Skip to main content
Log in

Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Understanding how plants superpass high altitude and survive successfully in life-threatning abiotic condition is crucial for predicting their response to climate change. Plant strategies to beat cold are characterized by morphological and physiological adjustments. Here we studied the variations in leaf anatomy and physiology of two grasses Cenchrus ciliaris (Cc) and Imperata cylindrica (Ic) dominating in western Himalayan grasslands which are driven by elevation. We collected leaves of each grass from upper most canopy from three different elevations of district Poonch viz., lower site Paniola (1310 m a.s.l.), middle site Banjosa (1780 m a.s.l.) and higher site Tarkhul (2100 m a.s.l). Results showed that both grasses dodge the aggressive climatic forces by modifying anatomical setting and changing physiological adjustments. Elevation controls the conductive tissues by reducing vessel size and extensive sclerified tissues around the vascular bundles help the plant to avoid cavitation induced in cold conditions. The better physiological adjustment of these grasses at high elevation is ascribed to high proline and sugar present in leaves and accelerated activities of catalase (CAT) and peroxidase (POD) show scavenging ability of these grasses at high altitude. The low activity of malondialdehyde (MDA) is related with lower lipid peroxidation. These results bring novel information on how ecological factors influence the evolution of anatomical and physiological adaptations in high altitude plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamska I (2001) The Elip family of stress proteins in the thylakoid membranes of pro- and eukaryota. In: Aro EM, Andersson B (eds) Regulation of photosynthesis. Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 487–505

    Chapter  Google Scholar 

  • Afzal I, Basra SMA, Hameed A, Farooq M (2006) Physiological enhancements for alleviation of salt stress in wheat. Pak J Bot 8:1649–1659

    Google Scholar 

  • Ahmad KS, Hameed M, Jiabin D, Ashraf M, Hamid A, Ahmad F, Fatima S, Akhtar N (2016a) Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance. Biologia 71:885–8895

    Article  CAS  Google Scholar 

  • Ahmad KS, Hameed M, Ahmad F, Sadia B (2016b) Edaphic factors as major determinants of plant distribution of temperate Himalayan grasses. Pak J Bot 48:567–573

    CAS  Google Scholar 

  • Ahmad KS, Hameed M, Ashraf M, Hamid A, Nawaz F, Deng J, Ahmad F, Fatima S (2016c) Leaf physiological and biochemical adaptations in Leptothrium senegalense (Poaceae) to salt stress. Phyton-Ann Rei Bot 56:277–291

    Google Scholar 

  • Ahmad KS, Hameed M, Hamid A, Nawaz F, Kiani BH, Ahmad MSA, Deng J, Ahmad F, Hussain I, Fatima S (2018) Beating cold by being tough: impact of elevation on leaf characteristics in Phleum himalaicum Mez. endemic to Himalaya. Acta Physiol Plant 40(3):56. https://doi.org/10.1007/s11738-018-2637-4

    Article  CAS  Google Scholar 

  • Ali SI, Nasir YJ, (Eds.) (1989-1992) Flora of Pakistan. No.191-204. Islamabad Pakistan

  • Ali SI, Qaiser M, (Eds.) (1993-2008) Flora of Pakistan. No.-204-2015. Islamabad Pakistan

  • Alonso-Amelot ME (2008) High altitude plants, chemistry of acclimation and adaptation. Stud Nat Prod Chem 34:883–982

    Article  CAS  Google Scholar 

  • Amini F, Ehsanpour AA (2005) Soluble proteins, proline, carbohydrates and NaCl changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem Biotechnol 1:212–216

    CAS  Google Scholar 

  • Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trend Genet 27:258–266

    Article  CAS  Google Scholar 

  • Antoine G, Niklaus EZ (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriopstagal seedlings and saplings from the Indus delta, Pakistan. Aquat Bot 70:259–268

    Article  CAS  Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. Int Asso Wood Anat Bull 4:141–159

    Google Scholar 

  • Bai W, Kong L, Guo A (2013) Effects of physical properties on electrical conductivity of compacted lateritic soil. Rock Mech Geotech Eng 5:406–411

    Article  Google Scholar 

  • Baker H, Frank O, De Angelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Becker A, Körner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use 440 studies along elevational gradients. Mt Res Dev 27:58–65

    Article  Google Scholar 

  • Bhutta WM (2011) Antioxidant activity of enzymatic system of two different wheat (Triticum aestivum L.) cultivars growing under salt stress. Plant Soil Environ 57:101–107

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (1999) Nature and properties of soil, 12th edn. Prentice-Hall, Inc. Pearson Education, Upper Saddle River

    Google Scholar 

  • Busing RT, White PS, MacKende MD (1992) Gradient analysis of old spruce-fir forest of the great Smokey Mountains circa 1935. Can J Bot 71:951–958

    Article  Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poahiemata, along a narrow altitudinal gradient. Evolution (NY) 61:2925–2941

    Article  Google Scholar 

  • Carmak I, Horst JH (1991) Effects of aluminum on lipid per oxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Acta Physiol Plant 83:463–468

    Article  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Method Enzymol 2:764–775

    Article  Google Scholar 

  • Cicek N, Cakirlar H (2008) Changes in some antioxidant enzyme ectivities in six soybean cultivars in response to long-term salinity at two different temperatures. Gen App Plant Physiol 34:267–280

    CAS  Google Scholar 

  • Cui X, Wang Y, Wu J, Han X, Gu X, Lu T, Zhang Z (2018) The RNA editing factor DUA 1 is crucial to chloroplast development at low temperature in rice. New Phytol 221:834-49

  • De Frenne P, Graae BJ, Rodriguez-Sanchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, Diekmann M, Eriksson O (2013) Latitudinal gradients as natural laboratories to infer species responses to temperature. J Ecol 101:784–795

    Article  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid per oxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Ericson MC, Alfinito AE (1984) Proteins produced during salt stress in tobacco cell cultures. Plant Physiol 74:506–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhoudi R (2011) Effect of salt stress on physiological and morphological parameters of rapeseed cultivars. Adv Environ Biol 5:2501–2508

    CAS  Google Scholar 

  • Fariaszewska A, Aper J, Van Huylenbroeck J, Baert J, De Riek J, Staniak M, Pecio L (2016) Mild drought stress-induced changes in yield, physiological processes and chemical composition in Festuca, Lolium and Festuolium. J Agron Crop Sci 203:103–116

    Article  Google Scholar 

  • Fatemeh Z, Tajik S, Soleimanpour S (2011) Effects of elevation on anatomy and concentration of Crocin, Picrocrocin and Safranal in Crocus sativus L. Aust J Crop Sci 5:831–838

    Google Scholar 

  • Fatima S, Hameed M, Ahmad F, Ashraf M, Ahmad R (2018) Structural and functional modifications in a typical arid zone species Aristida adscensionis L. along altitudinal gradient. Flora 249. https://doi.org/10.1016/j.flora.2018.11.003

  • Feng Q, Centritto M, Cheng R, Liu S, Shi Z (2013) Leaf functional trait responses of Quercusaquifolioides to high elevations. Int J Agric Biol 15:69–75

    CAS  Google Scholar 

  • Fisk MC, Schimid SK, Seastedt TR (1998) Topographic patterns of above and below ground production and nitrogen cycling in alpine tundra. Eco 79:2253–2266

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Gairola S, Sharif NM, Bhatt A, Kala CP (2010) Influence of climate change on production of secondary chemicals in high altitude medicinal plants: issues needs immediate attention. J Med Plants Res 4:1825–1829

    Google Scholar 

  • Ganesh KA, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  CAS  Google Scholar 

  • Garg BK (2003) Nutrient uptake and management under drought: nutrient-moisture interaction. Curr Agric 27:1–8

    Google Scholar 

  • Ghalambor CK, Mckay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson AC (2012) Structure-function relations of warm desert plants. Springer Science & Business Media, Berlin

    Google Scholar 

  • Gonçalves JFDC, Marenco RA, Vieira G (2001) Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and Tonka bean under two light environments. Rev Bras Fisiol Veg 13:2

    Article  Google Scholar 

  • Gould WA, Walker MD (1999) Plant communities’ and landscape diversity along a Canadian arctic river. J Veg Sci 10:537–548

    Article  Google Scholar 

  • Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Adv Bot 2014:208747. https://doi.org/10.3389/fpls.2015.00619

    Article  Google Scholar 

  • Griffiths RP, Madritch MD, Swanson AK (2009) The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): implications for the effects of climate change on soil properties. Forest Ecol Manag 257:1–7

    Article  Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes; adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 12:204–218

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SA, Mokhtassi-Bidgoli A, Nicola S (2016) Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol Biochem 106:141–148

    Article  CAS  PubMed  Google Scholar 

  • Heidari M (2012) Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr J Biotechnol 11:379–384

    CAS  Google Scholar 

  • Hovenden MJ, Schoor JKV (2006) The response of leaf morphology to irradiance depends on elevation of origin in Nothofagus cunninghamii. New Phytol 169:291–297

    Article  PubMed  Google Scholar 

  • Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol 161:585–594

    Article  PubMed  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Kellar WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycine betaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    Article  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farroq M, Jasim AL-Juburi H, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigment composition. Int J Agric Biol 11:100–105

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262

    Article  CAS  Google Scholar 

  • Julkenen-Titto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217

    Article  Google Scholar 

  • Kadioglu A, Terzi R (2007) A dehydration avoidance mechanism: leaf rolling. Bot Rev 73:290–302

    Article  Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006) Temperature and biomass influences on internal changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan plateau. Glob Chang Biol 12:1285–1298

    Article  Google Scholar 

  • Keyvan S (2010) The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. J Anim Plant Sci 3:1051–1060

    Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Khalid A, Mutairi AL (2016) Impact of varying elevations on growth and activities of antioxidant enzymes of some medicinal plants of Saudi Arabia. Acta Ecol Sin 36:141–148

    Article  Google Scholar 

  • Kofidis G, Bosabalidis AM, Moustakas M (2007) Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ Exp Bot 60:69–76

    Article  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8:480–492

    Article  Google Scholar 

  • Korner C (1998) A re-assessment of high elevation tree line positions and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kouwenberg LLR, Kürschner WM, Mcelwain JC (2007) Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev Mineral Geochem 66:215–241

    Article  CAS  Google Scholar 

  • Kumar N, Kumar S, Ahuja PS (2005) Photosynthetic characteristics of Hordeum, Triticum, Rumex, and Trifolium species at contrasting altitudes. Photosynthetica 43:195–201

    Article  CAS  Google Scholar 

  • Larcher W (2006) Physiological Plant Ecology (4th Edn), Rima, São Carlos, pp 550 

  • Li Z, Ji C, Liu J (2008) Leaf area calculating based on digital image. In: Li D (ed) Computer And computing technologies in agriculture, vol II. CCTA 2007. The International Federation for Information Processing, vol 259. Springer, Boston

    Google Scholar 

  • Li X, Yang Y, Ma L, Sun X, Yang S, Kong X, Hu X, Yang Y (2014) Comparative proteomics analyses of Kobresia pygmaea adaptation to environment along an elevational gradient on the central Tibetan plateau. PLoS One 9:e98410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu L, Xu SM, Woo KC (2005) Solar UV-B radiation on growth, photosynthesis and the xanthophylls cycle in tropical acacias and eucalyptus. Environ Exp Bot 54:121–130

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL Randall RJ (1951) Protein Measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275

  • Macek P, Leps J (2008) Environmental correlates of growth traits of the stoloniferous plant Potentilla palustris. Evol Ecol 22:419–435

    Article  Google Scholar 

  • Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci 4:580–585

    CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Malgorzata B, Nevena S, Zaltko Z, Daniela G (2008) Physiological response of some genotypes (Lycopersicum esculentum L.) to high temperature stress. J Cent Eur Agric 9:723–732

    Google Scholar 

  • Mallitt KL, Bonser SP, Hunt J (2010) The plasticity of phenotypic integration in response to light and water availability in the pepper grass, Lepidium bonariense. Evol Ecol 24:1321–1337

    Article  Google Scholar 

  • Mark JH, Jacqueline KVS (2006) The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytol 169:291–297

    Article  Google Scholar 

  • Martini D, Taddei F, Ciccoritti R, Pasquini M, Nicoletti I, Corradini D, D’Egidio MG (2015) Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow colored pigments in durum wheat (Triticum turgidum L.var. durum) as a function of genotype, crop year and growing area. J Cereal Sci 65:175–185

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor L. growth in sewage stabilization ponds. Environ Pollut 98:233–236

    Article  CAS  Google Scholar 

  • Moor S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

    Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. J Plant Physiol 58:166–170

    Article  CAS  Google Scholar 

  • Naseer M, Hameed M, Zahoor A, Ahmad F, Fatima S, Ahmad MSA, Ahmad KS, Iftikhar M (2017) Photosynthetic response in buttonwood (Conocarpus erectus L.) to salt stress. Pak J Bot 49:847–856

    CAS  Google Scholar 

  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57:26–33

    Article  CAS  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Pastori G, Foyer CH, Mullineaux P (2000) Low temperature-induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. J Exp Bot 51:107–113

    CAS  PubMed  Google Scholar 

  • Pfündel EE, Agati G, Cerovic ZG (2008) Optical properties of plant surfaces. Biol Plant Cuticle 3:216–239

    Google Scholar 

  • Pluess AR, Frei E, Kettle CJ, Hahn T, Ghazoul J (2011) Plant growth and fitness of Scabiosa columbaria under climate warming conditions. Plant Ecol Divers 4:379–389

    Article  Google Scholar 

  • Poorter L, Rozendaal DMA (2008) Leaf size and leaf display of 38 tropical tree species. Oecologia 158:35–46

    Article  PubMed  Google Scholar 

  • Qiuhong F, Mauro C, Ruimei C, Shirong L, Zuomin S (2013) Leaf functional trait responses of Quercus aquifolioides to high elevations. Int J Agric Biol 15:69–75

    Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection-an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Ramel D, Wang X, Laflamme C, Montell DJ, Emery G (2013) Rab11 regulates cell-cell communication during collective cell movements. Nature Cell Bio 15:317–324

    Article  CAS  Google Scholar 

  • Rathore N, Thakur D, Chawla A (2018) Seasonal variations coupled with elevation gradient drives significant changesin eco-physiological and biogeochemical traits of a high altitude evergreen broadleaf shrub, Rhododendron anthopogon. Plant Physiol Biochem 132:708–719

    Article  CAS  PubMed  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperatureand latitude. Proc Natl Acad Sci U S A 101:11001–11006. https://doi.org/10.1073/pnas.0403588101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboldi LB, Oliveira RF, Angelocci LR (2016) Leaf turgor pressure in maize plants under water stress. Aust J Crop Sci 10:878

    Article  CAS  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    Article  PubMed  Google Scholar 

  • Sairam RK, Srivastava GC (2002) Changes in antioxidant activity in sub cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    Article  CAS  Google Scholar 

  • Sakata T, Yokoi Y (2002) Analysis of the O2 dependency in leaf-level photosynthesis of two Reynoutria japonica populations growing at different altitudes. Plant Cell Environ 25:65–74

    Article  Google Scholar 

  • Seelig HD, Wolter A, Schroder FG (2015) Leaf thickness and turgor pressure in bean during plant desiccation. Sci Hortic 184:55–62

    Article  Google Scholar 

  • Shi Z, Haworth M, Feng Q, Cheng R, Centritto M (2015) Growth habit and leaf economics determine gas exchange responses to high elevation in an evergreen tree, a deciduous shrub and an herbaceous annual. AoB Plants 7:plv115. https://doi.org/10.1093/aobpla/plv115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JL, Halvorson JJ, Jr HB (2002) Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biol Biochem 34:1749–1757

    Article  CAS  Google Scholar 

  • Stocklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaptation in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133

    Article  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2010) Salicylic acid-mediated changes in photosynthesis, nutrients contents and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    Article  CAS  Google Scholar 

  • Taguchi Y, Wada N (2001) Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a stimulated environmental change. Polar Biosci 14:79–87

    Google Scholar 

  • Taiz L, Zeiger E (2009) Fisiologia Vegetal. 4 Edtiion, Artmed, Porto Alegre, 848 p

  • Titshall LW, O’Connor TG, Morris CD (2000) Effect of long-term exclusion of fire and herbivory on the soils and vegetation of sour grassland. Afr J Range Forage Sci 17:70–80

    Article  Google Scholar 

  • Wang G, Feng X (2012) Response of plants’ water use efficiency to increasing atmospheric CO2 concentration. Environ Sci Technol 46(16):8610–8620

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Peng Y, Singer JW, Fessehaie A, Krebs SL, Arora R (2009) Seasonal changes in photosynthesis, antioxidant systems and ELIP expression in a thermonastic and non-thermonastic Rhododendron species: a comparison of photoprotective strategies in overwintering plants. Plant Sci 177:607–617

    Article  CAS  Google Scholar 

  • Wang T, Kang FF, Cheng XQ, et al. 2017. Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. CATENA, 155: 41–52.

  • Waseem M, Ali A, Tahir M, Nadeem MA, Ayub M, Tanveer A, Ahmad R, Hussain M (2011) Mechanism of drought tolerance in plant and its management through different methods. J Agr Sci 5:10–25

    Google Scholar 

  • Wu G, Johnson S, Bornman J, Bennett S, Clarke M, Singh V, Fang Z (2016) Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci Rep 6:21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PL, Guo YK, Bai JG, Shang L, Wang XJ (2008) Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol Plant 132:467–478

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Körner C, Sun H (2008) The ecological significance ofpubescence in Saussurea medusa, a high-elevation Himalayan “woolly plant”. Arctic Antarctic Alpine Res 40:250–255

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57:508–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PE, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticumaestivum) canopy. Plant Cell Environ 32(5):448–464

    Article  CAS  PubMed  Google Scholar 

  • YuJing Z, Yong Z (2000) Studies on ultrastructure of Puccinellia tenuiflora under different salinity stress. Grassland China 4:30–32

    Google Scholar 

  • Zak DR, Hairston A, Grigal DF (1991) Topographic influences on nitrogen cycling within upland pin oak ecosystem. For Sci 37:45–53

    Google Scholar 

  • Zarinkamar F, Tajik S, Soleimanpour S (2011) Effects of altitude on anatomy and concentration of crocin, picrocrocin and safranal in Crocus sativus L. Aust J Crop Sci 5:831–838

    CAS  Google Scholar 

  • Zhang S, Chen D, Sun D, Wang X, Smith JL, Du G (2012) Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan plateau, China. Biol Fert Soil 48:393–400

    Article  CAS  Google Scholar 

  • Zhang HJ, Zhang N, Yang RC, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Tan H, Chen G (2016) Effect of organic osmolytes and ABA accumulated in twelve dominant desert plants of the Tengger Desert, China. Res Rev J Bot Sci 5:45–50

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Higher Education Commision (HEC) of Pakistan for providing research grant (No:21-833/SRGP/P&D/HEC/2016) to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

KSA designed the research project and supervised the work. AW wrote the manuscript and did the data curation, formal analysis and funding acquisition. MSAA, AM, FN, HA and AU helped in data analysis. MMT and MZ helped in writing, review and editing the draft. All authors read and approved the final draft.

Corresponding author

Correspondence to Khawaja Shafique Ahmad.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K.S., Wazarat, A., Mehmood, A. et al. Adaptations in Imperata cylindrica (L.) Raeusch. and Cenchrus ciliaris L. for altitude tolerance. Biologia 75, 183–198 (2020). https://doi.org/10.2478/s11756-019-00380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-019-00380-2

Keywords

Navigation