Skip to main content
Log in

Quantitative Investigation into the Relation between Force Chains and Stress Transmission During High-Velocity Compaction of Powder

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

High-velocity compaction (HVC), an innovative approach to obtain green compacts with high and uniform density, is widely used in the powder metallurgy industry. In this study, meso force chains, macro stress transmission, and their relation were investigated using the discrete element method. The simulation details of HVC and the quantitative characterization of force chains and stress transmission were shown. Then, the relation between force chains and stress was investigated. The evolution of force chains showed the same change tendency as the stress distribution. They evolved from top to bottom and then reflected backwards in HVC while they did not show this trend in conventional compaction. The strength of the force chains maintained good consistency with the stress magnitude. Meanwhile, the length of the force chains presented a negative correlation with the stress magnitude, and high stress may cause new force chains to shorten. The average collimation coefficient was affected by the transmission of stress, and the short force chains had better straightness. Furthermore, force chains parallel to the direction of gravity were observed in the region with no stress concentration. The directional coefficient of force chains also had the same fluctuation trend as the variation in the principal stress angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Z. Wang, X. H. Qu, H. Q. Yin, M. J. Yi and X. J. Yuan, Powder Technol. 192, 131 (2009).

    Article  Google Scholar 

  2. D. F. Khan et al., Mater. Design 50, 479 (2013).

    Article  Google Scholar 

  3. H. Li et al., Mater. Design 57, 546 (2014).

    Article  ADS  Google Scholar 

  4. Z. Q. Yan, F. Chen and Y. X. Cai, Powder Technol. 208, 596 (2011).

    Article  Google Scholar 

  5. D. F. Khan et al., Mater. Design 54, 149 (2014).

    Article  Google Scholar 

  6. A. R. Khoei, S. O. R. Biabanaki and S. M. Parvaneh, Appl. Math. Model 37, 443 (2013).

    Article  MathSciNet  Google Scholar 

  7. M. C. Zhou et al., Powder Technol. 305, 183 (2017).

    Article  Google Scholar 

  8. P. Han et al., Powder Technol. 314, 69 (2017).

    Article  ADS  Google Scholar 

  9. F. Huang, X. Z. An, Y. X. Zhang and A. B. Yu, Powder Technol. 314, 39 (2017).

    Article  Google Scholar 

  10. M. Shoaib, L. Kari and B. Azhdar, Powder Technol. 217, 394 (2012).

    Article  Google Scholar 

  11. S. Wang and Z. S. Zheng, Particuology 31, 49 (2017).

    Article  Google Scholar 

  12. M. J. Yi, H. Q. Yin, J. Z. Wang, X. J. Yuan and X. H. Qu, Front. Mater. Sci. China 3, 447 (2009).

    Article  ADS  Google Scholar 

  13. J. P. Bayle and F. Jorion, Proc. Chem. 7, 431 (2012).

    Article  Google Scholar 

  14. C. Giusti, L. Papadopoulos, E. T. Owens, K. E. Daniels and D. S. Bassett, Phys. Rev. E 94, 032909 (2016).

    Article  ADS  Google Scholar 

  15. Y. M. Huang and K. E. Daniels, Granular Matter 18, 85 (2016).

    Article  Google Scholar 

  16. A. Tordesillas, E. H. James and T. T. Steven, Phys. Rev. E 89, 042207 (2014).

    Article  ADS  Google Scholar 

  17. A. Tordesillas, J. Y. Shi and T. Timothy, Anal. Met. 35, 264 (2011).

    Google Scholar 

  18. A. Tordesillas, Phil. Mag. 32, 4987 (2007).

    Article  ADS  Google Scholar 

  19. O. Masanobu and I. Kazuyoshi, Int. J. Eng. Sci. 38, 1713 (2000).

    Article  Google Scholar 

  20. P. A. Cundall, Minnesota: Itasca Consulting Group Inc. (2004).

  21. S. Wang, Z. S. Zhen and W. Zhou, Acta Phys. Sin. 60, 128101 (2011).

    Google Scholar 

  22. H. Kim, M. P. Wagoner and W. G. Buttlar, J. Mater. Civil. Eng. 20, 552 (2008).

    Article  Google Scholar 

  23. Y. He et al., J. Mater. Process. Tech 249, 291 (2017).

    Article  Google Scholar 

  24. C. L. Martin, D. Bouvard and S. Shima, J. Mech. Phys. Solids 51, 667 (2003).

    Article  ADS  Google Scholar 

  25. A. H. Kharaz and D. A. Gorham, Phil. Mag. Lett. 80, 549 (2000).

    Article  ADS  Google Scholar 

  26. H. Teufelsbauer, Y. Wang, M-C. Chiou and W. Wu, Granular Matter 11, 209 (2009).

    Article  Google Scholar 

  27. J. F. Peters, M. Muthuswamy, J. Wibowo and A. Tordesillas, Phys. Rev. E 72, 041307 (2005).

    Article  ADS  Google Scholar 

  28. Q. C. Sun, F. Jin and J. G. Liu, Int. J. Mod. Phys. B 24, 5743 (2010).

    Article  ADS  Google Scholar 

  29. W. Zhang, J. Zhou, S. W. Yu, X. J. Zhang and K. Liu, Chin. J. Appl. Mech. 35, 155 (2018).

    Google Scholar 

  30. H. Z. Zhang et al., Powder Technol. 288, 435 (2016).

    Article  Google Scholar 

  31. N. Iikawa, M. M. Bandi and H. Katsuragi, J. Phys. Soc. Jpn. 84, 094401 (2014).

    Article  ADS  Google Scholar 

  32. F. J. Meng, K. Liu and W. Wang, Tribol. Trans. 58, 70 (2015).

    Article  Google Scholar 

  33. R. C. Hurley, S. A. Hall, J. E. Andrade and J. Wright, Phys. Rev. Lett. 117, 098005 (2016).

    Article  ADS  Google Scholar 

  34. H. J. Lai, J. J. Zheng, J. Zhang, R. J. Zhang and L. Cui, Comput. Geotech. 61, 13 (2014).

    Article  Google Scholar 

  35. C. Y. Wu et al., Powder Technol. 152, 107 (2005).

    Article  Google Scholar 

  36. N. Iikawa, M. M. Bandi and H. Katsuragi, Phys. Rev. E 94, 032909 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Natural Science Foundation of China for its financial support under Grant No. 51475135 and Grant No. 11472096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhou, J., Zhang, XJ. et al. Quantitative Investigation into the Relation between Force Chains and Stress Transmission During High-Velocity Compaction of Powder. J. Korean Phys. Soc. 74, 660–673 (2019). https://doi.org/10.3938/jkps.74.660

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.660

Keywords

Navigation