the number of participants in that group. Finally, we add all of these
values together.

So, if we have three groups, this would look like:

SSmodel = Nq(Xq — Xgrand)z + np(xp — J_Cgrand)z +ne(xe — Xgrand)z (6.85)

Where n, represents the number of datapoints in group A, X, is the mean of group
A, and Xgrang 1s the grand mean.
This can be expanded to k number of groups with the general form:

k
SSmodel = an ()-Ck - )Egrand)z (686)

n=1

Where k is the number of groups, 7, is the number of datapoints in group k, X is
the mean of group k, and X granq 1S the grand mean.

So, now we have the total variance, and the variance explained by our model. Intu-
itively, the variance that is left must be the error variance, or variance not explained
by the model. This residual variance is the difference between what our model pre-
dicted (based on the group means) and our actual data. Although in theory we can
get this value by subtracting the model variance from the total variance, we can also
calculate it independently.

Remember that our model predicts that an individual from Group A will have a
score equal to the mean of Group A. So, to get the residual variance we first calculate
the deviance of each individual in Group A from the mean of Group A, and the same
for Group B and so on and so forth. This can be expressed as:

n

S Sresidual = Y (Xit — X1 (6.87)
i=1

Where n is the total number of data points, i is an individual datapoint, x;; is the
value of an individual, i in group k, and Xy, is the mean of that group.

This takes the deviance of each individual datapoint from its associated group
mean and sums them together. However, we could also conceptualize residual vari-
ance as the sum of the variance of Group A, plus the variance of Group B and so on
for k number of groups. We also saw before how the sum of squares can be expressed
in terms of the variance (see Eq. 6.84). The same logic can be applied here for adding
the group variances together to give us:
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S8, residual

) Ssmodet

X

Fig. 6.14 Illustration of total sum of squares, the model sum of squares, and the residual sum
of squares. The solid red line represents the grand mean, the dashed red lines indicate a specific
data point (or group mean), and the solid blue line represents the predicted value of y for a given
value of x

S Sresiaual = Y 8¢ (0 — 1) (6.88)

Where s,% is the variance of group k, and n; is the number of data points for that
group.

Visually, the total sum of squares (SSi), the model sum of squares (SSmoder)s
and the residual sum of squares (S Siesigqua) can be represented by the three values
illustrated in Fig. 6.14.

However, right now these are biased by the number of data points used to calculate
them—the model sum of squares is based on the number of groups (e.g., 3), whereas
the total and residual sum of squares are based on individual data points (which could
be 5, or 15, or 50, or 500). To rectify this, we can divide each sum of squares by
the degrees of freedom to get the mean squares (MS). For MSp0q4e1 the degrees of
freedom are equal to the number of groups minus one, whereas for the MS,csigual they
are calculated by the number of total data points minus the number of groups.

SS
Msmodel = Z iodlel
T (6.89)
MS esidual :ﬂ
n—k

Where £ is the total number of groups and n is the total number of data points.

From here, we are able to compare the variance explained by our model to the
residual, or error variance and test whether this ratio is significant. Although there
are many different kinds of test statistics that we can use to see whether our model
is significant or not, we will focus on only two of them: the t-test and the ANOVA.
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Fig. 6.15 Comparison of ¢
and z distributions

[ t-distribution
|| z-distribution

Probability Density Function

6.7.5 T-test

The t-test is used to compare the means of two different samples, to test whether there
is a statistically significant difference between the two (i.e., a less than 5% chance
of observing this difference in means, given the null hypothesis is true).

As we discussed before in Sect. 6.7.2, when sample sizes are sufficiently large,
the sampling distribution of a population will approximate the normal distribution,
and we can use z-scores to calculate probabilities (using p-values associated with
specific z-scores). However, if we have small sample sizes (which can often be the
case in user studies), then we cannot reliably estimate the variance of the population.
In this case, we use a ¢-distribution, which is a more conservative estimate of the
normal distribution. It is the z-distribution that we use to calculate our p-values for
the #-test. See Fig. 6.15 for a comparison between the z and t distributions.

The value of the ¢-test is then a function of the mean and the standard error of
the two samples we are comparing. If we have a difference between two means,
then intuitively the larger this difference is, the more likely it is there is an actual
difference between the samples. However, if the standard error is also very large, and
the difference in means is equal to or smaller than this value, then it is unlikely that
it represents a true difference between the samples—the difference between means
could simply be accounted for by a large variance in a single population.

So, to perform a 7-test, we want to compare the difference in means we actually
saw, to the difference in means we would expect if they come from the same popu-
lation (which is typically 0). Going back to the previous section, we also saw that in
general the test statistic (which in this case, is the t-test) can be calculated by dividing
variance explained by the model by the error variance (see Eq. 6.82). In this case, the
model we are testing is the difference between the actual and expected means. So,
we take this value (which, as the expected difference between means is 0, is actually
just the value of the observed difference) and divide it by the standard error of the
differences between the means.

(X1 — X2) — (U1 — p2) _ (X1 — X2)

= = 6.90
standard error of the difference standard error of the difference ( )
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To get the standard error of the differences between means, we first start by
summing together the variance for each sample, divided by the sample size of each.
This is based on the variance sum law, which states that the variance of the difference
between two samples is equal to the sum of their individual variances.

S12 S22

+ — (6.91)
ni na

We then take the square root of this value to get the standard error of the difference.

(6.92)
So, Eq. 6.90 becomes:
t = G —x) (6.93)
a2 4 8?2
np ny

However, this assumes that the sample sizes of each group are equal. In the case
that they are not (which is often), we replace s; and s, with an estimate of the pooled
variance, which weights each sample’s variance by its sample size.

= Dsi+(ny— 1)s3
spooled - ny4+ny—2 (694)
In turn, the t-test statistic becomes:
Spo;lledz + Spo;lvlzedz

Note that we are also assuming the data comes from two different groups (i.e., an
independent groups t-test). When we have a within-groups design, we instead use a
dependent t-test.

In Python, t-tests for both within- and between-groups samples can be computed
with:

from scipy 1MPOrt stats # Import library
res = stats.ttest_rel(xl, x2) # Run test for dependent sample
res = stats.ttest_ind(xl, x2) # Run test for independent sample

print(res [11)

We can then calculate the probability that we would have seen this ¢-value if the
samples actually did come from the same population, which gives us the p-value.
We can do this using t-distribution tables, or, since you are likely using some form
of statistical software, read this value from the output. The important thing to know
is that, because our data is normally distributed, the p-values for each #-value remain
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Table 6.5 Independent groups t-test
Mean (SD) ‘ Estimate
Own algorithm Competing algorithm
1055 (408) 4042 (605) | —2986.9 | —28.94 | <.001

t-value ‘ p-value

0.00100 -

0.00075 -

0.00050 -

0.00025 -

Probability Density Function

0.00000 -
0 2000 4000 6000

Time to Solve Maze Puzzle (ms)

Fig. 6.16 Probability density function for each algorithm

consistent. That is, if we conducted two completely different experiments and ended
up with the same or similar 7-values, the p-values would also be the same.

As a practical example, imagine we want to compare two different navigation
algorithms, one we have developed and one a competing laboratory has developed,
in terms of how fast they can solve a maze puzzle (in milliseconds). We run an
independent t-test comparing the two algorithms and find the following results in
Table 6.5:

From this, we can see that our algorithm solves the puzzle significantly faster. We
can also compare the probability distributions of the two groups; see Fig. 6.16. This
also confirms that there is only a very small overlap in the values that occur in both
samples and that these values have a very low probability of occurring.

For more t-test examples, a set of Python examples based on a public dataset of
task load surveys is available online.'!

6.7.6 ANOVA

ANOVA stands for “Analysis of Variance” and is an extension of the ¢-test when we
have more than two groups. That is, we are again interested in comparing the means of

" hitps://github.com/Foundations-of-Robotics/Stats-examples.


https://github.com/Foundations-of-Robotics/Stats-examples
 -1104 57867
a -1104 57867 a
 
https://github.com/Foundations-of-Robotics/Stats-examples

166 R. Stower et al.

different samples to determine if there is a statistically significant difference between
them (i.e., whether they come from the same or different population distributions).
To do this, we use the F-test. This is simply another test statistic, which, as we have
seen before, is a measure of the total variance explained by our model divided by the
amount of error in the model.

To explain more about the difference between a t-test, and an F-test, imagine we
have three different groups (A, B, and C). We then have multiple different possible
outcomes for the results: First, there could be no significant difference between any
of the three groups. Second, A, B, and C could all be significantly different from
each other. Alternatively, A and B could be different from each other, but not from
C, and so on for all possible combinations of A, B, and C. So, we can already see
that this is quite a few more options compared to the z-test where we have only two
groups and the outcome is binary—there is either a significant difference between
the groups or not.

An ANOVA is therefore conducted in two stages: First, we conduct an omnibus
test to determine if there is any difference between the means at all. However, this
does not tell us which groups, specifically, might be different from each other. Thus,
if the result of this test is significant, then we conduct a series of z-tests for each of
the possible two-way combinations of the groups. The reason that we do not start
straight away with 7-tests is because this inflates our chance of making a type I error
(incorrectly stating that the samples come from different populations, when in fact
they come from the same one). This is because if we set our significance threshold
to 95%, then we are still allowing for a 5% chance of incorrectly rejecting the null
hypothesis. If we perform three t-tests independently of each other, each with a
significance threshold of 95%, then we can see how this error compounds: 0.95° =
0.8571 and 1 — 0.857 = 14.3%. So, instead of having a 5% chance of incorrectly
rejecting the null hypothesis, we now have a 14.3% chance. This is known as the
familywise error rate and increases with the more comparisons we make. By starting
our analysis with an omnibus test, we are trying to mitigate this error.

To get the omnibus F-statistic, we need to go back to Eq. 6.89, where we can see
that we actually can calculate values for our model variance and residual variance!
Thus, the F-statistic can be expressed as:

F = M Smoder. (6.96)
MSresidual

Any value greater than 1 means that our model explains more variance than
random individual differences (which is a good thing!) However, it still does not tell
us whether this value is significant. To check this, we again go back to our p-values
to determine, with a given F'-statistic and associated degrees of freedom, what the
likelihood of obtaining this value is, if the null hypothesis is true. To get the degrees
of freedom, we need to consider the two parts that make up our ratio: our model
variance and the residual variance. We also mentioned before about how the sum
of squares for each of these was calculated using their respective number of data
points—for the model variance this is equal to the number of groups, and for the
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Table 6.6 Mean and SD for perceived task difficulty in each task environment

Environment Mean (SD)
Land 3.12 (1.00)
Water 5.16 (0.95)
Air 5.38 (1.28)

residual variance this is equal to the number of data points. It is these values which
we use to get the degrees of freedom.

df = (6.97)

Where k is equal to the number of groups and # is equal to the sample size. This
is also why k — 1 is sometimes called the numerator degrees of freedom, whereas
n — k is called the denominator degrees of freedom.

Having determined our degrees of freedom and our F-statistic, we then need to
use F-distribution tables (or our statistics software) to look up the corresponding
p-value. Again, the p-value for all F-values with specific degrees of freedom will
always be the same.

Following a significant ANOVA, the next step is to conduct individual #-tests
between each pair of groups, called pairwise comparisons. Again, however, we have
to be a bit cautious of inflating our type I error. When the number of comparisons is
less than 5, it is generally considered okay to use the p-values as-is. Anything above
this however, and it is recommended to use an adjustment method. This typically
involves applying a correction to the p-values to make their estimates more conser-
vative, see (Bender and Lange, 2001) for an explanation of the different types of
corrections.

Now that we have covered some of the logic underpinning the ANOVA, we can
consider what this looks like in practice. Imagine we have a sample of robot opera-
tors, and we are interested in understanding the difficulty of using unmanned robots
to explore different types of environments. So, we design an experiment into how the
type of environment affects the perceived task difficulty. Here, our independent vari-
able is task environment (land, water, air) and our dependent variable is the perceived
task difficulty, measured on a 7-point scale from 1 (very easy) to 7 (very difficult).
We test a total of 150 robot operators, 50 in each environment.

In this case, the null hypothesis (Hy) is that there will be no difference between
the three task environments. The alternative hypothesis (H) is that the perceived
task difficulty will change according to the task environment.

After running our descriptive statistics, we observe the following means and stan-
dard deviations for each group; see Table 6.6.

As our first step of the ANOVA, we conduct the omnibus F-test, to determine if
there is any overall difference between the groups, Table 6.7.
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Table 6.7 Results of Omnibus F-test for one-way ANOVA

DF Sums of Mean squares | F-value P
squares
Environment |2 155.3 77.65 65.68 <.001
Residuals 147 173.8 1.18

Table 6.8 Post-hoc pairwise comparisons for each task environment with no correction

Estimate SE t-value p-value
Land versus —2.04 0.22 —9.38 <.001
Water
Land versus Air | —2.26 0.22 —10.39 <.001
Water versus Air | —0.22 0.22 —1.01 313

What you might be able to see from these tables is that the values for each column
match exactly the formulas we discussed for the general linear model. That is, the
mean squares are equal to the sums of squares divided by the DF for each row, and
the F-value is the ratio of the mean squares. So, in case you are ever stuck in a
room with only your experimental data and no Internet access or statistics software
downloaded, you can still calculate your ANOVAs by hand!

From looking at the p-value, we can see that the overall F-test is significant (p <
.001). However, we don’t yet know where this difference lies (i.e., we don’t know
which of the environments are perceived as significantly more or less difficult). So,
the next step is to compare the groups, using our pairwise comparisons; see Table 6.8.

From these results, we can now determine that both air and water environments
are perceived as more difficult to explore than land environments, but that there is
no difference between these two. We could then write up the results from this test as
follows:

The results from a one-way between-groups ANOVA revealed a signifi-
cant effect of task environment on perceived task difficulty, F (2, 147) =
65.68, p < .001. Post-hoc pairwise comparisons with no correction indicate
that the land environment was perceived as significantly less difficult than
both the water (r = —9.38, p < .001) and air (t = —10.39, p < .001) envi-
ronments, respectively. However, there was no difference in perceived task
difficulty between the water and air environments (¢ = —1.01, p = .313).

In the aforementioned example, we only had one independent variable, task envi-
ronment, and thus, it is a one-way ANOVA. Now, imagine we expanded our experi-
mental design to include not only the task environment, but also the type of robot being
used for exploration, unmanned aerial vehicles (UAVs) versus unmanned ground
vehicles (UGVs). Now we have two independent variables, task environment (again
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with three levels, land, water, and air) and robot type (UAV versus UGV). Our depen-
dent variable, perceived task difficulty, remains the same. This is called a two-way
ANOVA.

In this case, we now have two different main effects we are interested in; the effect
of robot type on task difficulty, and the effect of task environment. However, there is
also a third effect—the interaction between the two variables. An interaction effect
indicates that at different levels of one variable, the effect of the other variable on
the dependent variable changes. To keep things simple, these kinds of effects are
called . .. simple effects. The directionality of the interaction hypotheses is normally
theoretically driven and specified before conducting the analysis. However, usually
we only conduct one set (i.e., either the effect of variable A at different levels of
variable B, or the effect of variable B at different levels of variable A, but not both).
This again has to do with minimizing our chances of making a type I error—remember
that every analysis we run comes with a small chance of incorrectly rejecting the
null, so the more analyses we run, the more this chance compounds.

In this case, we will look at the simple effects of robot type over the levels of task
environment. That is, at each level of task environment (land, water, air) we will run
an analysis of the effect of robot type on perceived task difficulty. However, we could
just as equally say that depending on the type of robot, the effect of task environment
on perceived task difficulty changes.

The syntax to compute this analysis in python looks like:

# Import libraries

from statsmodels.formula.api ]'.mport ols

from statsmodels.stats.anova import anova_lm

# Create the model (two factors - last term is interaction)

formula = 'task_difficulty ~ C(environment) + C(robot) + C(environment):C(robot) "’
# Test the model against the data (must have column headers as in the model)
model = ols(formula, data).fit()

# Run a two-way ANOVA

aov_table = anova_lm(model, typ=2)

print( aov_table.round (4))

We can see the means and standard deviations for our new dataset below
in Table 6.9:

So to recap, we now have two main effects which we are looking at, and an
interaction effect. Each main effect has an F-value associated with it, as does the
interaction. We can see these and their associated significance’s in the table below
(Table 6.10).

Table 6.9 Means and SDs for task environment and Robot type

Environment Robot type Mean (SD)
Land UAV 5.12(1.47)
Land uGv 3.20 (1.34)
Water UAV 6.16 (0.79)
Water UuGv 6.00 (0.70)
Air UAV 2.92(1.45)
Air uGv 5.08 (1.42)
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Table 6.10 Results of Omnibus F-test for two-way ANOVA
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DF Sums of Mean squares | F-value P
squares
Environment |2 133.97 66.99 4391 <.001
Robot type 1 0.03 0.03 0.017 .900
Environment * | 2 104.69 52.35 34.31 <.001
Robot type
Residuals 144 219.68 1.53

Table 6.11 Post-hoc pairwise comparisons for two-way ANOVA with no correction

Estimate t-value p-value
Land 1.92 4.78 <.001
Air -2.16 —5.41 <.001
Water 0.16 0.749 457

We can see, based on this table, that there is still the main effect of task envi-
ronment, but no main effect of robot type. However, the interaction between task
environment and robot type is significant.

As with the previous one-way ANOVA, we can follow up the significant F-test for
the interaction with pairwise comparisons. In this case, however, we take each level
of environment (land, water, air) and look at the effect of robot type on task difficulty
within each of these conditions. As we only have two levels of robot type, we can
go straight to t-tests comparing UAVs and UGVs within each task environment.
However, if we had more than two levels (e.g., if we had also tested unmanned
underwater vehicles), we would need to conduct another one-way ANOVA for each
environment type, then conduct the pairwise comparisons between the robot types
depending on which environment was significant.

The results of the pairwise comparisons for the effect of robot type within each
task environment are in Table 6.11.

Now things are starting to get a little bit interesting. From this table, we can see
that, in the water environment, there is no difference between UGVs and UAVs.
In fact, the mean perceived task difficulty for both of these groups is quite high
(probably because neither UAVs nor UGVs are suited for underwater exploration).
Conversely, in the land environment, the UGV is rated as having a significantly lower
task difficulty than the UAV, and vice versa for the air environment, where the UAV
has a lower task difficulty.

We can plot a graph of this interaction as seen in Fig. 6.17.

Looking at this graph, we can begin to get an idea of why the main effect for robot
type was non-significant. Because the means for the UAV and UGV were flipped for
the land and air environments, and similar for the water environment, when averaged
all together, they cancel each other out. So when we look at the aggregated means for
the two robot types (see Fig .6.18), ignoring whether they were in a land, water, or
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air environment, there does not appear to be a big difference between them. We can
also see, if we plot some lines connecting the means (the dashed purple and green
lines), that they intersect. This usually indicates the presence of an interaction.

Thus, when we find an interaction, the results from this interaction supersede the
results of the main effects. That is, we can say that the main effects were qualified
by the presence of an interaction. If we have no significant interaction, then we
can follow up any significant main effects exactly the same way as for the one-way
ANOVA.
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The write-up for this analysis would look something like:

The results of the two-way analysis of variance revealed a significant main
effect of task environment, F (2, 144) = 43.91, p < .001, but no signifi-
cant main effect of robot type F (1, 144) = 0.017, p = .900. However, these
effects were qualified by the presence of an interaction between task envi-
ronment and robot type, F(2, 144) = 34.31, p < .001. Follow up tests for
the simple effect of robot type at each level of environment indicates that
in land environments, UGVs were rated significantly lower for perceived
task difficulty than UAVs t = 4.78, p < .001, whereas for air environments
the opposite is true, with UAVs being rated significantly lower for perceived
task difficulty r = —5.41, p < .001. However, in underwater environments,
there was no difference between UAVs and UGVs—each of them was rated
equally as difficult for exploration (t = 0.75.p = .457).

In sum, ANOVAs follow the same logic for test statistics that we have consistently
seen throughout this chapter; that is, they rely on the ratio of explained to unex-
plained variance. This logic can be extended to more complex analyses, for example
if you have three independent variables (three-way ANOVA), or a within-groups
experimental design (repeated measures ANOVA), or a design which combines both
within- and between-groups variables (mixed ANOVA). The math to compute these
is slightly more complicated, but they all stem from the same basic principles of the
general linear model. Thus, if you understand the content from this chapter, you will
be well placed to conduct other more advanced statistical analyses in the future.

6.8 Chapter Summary

In this chapter, we covered a lot of ground on various mathematical tools essential to
modern roboticists. We expect most of it to be merely a reminder for most readers,
but with a twist toward how we need and use these tools in robotics. From geometry
to matrix calculus to quaternions and inference statistics, this chapter is meant to be
a reference you will come back to when reading the rest of this book.

6.9 Revision Questions

Question #1
Consider the following system of equations:
2x +3y =12 (6.98)

y—2z=0 (6.99)
x—y+27=3 (6.100)
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Write this system in matrix form (Ax = b), compute the determinant of A, its inverse
and finally, find the values of x, y, and z.

Question #2

Demonstrate the equality in Eq. 6.37.

Question #3

Define what a p-value is and explain how it is related to the normal distribution.
Question #4

State the ratio needed to compute a test statistic and why.
More examples and exercises on statistical tests are available online.'?

6.10 Further Reading

While the theory behind basic linear algebra was presented in this chapter, some
practical limitations must be known before solving a numerical problem. For instance,
even if the determinant of a square matrix is not equal to zero, it may not be a good
idea to inverse it to solve a system of linear equation. This is where you must consider
the conditioning of a matrix, quantified by the condition number, which should not be
close to 1. If it is, numerical approximations during the computation will be amplified
and this will result in significant errors on the obtained solution. Moreover, to solve
a numerical system of equations, the inverse (and generalized inverse) of a matrix
is generally only of theoretical value, as algorithms such as the LU-decomposition,
the Gram—Schmidt orthogonalization procedure, and the Householder reflections are
used to avoid numerical errors. For further information, you can refer to a textbook
on numerical analysis (Gilat and Subramaniam, 2008; Kong et al., 2020).13

The statistics covered in this chapter are only a starting point for many other tech-
niques for analysing experimental data. If you are interested in learning more about
the theory behind different statistical methods, you can read Discovering Statistics
Using R by Field et al. (2012), also available online.'*
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