Skip to main content
Log in

Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Three ecotypes [foot hill (700 m), mid hill (1571 m) and top hill (2804 m)] of a Bermuda grass Cynodon dactylon (L.) Pers. from Pir Chinasi Hill in Western Himalaya were evaluated for their degree of tolerance to altitudinal stress. Differential response of all ecotypes in terms of adequate structural modifications to different elevation leveis was an evident to confirm the hypothesis that plants inhabiting different altitudes show variation in structure (internal modifications) and strategic (response) due to heterogeneity in environmental gradients. Soil at top hill site was more acidic and displayed significant increase in ionic content and total nitrogen. High elevation had severe impact on morpho-anatomical and physiological attributes. A significant decline in shoot fresh weight and total leaf area was observed in top hill ecotype. With exception of Ca2+ and carotenoid, other ionic and chlorophyll content were significantly declined at high elevations. Anatomical alterations such as, increased leaf thickness, intensive sclerification around the vascular bundle and pith area, reduced metaxylem vessel area, high number of silica bodies, high pubescence (increased microhair and trichome density) were some of the promising anatomical adaptations in top hill ecotype which played an important role in high degree of tolerance of this grass to cope with altitudinal stresses. Increased leaf thickness might be a response to lower temperature that protects mesophyll cells and high density of trichomes may be involved in blocking transpiration water and internal heat. The pattern of constant variation suggests that differential response of these ecotypes is highly related to air temperature, pattern of rainfall, availability of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez J.M., Rocha J.F. & Machado S.R. 2008. Bulliform cells in Loudefaopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function Braz. Arch. Bio. Technol. 51: 113–119.

    Article  Google Scholar 

  • Arnon D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkin O.K. & Day D.D. 1990. A comparison of the respiratory processes and growth rates of selected Australian alpine and related lowland species. Aus. J. Plant Physiol. 17: 517–526

    Google Scholar 

  • Baath E. & Anderson T.H. 2003 Comparison of soil fun-gal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35: 955–963.

    Article  CAS  Google Scholar 

  • Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Climatic Change 59: 5–31.

    Article  Google Scholar 

  • Cole V.C., Paustian K., Elliott E.T., Metherell A.K., Ojima D.S. & Parton W.J. 1993. Analysis of agroecosystem carbon pools. Water Air Soil Poli. 70: 357–371.

    Article  CAS  Google Scholar 

  • Fatemeh Z., Tajik S. & Soleimanpour S. 2011. Effects of alti-tude on anatomy and concentration of Crocin, Picrocrocin and Safranal in Crocus sativus L. Aus. J. Crop Sci. 5: 831–838.

    Google Scholar 

  • Flann C., Ladiges P.Y. & Walsh N.G. 2002. Morphological variation in Leptorhynchos squamatus (Gnaphalieae: Asteraceae). Aus. Syst. Bot. 15: 205–219.

    Article  Google Scholar 

  • Grabherr G., Gottfried M. & Pauli H. 1994. Climate effects on mountain plants. Nature 369: 448–448.

    Article  CAS  PubMed  Google Scholar 

  • Graefe S., Leuschner C., Coners H. & Hertel D. 2011. Root functioning in tropical high-elevation forests: Environmental vs. biological control of root water absorption. Environ. Exp. Bot. 71: 329–336.

    Google Scholar 

  • Griffiths R.P., Madritch M.D. & Swanson A.K. 2009. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manage. 257: 1–7.

    Article  Google Scholar 

  • Gupta S.M., Grover A. & Ahmed Z. 2012, Identification of Abi-otic Stress Responsive Genes from Indian High Altitude Le-pidium, latifolium L. Defence Sci. J. 62: 315–318.

    Article  CAS  Google Scholar 

  • Hameed M., Ashraf M. & Naz N. 2009. Anatomical adaptations to salinity in cogon grass [Imperata cylindrico, (L.) Raeuschel] from the Salt Range, Pakistan. Plant Soil 322: 229–238.

    Article  CAS  Google Scholar 

  • Hameed M., Ashraf M., Naz N. & Al-Qurainy F. 2010. Anatomical adaptations of Cyanodon dactylon (L.) Pers. from the Salt range Pakistan, to salinity stress. I. Root and Stem anatomy. Pak. J. Bot. 42: 279–289.

    Google Scholar 

  • Hameed M., Nawaz T., Ashraf M., Naz N., Batool R., Ahmad M.S.A. & Riaz A. 2013. Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turk. J. Bot. 37: 715–724.

    CAS  Google Scholar 

  • Hameed M., Nawaz T., Ashraf M., Tufail A., Kanwal H., Ahmad M.S.A. & Ahmad I. 2012. Leaf anatomical adaptations of some halophytic and xerophytic sedges of the Punjab. Pak. J. Bot. 44: 159–164.

    Google Scholar 

  • Horie T., Karahara I. & Katsuhara M. 2012. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5: 1–18.

    Article  Google Scholar 

  • Hovenden M.J & Vander Schoor J.K. 2004. Nature versus nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytol. 161: 585–594.

    Article  PubMed  Google Scholar 

  • Hovenden M.J. & Vander Schoor J.K. 2006. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii. New Phytol. 169: 291–297.

    Article  PubMed  Google Scholar 

  • Jiang F., Wang F., Wu Z., Li Y., Shi G., Hu J. & Hou X. 2011. Components of the Arabidopsis CBF coldresponse pathway are conserved in non-heading chinese cabbage. Plant Mol. Biol. Rep. 29: 525–532.

    Article  CAS  Google Scholar 

  • Jump A.S. & Penuelas J. 2005. Running to stand still: adapta-tion and the response of plants to rapid climate change. Ecol. Letters 8: 1010–1020.

    Article  Google Scholar 

  • Kofidis G., Bosabalidis A.M. & Moustakas M. 2003. Contemporary seasonal and altitudinal variations of leaf structural features in oregano (Origanum, vulgare L.). Ann. Bot. 92: 635–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kofidis G., Bosabalidis A.M. & Moustakas M. 2007. Com-bined effect of altitude and season on leaf characteristics of Clinopodium vulgare L. (Labiatae). Environ. Exp. Bot. 60: 69–76.

    Article  Google Scholar 

  • Körner C. 1999. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer.

    Book  Google Scholar 

  • Körner C., Bannister P. & Mark A.F. 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69: 577–588.

    Article  PubMed  Google Scholar 

  • Körner C. & Diemer M. 1994. Evidence that plants from high altitudes retain their greater photosynthetic efHciency under elevated C02. Func. Ecol. 8: 58–68.

    Article  Google Scholar 

  • Körner C., Neumayer M., Menendez-Riedl S. & Smeets-Scheel A. 1989. Functional morphology of mountain plants. Flora 182: 353–383.

    Article  Google Scholar 

  • Liu Li., Xu S.M. & Woo K.C. 2005. Solar UV-B radiation on growth, photosynthesis and the xanthophylls cycle in tropical acacias and eucalyptus. Environ. Exp. Bot. 54: 121–130.

    Article  CAS  Google Scholar 

  • Malik N.Z., Arshad M. & Mirza S.N. 2007. Phytosociological Attributes of Different Plant Communities of Pir-Chinasi Hills of Azad Jammu and Kashmir. Int. J. Agri. Biol. 9: 569–574.

    Google Scholar 

  • Mark A.F., Dickinson K.J.M. & Hofstede R.G.M. 2000. Alpine vegetation, plant distribution, life forms, and environments in a humid New Zealand region: Oceanic and tropical high mountain affinities. Arct. Antarct. Alp. Res. 32: 240–254.

    Article  Google Scholar 

  • McElwain J.C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for C02 partial pressure. Geology 32: 1017–1020.

    Article  Google Scholar 

  • Peng Y.H., Zhu Y.F. & Mao Y.Q. 2004. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. J. Exp. Bot. 55: 939–949.

    Article  CAS  PubMed  Google Scholar 

  • Poorter L. & Rozendaal D.M.A. 2008. Leaf size and leaf display of 38 tropical tree species. Oecologia 158: 35–46.

    Article  PubMed  Google Scholar 

  • Roderick M.L., Berry S.L. & Noble I.R. 2000. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Func. Ecol. 14: 423–437.

    Article  Google Scholar 

  • Royer D.L. 2001. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Palaeobot. Palynol. 114: 1–28.

    Article  PubMed  Google Scholar 

  • Rundgren M. 1999. A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Swe-den. Holocene 9: 509–513.

    Google Scholar 

  • Sandve S.R., Kosmala A., Rudi H., Fjellheim S., Rapacz M., Yamada T. & Rognli O.A. 2011. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci. 180: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Schneider J.V., Zipp D., Gaviria J. & Zizka G. 2003 Successional and mature stands in an upper Andean rain forest transect of Venezuela: do leaf characteristics of woody species differ? J. Trop. Ecol.19: 251–259.

    Google Scholar 

  • Schreiber L., Hartmann K. & Skrabs M. 1999. Apoplastic barriers in roots: Chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50: 1267–1280.

    CAS  Google Scholar 

  • Schroth G., Lehmann J. and Barrios E. 2003. Soil nutrient availability and acidity. In: Schroth G. & Sinclair F.L. (eds), Trees, Crops and Soil Fertility, CAB International, Wallingford, 2: 104–106.

    Google Scholar 

  • Taguchi Y. & Wada N. 2001. Variations of leaf traits of an alpine shrub Sieversio, pentapetala along an altitudinal gradient and under a stimulated environmental change. Polar Biosci. 14: 79–87

    Google Scholar 

  • Tanner E.V. & Kapos V. 1982. Leaf structure of Jamaican upper montane rain-forest trees. Biotropica 14: 16–24.

    Article  Google Scholar 

  • Turner I.M. 1994. Sclerophylly: primarily protective? Fun. Ecol. 9: 279–284.

    Google Scholar 

  • Vasellati V., Oesterheld M., Medan D. & Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum düatatum. Ann. Bot. 88: 355–360.

    Article  Google Scholar 

  • Wolf B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 13: 1035–1059.

    Article  CAS  Google Scholar 

  • Zhu Z.-J., Zhang Y., Hu Y.-Y. & Yan S.- G. 2000. Studies on microscopic structure of Puccinellio, tenuiflora stem under salinity stress. Grassland China 5: 6–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawaja Shafique Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K.S., Hameed, M., Deng, J. et al. Ecotypic adaptations in Bermuda grass (Cynodon dactylon) for altitudinal stress tolerance. Biologia 71, 885–895 (2016). https://doi.org/10.1515/biolog-2016-0113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0113

Key words

Navigation