Skip to main content
Log in

Manufacture of Mesoporous Silicon from Living Plants and Agricultural Waste: An Environmentally Friendly and Scalable Process

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We demonstrate a process for realising mesoporous silicon from a range of land-based plants such as common grasses, bamboos, sugarcane and rice. Such plants act as “natural factories”, converting and concentrating vast quantities of soluble silicon in soil into nanostructured forms of silica in their roots, stems, branches or leaves. This porous biogenic silica is chemically extracted and then thermally reduced to porous silicon using magnesium vapor. Importantly, for larger batch size, an inexpensive thermal moderator such as salt, is added for control of the reaction exotherm and minimization of sintering. Mesoporous silicon of >350 m2/g with 8 nm wide pores has been obtained from a bamboo extract, for example. The same process is applicable to a wide range of “silicon accumulator plants”. The purity of this “naturally derived” porous silicon is likely to be raised to a level acceptable for a wide range of high volume applications outside of electronics and solar cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jugdaohsingh R (2007) J Nutr Health Aging 11(2):99–110

    CAS  Google Scholar 

  2. Canham LT (1997) Nanotechnology 18:185704

    Article  Google Scholar 

  3. Canham LT (2006) PCT Patent WO 2006/111761. PCT Patent WO 2010/058218

  4. Sailor MJ (2012) Porous silicon in practice. Wiley VCH

  5. Loni A, Barwick D, Batchelor L, Tunbridge J, Han Y, Li ZY, Canham LT (2011) Electrochem Solid-State Lett 14(5):K25–K27

    Article  CAS  Google Scholar 

  6. Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) Silicon 1:207–213

    Article  CAS  Google Scholar 

  7. Datnoff LE, Synder CH, Korndorfer GH (eds) (2001) Silicon in agriculture. Elsevier

  8. Epstein E (2009) Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  9. Banerjee HD, Sen S, Acharya HN (1982) Mater Sci Eng 52:173–179

    Article  CAS  Google Scholar 

  10. Sun L, Gong K (2001) Ind Eng Chem Res 40:5861–5877

    Article  CAS  Google Scholar 

  11. Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage H (2007) Nature 446. doi:10.1038/nature05570

  12. Zhu J, Wu J, Wang Y, Meng C (2010) J Mater Sci. doi:10.1007/s10853-010-4773-0

    Google Scholar 

  13. Guo M, Zou X, Ren H, Muhammad F, Huang C, Qiu S, Zhu G (2011) Micro Meso Mater 142:194–201

    Article  CAS  Google Scholar 

  14. Larbi KK (2010) M. Appl. Sci. Thesis, Univ. Toronto, Canada

  15. Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) Pure Appl Chem 54(11):2201–2218

    Article  Google Scholar 

  16. Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) BioResources 3(2):297–315

    CAS  Google Scholar 

  17. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Biotech Fuels 3:10

    Google Scholar 

  18. Canham LT (1995) Adv Mater 7:1033–1037. PCT Patent WO 97/06101, 1999

    Google Scholar 

  19. Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Nanoscale Res Lett 6:321

    Article  CAS  Google Scholar 

  20. Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nat Mater 8:331–336

    Article  CAS  Google Scholar 

  21. Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu XW, Ferrari M (2011) Mol Imaging 10(1):56–58

    CAS  Google Scholar 

  22. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2007) J Pharm Sci 97:632–653

    Article  Google Scholar 

  23. Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Br J Ophthalmol 92(5):705–711

    Article  CAS  Google Scholar 

  24. Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie R, Canham LT (2005) Phys Status Solidi (a) 202(8):1451–1455

    Article  CAS  Google Scholar 

  25. Whitehead MA, Fan D, Mukherjee P, Akkaraju GR, Canham LT, Coffer JL (2008) Tissue Eng Part A 14(1):195–206

    Article  CAS  Google Scholar 

  26. Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 3:354–361

    Article  Google Scholar 

  27. Hodson MJ, Evans DE (1995) J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  28. Won CW, Nersisyan HH, Won HI (2011) Sol Energy Mater Sol Cells 95(2):745–750

    Article  CAS  Google Scholar 

  29. Li Z, Peng L, He J, Yang Z, Lin Y (2006) J Zhejiang Univ Sci B 7(11):849–857

    Article  CAS  Google Scholar 

  30. Holzhuter G, Narayanan K, Gerber T (2003) Anal Bioanal Chem 376:512–517

    Article  CAS  Google Scholar 

  31. Matichenkov VV, Calvert DV (2002) J Am Soc Sugarcane Techn 22:21–30

    Google Scholar 

  32. Motomura H, Mita N, Suzuki M (2002) Ann Bot 90:149–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Canham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batchelor, L., Loni, A., Canham, L.T. et al. Manufacture of Mesoporous Silicon from Living Plants and Agricultural Waste: An Environmentally Friendly and Scalable Process. Silicon 4, 259–266 (2012). https://doi.org/10.1007/s12633-012-9129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9129-8

Keywords

Navigation