Skip to main content
Log in

Investigation of the flow and force chain characteristics of metal powder in high-velocity compaction based on a discrete element method

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The flow and force chain characteristics of metal powder in high-velocity compaction are not fundamentally understood because of the complexities and discreteness of these particle systems. A 2D discrete element model of a metal powder subjected to uniaxial compaction is developed. The flow state of particles, the force chain distribution, and the influence of the main model parameters on the force chains are investigated. Results indicate a collisional particle flow stage at the beginning of compaction. Then, the flow state of particles can rapidly be classified as a dense particle flow. In addition, the contact force distribution for the collisional particle flow follows an exponential law, which is significantly different from that for dense particle flow. The probability distribution of contact forces changes as a power function in the dense particle flow. The force chains initially deviate in the y-axis direction and then in the x-axis direction with increasing friction coefficient, and the distribution and load-carrying rates of the weak force chains decrease with increasing friction coefficient. Moreover, the force chains deflect in the direction of the x-axis with increasing the particle diameter, and the distribution rate and load-carrying rate of the weak force chains decrease with increasing particle diameter. These changes in the direction of the force chains are similar to the density changes in the compacted blank part parts. The distribution rate and the load-carrying rate of the weak force chains decrease with increasing friction coefficient, and the density of the blank part depends on the direction of the entire force chains (vector sum of the force chains). Under the strength of the force chains with slight changes and when the entire force chains are inclined in the densification direction, the density of the compacted blank part increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. O.A. Waseem, H.J. Ryu, Sci Rep 7, 1926 (2017)

    Article  ADS  Google Scholar 

  2. D. Wu, S.P. Wu, L. Yang, C.D. Shi, Y.C. Wu, W.M. Tang, Powder Metall 58, 100 (2015)

    Article  Google Scholar 

  3. Z. Guo, D. Zhu, J. Pan, C. Yang, S. Li, T. Dong, H. Tian, X. Yan, Powder Technol 378, 19 (2021)

    Article  Google Scholar 

  4. A. Db, B. Sat, A. Hpc, C. Map, Adv Powder Technol 31, 3474 (2020)

    Article  Google Scholar 

  5. B. Zhang, M. Jain, C. Zhao, M. Bruhis, R. Lawcock, K. Ly, Powder Technol 204, 27 (2010)

    Article  Google Scholar 

  6. B. Harthong, J.F. Jerier, P. Doremus, D. Imbault, F.V. Donze, Int J Solids Struct 46, 3357 (2009)

    Article  Google Scholar 

  7. S. Yu, J. Zhou, W. Zhang, X. Zhang, K. Liu, CHN Mech Eng 29, 1120 (2018)

    Google Scholar 

  8. D. Souriou, P. Goeuriot, O. Bonnefoy, G. Thomas, F. Doré, Powder Technol 190, 152 (2009)

    Article  Google Scholar 

  9. G. Sethi, E. Hauck, R.M. German, Mater Sci Tech 22, 955 (2006)

    Article  Google Scholar 

  10. D.F. Khan, H.Q. Yin, H. Li, Z. Abideen, Q.X.H. Asadullah, M. Ellahi, Mater Design 54, 149 (2014)

    Article  Google Scholar 

  11. D.F. Khan, H.Q. Yin, H. Li, X.H. Qu, M. Khan, S. Ali, Mater Design 50, 479 (2013)

    Article  Google Scholar 

  12. K.Q. Zhang, H.Q. Yin, X. Jiang, X.Q. Liu, F. He, Z.H. Deng, D.F. Khan, Q.J. Zheng, X.H. Qu, Int J Min Mef Mater 26, 194 (2019)

    Article  Google Scholar 

  13. J.Z. Wang, H.Q. Yin, X.H. Qu, J.L. Johnson, Powder Technol 195, 184 (2009)

    Article  Google Scholar 

  14. J.Z. Wang, H.Q. Yin, X.H. Qu, Front Mater Sci China 3, 319 (2009)

    Article  ADS  Google Scholar 

  15. T. Timo, A. Osmo, P. Arne, R. Heikki, E. Henrik, J. Anne, Y. Jouko, Int J Pharmaceut 566, 194 (2019)

    Article  Google Scholar 

  16. B. Azhdar, B. Stenberg, L. Kari, Polym Test 24, 909 (2005)

    Article  Google Scholar 

  17. Z.Q. Yan, F. Chen, Y.X. Cai, Powder Technol 208, 596 (2011)

    Article  Google Scholar 

  18. P.G. De Gennes, Rev Mod Phys 71, 374 (1999)

    Article  Google Scholar 

  19. W. Wang, Y. Liu, G.Q. Zhu, Wear 318, 114 (2014)

    Article  Google Scholar 

  20. A. Tordesillas, D.W. Walker, Q. Lin, Phys Rev E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  21. W. Zhang, S. Zhang, J. Tan, J. Du, N. Zhang, J Phys Soc of JPN 89, 124602 (2020)

    Article  ADS  Google Scholar 

  22. C.B. Eduardo, F.A. Ducha, A.P.F. Atman, Granul Matter 22, 61 (2020)

    Article  Google Scholar 

  23. F.J. Meng, K. Liu, Z. Tang, W. Wang, X. Liu, Phys Scripta 89, 105702 (2014)

    Article  ADS  Google Scholar 

  24. C.S. Campbell, Powder Technol 162, 208 (2006)

    Article  Google Scholar 

  25. J.R. Darias, M.P. Madrid, L.A. Pugnaloni, Phys Rev E 101, 052905 (2020)

    Article  ADS  Google Scholar 

  26. L. La Ragione, M. Gammariello, G. Recchia, Phys Rev E 94, 062904 (2016)

    Article  ADS  Google Scholar 

  27. D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  28. J. Chang, W. Wang, M. Zhao, K. Liu, P I Mech Eng J-J Eng Tribol 231, 1371 (2017)

    Google Scholar 

  29. S. Ostojic, E. Somfai, B. Nienhuis, Nature 439, 828 (2006)

    Article  ADS  Google Scholar 

  30. R. Arevalo, I. Zuriguel, D. Maza, Phys Rev E 81, 041302 (2010)

    Article  ADS  Google Scholar 

  31. R. Radhakrishnan, J.R. Royer, W. Poon, J. Sun, Granul Matter 22, 1 (2020)

    Article  Google Scholar 

  32. R. Artoni, A.C. Santomaso, M. Go, P. Canu, Phys Rev Lett 108, 238002 (2012)

    Article  ADS  Google Scholar 

  33. P.A. Cundall, A. Strack, Geotechnique 29, 1 (1979)

    Article  Google Scholar 

  34. F. Meng, K. Liu, Q. Tao, J Braz Soc Mech Sci Eng 40, 430 (2018)

    Article  Google Scholar 

  35. W. Wang, W. Gu, K. Liu, Tribol Trans 58, 197 (2015)

    Article  Google Scholar 

  36. A. Albaba, S. Lambert, T. Faug, Phys Rev E 97, 052903 (2018)

    Article  ADS  Google Scholar 

  37. Q. Tang, Y. Zhou, D. Zhao, Energy Sci Eng 3, 719 (2020)

    Google Scholar 

  38. D. Kawabata, M. Yoshida, A. Shimosaka, S. Yoshiyuki, Adv Powder Technol 31, 1381 (2020)

    Article  Google Scholar 

  39. R.D. Mindlin, H. Deresiewicz, J Appl Mech 20, 327 (1953)

    Article  MathSciNet  Google Scholar 

  40. F.J. Meng, H.B. Liu, S.Z. Hua, M.H. Pang, Results Phys 25, 104328 (2021)

    Article  Google Scholar 

  41. W. Zhang, K. Liu, J. Zhou, R. Chen, N. Zhang, G. Lian, Phys Scripta 95, 065704 (2020)

    Article  ADS  Google Scholar 

  42. K.N. Elkholy, M.M. Khonsari, ASME J Tribol 129, 923 (2007)

    Article  Google Scholar 

  43. W. Wang, Liu X J and Liu K. Tribol Lett 48, 229 (2012)

    Article  ADS  Google Scholar 

  44. F. Meng, K. Liu, W. Wang, Tribol Tran 58, 70 (2015)

    Article  Google Scholar 

  45. T. Majmudar, R. Behringer, Nature 435, 7045 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China for its financial support under Grant No. 51605150. This work was also partly supported by Key Projects of Natural Science Research in Tongling Polytechnic (tlpt2020NK006)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan-Jing Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZY., Meng, FJ. Investigation of the flow and force chain characteristics of metal powder in high-velocity compaction based on a discrete element method. J. Korean Phys. Soc. 79, 455–467 (2021). https://doi.org/10.1007/s40042-021-00241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00241-9

Keywords

Navigation