Skip to main content

Advertisement

Log in

Electrode architecture of carbon-coated silicon nanowires through magnesiothermic reduction for lithium-ion batteries

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Carbon-coated silicon nanowires (C-Si NWs) were prepared as anodes for lithium-ion batteries (LIBs). The C-Si NWs were synthesized using a simple and effective fabrication strategy via magnesiothermic reduction. The synthesis sequence of carbon coating before the chemical etching of the reduced Si NWs/MgO composite was found to be critical for improved battery performance. In addition, carbon coating was found to help to stabilize the solid electrolyte interphase layer during battery cycling, which is important to realize the benefits of Si-based LIBs. This synthesis method provides an efficient route to synthesizing high-performance Si electrodes via magnesiothermic reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.B. Goodenough and A. Manthiram: A perspective on electrical energy storage. MRS Commun. 4, 135 (2014).

    Article  CAS  Google Scholar 

  2. B. Diouf and R. Pode: Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375 (2015).

    Article  Google Scholar 

  3. T.S.D. Kumari, R. Surya, A.M. Stephan, D. Jeyakumar, and T. Prem Kumar: High-capacity potato peel-shaped graphite for lithium-ion batteries. MRS Commun. 1, 41 (2011).

    Article  CAS  Google Scholar 

  4. U. Kasavajjula, C. Wang, and A.J. Appleby: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003 (2007).

    Article  CAS  Google Scholar 

  5. S. Kim and H.-Y.S. Huang: Mechanical stresses at the cathode-electrolyte interface in lithium-ion batteries. J. Mater. Res. 31, 3506 (2016).

    Article  CAS  Google Scholar 

  6. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat Nano 3, 31 (2008).

    Article  CAS  Google Scholar 

  7. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, and J. Wu: Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014).

    Article  Google Scholar 

  8. Y. Wang and G. Cao: Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 202251 (2008).

    Google Scholar 

  9. L. Mai, X. Xu, L. Xu, C. Han, and Y. Luo: Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 26, 2175 (2011).

    Article  CAS  Google Scholar 

  10. B. Liu, D. Deng, J.Y. Lee, and E.S. Aydil: Oriented single-crystalline TiO2 nanowires on titanium foil for lithium ion batteries. J. Mater. Res. 25, 1588 (2010).

    Article  CAS  Google Scholar 

  11. X. Huang, J. Yang, S. Mao, J. Chang, P.B. Hallac, C.R. Fell, B. Metz, J. Jiang, P.T. Hurley, and J. Chen: Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv. Mater. 26, 4326 (2014).

    Article  CAS  Google Scholar 

  12. M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, and C. Zhou: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174 (2013).

    Article  CAS  Google Scholar 

  13. B. Wang, X. Li, X. Zhang, B. Luo, M. Jin, M. Liang, S.A. Dayeh, S. T. Picraux, and L. Zhi: Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes. ACS Nano 7, 1437 (2013).

    Article  Google Scholar 

  14. K. Peng, J. Jie, W. Zhang, and S.-T. Lee: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 33105 (2008).

    Article  Google Scholar 

  15. C.K. Chan, R.N. Patel, M.J. O'Connell, B.A. Korgel, and Y. Cui: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).

    Article  CAS  Google Scholar 

  16. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi: Carbon-coated Si as a lithium-ion battery anode material. J. Electrochem. Soc. 149, A1598 (2002).

    Article  CAS  Google Scholar 

  17. S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, and H.-K. Liu: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chemie Int. Ed. 45, 6896 (2006).

    Article  CAS  Google Scholar 

  18. R. Huang, X. Fan, W. Shen, and J. Zhu: Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 95, 133119 (2009).

    Article  Google Scholar 

  19. H. Kim, X. Huang, Z. Wen, S. Cui, X. Guo, and J. Chen: Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. J. Mater. Chem. A 3, 1947 (2015).

  20. Z.W. Pan, Z.R. Dai, L. Xu, S.T. Lee, and Z.L. Wang: Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders. J. Phys. Chem. B 105, 2507 (2001).

    Article  CAS  Google Scholar 

  21. P.G. Kuzmin, G.A. Shafeev, V.V. Bukin, S.V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, and G. Viau: Silicon nanoparticles produced by femtosecond laser ablation in ethanol: size control, structural characterization, and optical properties. J. Phys. Chem. C 114, 15266 (2010).

    Article  CAS  Google Scholar 

  22. Z. Bao, M.R. Weatherspoon, S. Shian, Y. Cai, P.D. Graham, S.M. Allan, G. Ahmad, M.B. Dickerson, B.C. Church, Z. Kang, H.W. Abernathy, C.J. Summers, M. Liu, and K.H. Sandhage: Chemical reduction of threedimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132), 172 (2007).

    Article  CAS  Google Scholar 

  23. Y. Shen, P. Zhao, and Q. Shao: Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater. 188, 46 (2014).

    Article  CAS  Google Scholar 

  24. L. Batchelor, A. Loni, L.T. Canham, M. Hasan, and J.L. Coffer: Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4, 259 (2012).

    Article  CAS  Google Scholar 

  25. J. Zhu and D. Deng: Synthesis of curved Si flakes using Mg powder as both the template and reductant and their derivatives for lithium-ion batteries. RSC Adv. 5, 67315 (2015).

    Article  CAS  Google Scholar 

  26. P. Lamontagne, G. Soucy, J. Veilleux, F. Quesnel, P. Hovington, W. Zhu, and K. Zaghib: Synthesis of silicon nanowires from carbothermic reduction of silica fume in RF thermal plasma. Phys. status solidi 211, 1610 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Ying Li for supporting chemical treatment facilities and Daebaek, LLC. for silica nano-wires supply for this research. The authors gratefully acknowledge the use of the Texas A&M Materials Characterization Facility (MCF) for SEM. Partial funding for this research was provided by the Meinhard H. Kotzebue ‘14 Professorship endowment in Mechanical Engineering at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.106

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, Y.G., Humood, M., Kim, H. et al. Electrode architecture of carbon-coated silicon nanowires through magnesiothermic reduction for lithium-ion batteries. MRS Communications 7, 867–872 (2017). https://doi.org/10.1557/mrc.2017.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.106

Navigation