Skip to main content
Log in

Relation between force chain quantitative characteristics and side wall friction behaviour during ferrous powder compaction

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The internal mechanical behavior of powder system and the side wall friction behavior during powder compaction keep unclear yet. They are significant for revealing the densification behavior during powder compaction. The evolution of force chain quantitative characteristics (number, length, direction coefficient and buckling degree) and side wall friction characteristics (nominal friction coefficient, contact motion index and sliding work) at different compaction velocities, initial porosities and internal friction coefficients during ferrous powder compaction has been investigated by discrete element method. Results show that the small change in compaction velocity cannot influence the force chain characteristics and side wall friction behaviour. The different initial porosities and friction coefficients between particles can affect the force chain characteristics and the side wall friction behaviour. The force chain can be related to the side wall friction behaviour at different conditions, according to the corresponding characteristics of force chains and friction behaviour (before and after the axial strain reaches to 0.1). This study would expand the tribology of granular matter and is useful for understanding the internal and external mechanics during powder compaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Staf, H., Kis, Z., Szentmiklósi, L., et al.: Determining the density distribution in cemented carbide powder compacts using 3D neutron imaging. Powder. Technol. 354, 584–590 (2019). https://doi.org/10.1016/j.powtec.2019.06.033

    Article  Google Scholar 

  2. Nicewicz, P., Sano, T., Hogan, J.D.: Confined uniaxial compression of granular stainless steel 316. Powder. Technol. 353, 489–497 (2019). https://doi.org/10.1016/j.powtec.2019.05.041

    Article  Google Scholar 

  3. Shin, D.S., Lee, C.H., Kim, S.H., et al.: Analysis of cold compaction for Fe-C, Fe-C-Cu powder design based on constitutive relation and artificial neural networks. Powder. Technol. 353, 330–344 (2019). https://doi.org/10.1016/j.powtec.2019.05.042

    Article  Google Scholar 

  4. Chen, W.C., Wang, J.H., Wang, S.P., et al.: On the processing properties and friction behaviours during compaction of powder mixtures. Mater. Sci. Tech-Lond. 36, 1057–1064 (2020). https://doi.org/10.1080/02670836.2020.1747779

    Article  MathSciNet  Google Scholar 

  5. Zhou, M.C., Huang, S.Y., Lei, Y., et al.: Investigation on compaction behaviors of Ag35Cu32Zn33 mixed metal powders under cold die compaction. J. Adv. Mech. Des. Syst. 12, JAMDSM0037 (2018). https://doi.org/10.1299/jamdsm.2018jamdsm0037

    Article  Google Scholar 

  6. Staf, H., Larsson, P.L.: Evaluation of an advanced powder-die frictional model. Powder. Technol. 363, 569–574 (2020). https://doi.org/10.1016/j.powtec.2020.01.048

    Article  Google Scholar 

  7. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374-382 (1999). https://doi.org/10.1103/RevModPhys.71.S374

    Article  Google Scholar 

  8. Zuo, P.C., Yu, H., Liu, J.L., et al.: Tensile and shearing behaviors of the particle raft. Acta. Mech. Sin. 37, 907–912 (2021). https://doi.org/10.1007/s10409-021-01081-3

    Article  ADS  Google Scholar 

  9. Zhang, X.J., Sun, W., Wang, W., et al.: Experimental investigation of granular friction behaviors during reciprocating sliding. Friction (2021). https://doi.org/10.1007/s40544-021-0488-2

    Article  Google Scholar 

  10. Meng, F.J., Liu, K., Qin, T.: Numerical analysis of multi-scale mechanical theory of densified powder compaction. J. Braz. Soc. Mech. Sci. 40, 430 (2018). https://doi.org/10.1007/s40430-018-1337-8

    Article  Google Scholar 

  11. Wang, D.F., An, X.Z., Han, P., et al.: Particulate scale numerical investigation on the compaction of TiC-316L composite powders. Math. Probl. Eng. 2020, 5468076 (2020). https://doi.org/10.1155/2020/5468076

    Article  Google Scholar 

  12. Zhang, W., Zhou, J., Zhang, X.J., et al.: Quantitative investigation into the relation between force chains and stress transmission during high-velocity compaction of powder. J. Korean. Phys. Soc. 74, 660–673 (2019). https://doi.org/10.3938/jkps.74.660

    Article  ADS  Google Scholar 

  13. Olsson, E., Larsson, P.L.: A numerical analysis of cold powder compaction based on micromechanical experiments. Powder Technol. 243, 71–78 (2013). https://doi.org/10.1016/j.powtec.2013.03.040

    Article  Google Scholar 

  14. Lei, Y., Yan, S., Huang, S., et al.: Experimental and numerical investigation of densification behaviors during powder compaction. J. Adv. Mech. Des. Syst. Manuf. 12, JAMDSM0022 (2018). https://doi.org/10.1299/jamdsm.2018jamdsm0022

    Article  Google Scholar 

  15. Xu, R., Liu, E., Jiang, X., et al.: Analysis on evolution of mesostructure of cohesionless soil ground upon loading. Powder Technol. 368, 1–17 (2020). https://doi.org/10.1016/j.powtec.2020.04.048

    Article  Google Scholar 

  16. Liu, J., Wautier, A., Bonelli, S., et al.: Macroscopic softening in granular materials from a mesoscale perspective. Int. J. Solids Struct. 193, 222–238 (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.022

    Article  Google Scholar 

  17. Itasca Consulting Group Inc: PFC2D (Particle Flow Code in 2 Dimensions). Itasca Consulting Inc, Minneapolis (1999)

    Google Scholar 

  18. Caserta, A.J., Navarro, H.A., Cabezas-Gómez, L.: Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM. Powder. Technol. 302, 462–479 (2016). https://doi.org/10.1016/j.powtec.2016.07.032

    Article  Google Scholar 

  19. Berry, N., Zhang, Y., Haeri, S.: Lees-Edwards boundary conditions for the multi-sphere discrete element method. Powder Technol. 389, 292–308 (2021). https://doi.org/10.1016/j.powtec.2021.05.025

    Article  Google Scholar 

  20. Jasion, G.T., Shrimpton, J.S., Li, Z., et al.: On the bridging mechanism in vibration controlled dispensing of pharmaceutical powders from a micro hopper. Powder Technol. 249, 24–37 (2013). https://doi.org/10.1016/j.powtec.2013.07.027

    Article  Google Scholar 

  21. Govender, N.: Study on the effect of grain morphology on shear strength in granular materials via GPU based discrete element method simulations. Powder Technol. 387, 336–347 (2021). https://doi.org/10.1016/j.powtec.2021.04.038

    Article  Google Scholar 

  22. Mehr, F.R., Salavati, M., Morgenthal, A., et al.: Computational analysis and experimental calibration of cold isostatic compaction of Mg-SiC nanocomposite powders. Mater. Today. Commun. 27, 102321 (2021). https://doi.org/10.1016/j.mtcomm.2021.102321

    Article  Google Scholar 

  23. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30, 579–597 (2003). https://doi.org/10.1016/S0266-352X(03)00064-8

    Article  Google Scholar 

  24. Garner, S., Strong, J., Zavaliangos, A.: Study of the die compaction of powders to high relative densities using the discrete element method. Powder Technol. 330, 357–370 (2018). https://doi.org/10.1016/j.powtec.2018.02.015

    Article  Google Scholar 

  25. Meng, F.J., Liu, K.: Mechanical study on the effect of granular friction in a granular system under biaxial compression. J. Korean Phys. Soc. 72, 1179–1187 (2018). https://doi.org/10.3938/jkps.72.1179

    Article  ADS  Google Scholar 

  26. Nie, Z., Qi, Q., Wang, X., et al.: DEM investigation of strain behaviour and force chain evolution of gravel–sand mixtures subjected to cyclic loading. Particuology 68, 13–28 (2022). https://doi.org/10.1016/J.PARTIC.2021.10.006

    Article  Google Scholar 

  27. Liu, Y., Liu, H., Mao, H.: The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granul. Matter. 20, 12 (2018). https://doi.org/10.1007/s10035-017-0780-z

    Article  Google Scholar 

  28. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granul. Matter. 12, 527–541 (2010). https://doi.org/10.1007/s10035-010-0211-x

    Article  MATH  Google Scholar 

  29. Kawakita, K., Lüdde, K.H.: Some considerations on powder compression equations. Powder. Technol. 4, 61–68 (1971). https://doi.org/10.1016/0032-5910(71)80001-3

    Article  Google Scholar 

  30. Huang, P.Y.: Powder Metallurgy Principle. Metallurgical Industry Press, Beijing (2004)

    Google Scholar 

  31. Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285–288 (2001). https://doi.org/10.1038/35095018

    Article  ADS  Google Scholar 

  32. Azéma, E., Radjaï, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E. 85, 031303 (2012). https://doi.org/10.1103/PhysRevE.85.031303

    Article  ADS  Google Scholar 

  33. Sun, Q.C., Jin, F., Liu, J.G.: Understanding force chains in dense granular materials. Int. J. Mod. Phys. B. 24, 5743–5759 (2010). https://doi.org/10.1142/S0217979210055780

    Article  ADS  Google Scholar 

  34. Iikawa, N., Bandi, M.M., Katsuragi, H.: Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116, 128001 (2016). https://doi.org/10.1103/PhysRevLett.116.128001

    Article  ADS  Google Scholar 

  35. Solimanjad, N., Larsson, R.: Die wall friction and influence of some process parameters on friction in iron powder compaction. Mater. Sci. Tech-Lond. 19, 1777–1782 (2003). https://doi.org/10.1179/026708303225009517

    Article  Google Scholar 

  36. Alzouma, O.M., Robisson, A.C.: Die wall lubrication for UO2 pellets pressing: a case study. Ceram. Int. 44, 15905–15911 (2018). https://doi.org/10.1016/j.ceramint.2018.06.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province (Grants No. 2020J01869 and 2020J01874) and the Initial Scientific Research Fund in Fujian University of Technology (Grant No. GY-Z19123). The first author specifically thanks his lover, Dr. Rongxin Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, S., Tan, J. et al. Relation between force chain quantitative characteristics and side wall friction behaviour during ferrous powder compaction. Granular Matter 24, 86 (2022). https://doi.org/10.1007/s10035-022-01244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01244-4

Keywords

Navigation