Skip to main content

Advertisement

Log in

Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It is important to understand the controlling factors on soil N cycling in these ecosystems. To evaluate climate effects on N cycling, soil N mineralization and nitrification rates (0–15 cm) were measured using an in situ closed-top tube incubation across altitudes and positions from 2006 to 2008 in alpine meadows. The data indicated that soil N mineralization and nitrification rates decreased with increasing altitude, but only significantly (P < 0.05) between the lowest and the two higher altitudes. Soil N mineralization and nitrification rates of south-facing slopes were higher than north-facing slopes at each altitude. This suggests that soil temperature and soil water content (WC) were the controlling factors for soil N mineralization and nitrification rates across altitude with soil WC being the most important factors over positions. Soil nitrification rate depended on soil N mineralization rate, and both rates may increase in response to regional warming of the alpine meadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JM, Faire H, Faire-Richard L, Mcglade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348:711–714

    Article  CAS  Google Scholar 

  • Adams MA, Attiwill PM (1986) Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. II. Indices of nitrogen mineralization. Plant Soil 92:341–362. doi:10.1007/BF02372483

    Article  CAS  Google Scholar 

  • Alef K, Beck TH, Zelles L, Kleiner D (1988) A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem 20:561–565. doi:10.1016/0038-0717(88), 90073-9

    Article  CAS  Google Scholar 

  • Barry RG (1981) Mountain weather and climate. Methuen, London

    Google Scholar 

  • Baumann F, He JS, Schmidt K, Kuhn P, Scholten T (2009) Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Global Change Biol 12:3001–3017. doi:10.1111/j.1365-2486.2009.01953.x

  • Breuer L, Kiese R, Butterbach-Bahl K (2002) Temperature and moisture effects on nitrification rates in tropical rain forest soils. Soil Sci Soc Am J 66:834–844

    Article  CAS  Google Scholar 

  • Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol Biochem 36:237–243. doi:10.1016/j.soilbio.2003.09.010

    Article  CAS  Google Scholar 

  • Casals P, Romanya J, Cortina J, Fons J, Bode M, Vallejo VR (1995) Nitrogen supply rate in Scots pine (Pinus sylvestris L.) forests of contrasting slope aspect. Plant Soil 168–169:67–73. doi:10.1007/BF00029314

    Article  Google Scholar 

  • Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236. doi:10.1016/S0016-7061(97)00034-7

    Article  Google Scholar 

  • Dalal RC, Meyer RJ (1987) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. VII. Dynamics of nitrogen mineralization potentials and microbial biomass. Aust J Soil Res 25:461–472

    Article  Google Scholar 

  • Du GZ, Qin GL, Li ZZ, Liu ZH, Dong GS (2003) Relationship between species richness and productivity in an alpine meadow plant community. Acta Phytoecologica Sinica 27:125–132, in Chinese with English abstract

    Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Article  CAS  Google Scholar 

  • Floate MJS (1970) Decomposition of organic materials from hill soils and pastures. III. The effect of temperature on the mineralization of carbon, nitrogen and phosphorus from plant materials and sheep faeces. Soil Biol Biochem 2:187–196. doi:10.1016/0038-0717(70)90006-4

    Article  CAS  Google Scholar 

  • Frank AB, Liebig MA, Hanson JD (2002) Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biol Biochem 34:1235–1241. doi:10.1016/S0038-0717(02)00062-7

    Article  CAS  Google Scholar 

  • Frankenberger WT, Abdelmagid HM (1985) Kinetic parameters of nitrogen mineralization rate of leguminous crops incorporated into soil. Plant Soil 87:257–271. doi:10.1007/BF02181865

    Article  Google Scholar 

  • Garten CT Jr, Huston MA, Thoms CA (1994) Topographic variation of soil nitrogen dynamics at Walker Brance Watershed, Tennessee. Forest Sci 40:497–512

    Google Scholar 

  • Goncalves JLM, Carlyle JC (1994) Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biol Biochem 26:1557–1564. doi:10.1016/0038-0717(94)90098-1

    Article  CAS  Google Scholar 

  • Hart SC, Perry Dnge A (1999) Transferring soils from high-to low-elevation forests increases nitrogen cycling rates: climate change implications. Global Change Biol 5:23–32. doi:10.1046/j.1365-2486.1998.00196.x

    Article  Google Scholar 

  • Hutchinson GL (1995) Biosphere-atmosphere exchange of gaseous N oxides. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. CRC Press, Boca Raton, pp 219–236

    Google Scholar 

  • Ineson P, Taylory T, Harrison AF, Poskitt J, Benham DG, Tipping E, Woof C (1998) Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach. Global Change Biol 4:143–152. doi:10.1046/j.1365-2486.1998.00118.x

    Article  Google Scholar 

  • Ingwersen J, Butterbach-Bahl K, Gasche R, Richter O, Papen H (1999) Barometric process separation: new method for quantifying nitrification, denitrification and nitrous oxide sources in soils. Soil Sci Soc Am J 63:117–128

    Article  CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice-Hall, New Delhi

    Google Scholar 

  • Ji Z (1996) Periglacial wetland and its environment effect and ecological construction in China. J Glac Geocryol 18:274–280, in Chinese with English abstract

    Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agr 24:1085–1090. doi:10.1002/jsfa.2740240910

    Article  CAS  Google Scholar 

  • Kato T, Tang YH, Gu S, Hirota M, Du MY, Li YN, Zhao XQ (2006) Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biol 12:1285–1298. doi:10.1111/j.1365-2486.2006.01153.x

    Article  Google Scholar 

  • Keeney DR (1980) Prediction of soil nitrogen availability in forest ecosystems: a literature review. Forest Sci 26:159–171

    Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911. doi:10.1016/j.soilbio.2005.08.006

    Article  CAS  Google Scholar 

  • Kitanyanma K, Aiba SI, Lee NM, Ohsawa M (1998) Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecol Res 13:301–312. doi:10.1046/j.1440-1703.1998.00264.x

    Article  Google Scholar 

  • Knoepp JD, Swank WT (1998) Rates of nitrogen mineralization across an elevation and vegetation gradient in the southern Appalachians. Plant Soil 204:235–241. doi:10.1023/A:1004375412512

    Article  CAS  Google Scholar 

  • Liu Y, Chen JS, Liu Q, Wu Y (2007) Nitrification and denitrification in subalpine coniferous forests of different restoration stages in western Sichuan, China. Front For China 2:260–265. doi:10.1007/s11461-007-0042-z

    Article  Google Scholar 

  • Luo YJ, Qin GL, Du GZ (2006) Importance of assemblage-level thinning: a field experiment in an alpine meadow on the Tibet plateau. J Veg Sci 17:417–424

    Article  Google Scholar 

  • Marion GM, Black CH (1987) The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci Soc Am J 51:1501–1508

    Article  CAS  Google Scholar 

  • Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482

    Article  Google Scholar 

  • Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119

    PubMed  Google Scholar 

  • Menyailo OV, Huwe B (1999) Activity of denitrification and dynamics of N2O release in soils under six tree species and grassland in central Siberia. J Plant Nutr Soil Sci 162:533–538

    Article  CAS  Google Scholar 

  • Morecroft MD, Marrs RH, Woodward FI (1992) Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. J Ecol 80:49–56

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Launder JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253. doi:10.2307/1938918

    Article  Google Scholar 

  • Powers RF (1990) Nitrogen mineralization along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality. Forest Ecol Manag 30:19–29. doi:10.1016/0378-1127(90)90123-S

    Article  Google Scholar 

  • Robertson GP (1982) Nitrification in forested ecosystems. Phil T Roy Soc B 296:445–457

    Article  Google Scholar 

  • Ross DJ, Campbell IB, Bridger BA (1979) Biochemical activities of organic soils from sub-antarctic tussock grasslands on Campbell Islands. 1. Oxygen uptakes and nitrogen mineralization. New Zeal J Sci 22:161–171

    CAS  Google Scholar 

  • Shi XM, Li XG, Long RJ, Singh BP, Li ZT, Li FM (2010) Dynamics of soil organic carbon and nitrogen associated with physically separated fractions in a grassland-cultivation sequence in the Qinghai-Tibetan plateau. Biol Fertil Soils 46:103–111. doi:10.1007/s00374-009-0414-7

    Article  CAS  Google Scholar 

  • Smith JL, Halvorson JJ, Jr HB (2002) Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biol Biochem 34:1749–1757. doi:10.1016/S0038-0717(02)00162-1

    Article  CAS  Google Scholar 

  • Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Stanko-Golden KM, Fitzgerald JW, Swank WT (1992) Sulfur processing in soil from high and low elevation forests in the Southern Appalachians of the United States. Soil Biol Biochem 24:693–702. doi:10.1016/0038-0717(92)90048-3

    Article  CAS  Google Scholar 

  • Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microb 61:218–221

    CAS  Google Scholar 

  • Strader RH, Binkley D, Wells CG (1989) Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests. Biogeochemistry 7:131–145. doi:10.1007/BF00004125

    Article  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tang MC, Li CQ, Zhang J (1986) The climate change of Qinghai-Xizang plateau and its neighborhood. Plateau Meteor 631:39–49. doi:10.1016/j.soilbio.2003.09.010

    Google Scholar 

  • Tian YQ, Ouyang H, Song MH, Niu HSH, Hu QW (2008) Distribution characteristics and influencing factors of soil organic carbon in alpine ecosystems on the Tibetan Plateau transect. China Front Agric China 2:404–409. doi:10.1007/s11703-008-0050-2

    Article  Google Scholar 

  • USEPA (1983a) Methods for chemical analysis of water and waste. Determination of nitrogen as ammonia. Method 350.1

  • USEPA (1983b) Methods for chemical analysis of water and waste. Determination of nitrate/nitrite by automated cadmium reduction. Method 353.2

  • Von Lutzow M, Kogel-KNabner I (2009) Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils 46:1–15. doi:10.1007/s00374-009-0413-8

    Article  Google Scholar 

  • Wang GX, Qian J, Cheng GD, Lai YM (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan plateau and its global implication. Sci Total Environ 291:207–217

    Article  CAS  Google Scholar 

  • Wang GX, Wang YB, Li YS, Cheng HY (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena 70:506–514. doi:10.1016/j.catena.2007.01.001

    Article  Google Scholar 

  • Zhang YQ, Tang YH, Jiang J, Yang YH (2007) Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Sci China Earth Sci 50:113–120. doi:10.1007/s11430-007-2032-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Xiaoming Shi, Zhongling Yang, and Duobing Wang at the laboratory and Xianhui Zhou, Miaojun Ma, Gaolin Wu , Shujun Wen, and Yanrong Tan for their help in the field. Professor Neil C. Turner is thanked for his help with English and Xuetong Zhang for the map making of the studied sites. The study was supported by the Key Project of the National Natural Science Foundation of China granted to Guozhen Du, No. 40930533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Chen, D., Sun, D. et al. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai–Tibetan Plateau, China. Biol Fertil Soils 48, 393–400 (2012). https://doi.org/10.1007/s00374-011-0634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-011-0634-5

Keywords

Navigation