Skip to main content
Log in

Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Complex wrought magnesium-based alloys suffer from poor ductility, strong yield asymmetry, and lower than desired fatigue performance. These unfavourable properties are exacerbated by the heterogeneity of the microstructure and strong texture forming in Mg alloys during conventional thermo-mechanical processing. For the user, severe plastic deformation (SPD) increases flexibility in tailoring the microstructures and selecting the properties to be emphasized in wrought Mg alloys. The effect of SPD by hot multiaxial forging and equal channel angular pressing on the formation of fine grain microstructure and on resultant mechanical properties is discussed. It is demonstrated that SPD is capable of substantial enhancement in ductility and tensile strength which gives rise to concurrent improvement of both low- and high-cycle fatigue properties. The main message of this overview is that the full potential for improving fatigue performance of Mg alloys can be taken advantage of by way of comprehensive understanding the role of the individual effects associated with the SPD-induced microstructures and textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H. Mughrabi: On the grain-size dependence of metal fatigue: Outlook on the fatigue of ultrafine-grained metals. In Investigations and Applications of Severe Plastic Deformation, T. Lowe and R. Valiev, eds. (Springer, Netherlands, Amsterdam, 2000); p. 241.

    Chapter  Google Scholar 

  2. L. Kunz, P. Lukas, and A. Svoboda: Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng., A 424 (1–2), 97 (2006).

    Article  CAS  Google Scholar 

  3. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82 (9), 1781 (2002).

    Article  Google Scholar 

  4. A. Vinogradov and S. Hashimoto: Multiscale phenomena in fatigue of ultra-fine grain materials—An overview. Mater. Trans., JIM 42 (1), 74 (2001).

    Article  CAS  Google Scholar 

  5. J. May, M. Dinkel, D. Amberger, H.W. Höppel, and M. Göken: Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum–magnesium alloys. Metall. Mater. Trans. A 38 (9), 1941 (2007).

    Article  CAS  Google Scholar 

  6. H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, and H. Mughrabi: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28 (9), 1001 (2006).

    Article  CAS  Google Scholar 

  7. V. Patlan, K. Higashi, K. Kitagawa, A. Vinogradov, and M. Kawazoe: Cyclic response of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 319, 587 (2001).

    Article  Google Scholar 

  8. C.S. Chung, J.K. Kim, H.K. Kim, and W.J. Kim: Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng., A 337 (1–2), 39 (2002).

    Article  Google Scholar 

  9. A. Vinogradov, A. Washikita, K. Kitagawa, and V.I. Kopylov: Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing. Mater. Sci. Eng., A 349 (1–2), 318 (2003).

    Article  CAS  Google Scholar 

  10. M. Murashkin, I. Sabirov, D. Prosvirnin, I.A. Ovid’ko, V. Terentiev, R.Z. Valiev, and S.V. Dobatkin: Fatigue behavior of an ultrafine-grained Al–Mg–Si alloy processed by high-pressure torsion. Metals 5 (2), 578 (2015).

    Article  Google Scholar 

  11. L.J. Chen, C.Y. Ma, G.M. Stoica, P.K. Liaw, C. Xu, and T.G. Langdon: Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Mater. Sci. Eng., A 410–411, 472 (2005).

    Google Scholar 

  12. A. Vinogradov, T. Ishida, K. Kitagawa, and V.I. Kopylov: Effect of strain path on structure and mechanical behavior of ultrafine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53 (8), 2181 (2005).

    Article  CAS  Google Scholar 

  13. A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V.I. Kopylov: Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater. 50 (7), 1639 (2002).

    Article  CAS  Google Scholar 

  14. C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, and Z.Z. Du: Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng., A 459 (1–2), 303 (2007).

    Article  CAS  Google Scholar 

  15. A. Vinogradov, V.V. Stolyarov, S. Hashimoto, and R.Z. Valiev: Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng., A 318 (1–2), 163 (2001).

    Article  Google Scholar 

  16. I. Semenova, R. Valiev, E. Yakushina, G. Salimgareeva, and T. Lowe: Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 43 (23), 7354 (2008).

    Article  CAS  Google Scholar 

  17. S. Zherebtsov, G. Salishchev, R. Galeyev, and K. Maekawa: Mechanical properties of Ti–6Al–4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. Mater. Trans. 46 (9), 2020 (2005).

    Article  CAS  Google Scholar 

  18. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and S.G. Sutter: On the fatigue behavior of ultrafine-grained interstitial-free steel. Int. J. Mater. Res. 97 (10), 1328 (2006).

    Article  CAS  Google Scholar 

  19. H. Ueno, K. Kakihata, Y. Kaneko, S. Hashimoto, and A. Vinogradov: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59 (18), 7060 (2011).

    Article  CAS  Google Scholar 

  20. K. Rhee, R. Lapovok, and P.F. Thomson: The influence of severe plastic deformation on the mechanical properties of AA6111. J. Met. 57 (5), 62 (2005).

    CAS  Google Scholar 

  21. R. Lapovok, C. Loader, F.H. Dalla Torre, and S.L. Semiatin: Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure. Mater. Sci. Eng., A 425 (1–2), 36 (2006).

    Article  CAS  Google Scholar 

  22. H.J. Roven, H. Nesboe, J.C. Werenskiold, and T. Seibert: Mechanical properties of aluminium alloys processed by SPD: Comparison of different alloy systems and possible product areas. Mater. Sci. Eng., A 410, 426 (2005).

    Article  CAS  Google Scholar 

  23. V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa: Overview of fatigue properties of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 300 (1–2), 171 (2001).

    Article  Google Scholar 

  24. L. Saitova, I. Semenova, H.W. Hoppel, R. Valiev, and M. Goken: Enhanced superplastic deformation behavior of ultrafine-grained Ti–6Al–4V alloy. Materialwiss. Werkstofftech. 39 (4–5), 367 (2008).

    Article  CAS  Google Scholar 

  25. T. Niendorf, D. Canadinc, H.J. Maier and I. Karaman: The role of grain size and distribution on the cyclic stability of titanium Scripta Materialia. 60 (5), 344 (2009).

    Article  CAS  Google Scholar 

  26. A.P. Mouritz: Introduction to Aerospace Materials (Woodhead Publishing, Cambridge, U.K., 2012).

    Book  Google Scholar 

  27. W.J. Joost and P.E. Krajewski: Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 128, 107 (2017).

    Article  CAS  Google Scholar 

  28. K.U. Kainer: Magnesium Alloys and Their Applications (Wiley-VCH, Weinheim, Germany, 2000).

    Book  Google Scholar 

  29. B.L. Mordike and T. Ebert: Magnesium—Properties-applications-potential. Mater. Sci. Eng., A 302 (1), 37 (2001).

    Article  Google Scholar 

  30. J. Hirsch and T. Al-Samman: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61 (3), 818 (2013).

    Article  CAS  Google Scholar 

  31. M. Yoo: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12 (3), 409 (1981).

    Article  CAS  Google Scholar 

  32. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23 (1), 44 (2007).

    Article  CAS  Google Scholar 

  33. G.I. Taylor: Plastic strain in metals. J. Inst. Met. LXII, 307 (1938).

    Google Scholar 

  34. J.W. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39 (1–2), 1 (1995).

    Article  Google Scholar 

  35. C. Potzies and K.U. Kainer: Fatigue of magnesium alloys. Adv. Eng. Mater. 6 (5), 281 (2004).

    Article  CAS  Google Scholar 

  36. Y. Xiong and Y. Jiang: Fatigue of ZK60 magnesium alloy under uniaxial loading. Int. J. Fatigue 64, 74 (2014).

    Article  CAS  Google Scholar 

  37. J. Dallmeier, O. Huber, H. Saage, and K. Eigenfeld: Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and asymmetric loadings. Mater. Des. 70, 10 (2015).

    Article  CAS  Google Scholar 

  38. M. Matsuzuki and S. Horibe: Analysis of fatigue damage process in magnesium alloy AZ31. Mater. Sci. Eng., A 504 (1–2), 169 (2009).

    Article  CAS  Google Scholar 

  39. S. Hasegawa, Y. Tsuchida, H. Yano, and M. Matsui: Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int. J. Fatigue 29 (9–11), 1839 (2007).

    Article  CAS  Google Scholar 

  40. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int. J. Fatigue 31 (4), 726 (2009).

    Article  CAS  Google Scholar 

  41. C. Chen, T. Liu, C. Lv, L. Lu, and D. Luo: Study on cyclic deformation behavior of extruded Mg–3Al–1Zn alloy. Mater. Sci. Eng., A 539 (0), 223 (2012).

    CAS  Google Scholar 

  42. X.Z. Lin and D.L. Chen: Strain controlled cyclic deformation behavior of an extruded magnesium alloy. Mater. Sci. Eng., A 496 (1–2), 106 (2008).

    Article  CAS  Google Scholar 

  43. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Producing bulk ultrafine-grained materials by severe plastic deformation. J. Met. 58 (4), 33 (2006).

    Google Scholar 

  44. Y. Estrin and A. Vinogradov: Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int. J. Fatigue 32 (6), 898 (2010).

    Article  CAS  Google Scholar 

  45. J. Koike: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36 (7), 1689 (2005).

    Article  Google Scholar 

  46. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52 (17), 5093 (2004).

    Article  CAS  Google Scholar 

  47. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51 (7), 2055 (2003).

    Article  CAS  Google Scholar 

  48. R.B. Figueiredo, F.S.J. Poggiali, C.L.P. Silva, P.R. Cetlin, and T.G. Langdon: The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J. Mater. Sci. 51 (6), 3013 (2016).

    Article  CAS  Google Scholar 

  49. Z. Zúberová, L. Kunz, T.T. Lamark, Y. Estrin, and M. Janeček: Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall. Mater. Trans. A 38 (9), 1934 (2007).

    Article  CAS  Google Scholar 

  50. R. Lapovok, P.F. Thomson, R. Cottam, and Y. Estrin: The effect of warm equal channel angular extrusion on ductility and twinning in magnesium alloy ZK60. Mater. Trans. 45 (7), 2192 (2004).

    Article  CAS  Google Scholar 

  51. L. Wu, G.M. Stoica, H.H. Liao, S.R. Agnew, E.A. Payzant, G.Y. Wang, D.E. Fielden, L. Chen, and P.K. Liaw: Fatigue-property enhancement of magnesium alloy, AZ31B, through equal-channel-angular pressing. In Annual Meeting of the Minerals, Metals and Materials Society (Minerals Metals Materials Society, Warrendale, USA, 2007); p. 2283.

    Google Scholar 

  52. R.B. Figueiredo and T.G. Langdon: Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv. Eng. Mater. 10 (1–2), 37 (2008).

    Article  CAS  Google Scholar 

  53. R.B. Figueiredo, P.R. Cetlin, and T.G. Langdon: The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 55 (14), 4769 (2007).

    Article  CAS  Google Scholar 

  54. A. Yamashita, Z. Horita, and T.G. Langdon: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng., A 300 (1–2), 142 (2001).

    Article  Google Scholar 

  55. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45 (1), 89 (2001).

    Article  CAS  Google Scholar 

  56. D. Orlov, G. Raab, T.T. Lamark, M. Popov, and Y. Estrin: Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59 (1), 375 (2011).

    Article  CAS  Google Scholar 

  57. D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin: Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59 (15), 6176 (2011).

    Article  CAS  Google Scholar 

  58. A. Vinogradov, D. Orlov, and Y. Estrin: Improvement of fatigue strength of a Mg–Zn–Zr alloy by integrated extrusion and equal-channel angular pressing. Scr. Mater. 67 (2), 209 (2012).

    Article  CAS  Google Scholar 

  59. R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, and N. Tsuji: Simultaneously enhanced strength and ductility of Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained structures. Scr. Mater. 131, 1 (2017).

    Article  CAS  Google Scholar 

  60. S.A. Torbati-Sarraf, S. Sabbaghianrad, R.B. Figueiredo, and T.G. Langdon: Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd. 712, 185 (2017).

    Article  CAS  Google Scholar 

  61. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations. Acta Mater. 53 (11), 3135 (2005).

    Article  CAS  Google Scholar 

  62. S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown: Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr. Mater. 50 (3), 377 (2004).

    Article  CAS  Google Scholar 

  63. S. Asqardoust, A. Zarei Hanzaki, H.R. Abedi, T. Krajnak, and P. Minárik: Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng., A 698, 218 (2017).

    Article  CAS  Google Scholar 

  64. S.M. Fatemi, A. Zarei-Hanzaki, and J.M. Cabrera: Microstructure, texture, and tensile properties of ultrafine/nano-grained magnesium alloy processed by accumulative back extrusion. Metall. Mater. Trans. A 48 (5), 2563 (2017).

    Article  CAS  Google Scholar 

  65. Y. Estrin and A. Vinogradov: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61 (3), 782 (2013).

    Article  CAS  Google Scholar 

  66. N.Y. Yurchenko, N.D. Stepanov, G.A. Salishchev, L.L. Rokhlin, and S.V. Dobatkin: Effect of multiaxial forging on microstructure and mechanical properties of Mg–0.8Ca alloy. IOP Conf. Ser.: Mater. Sci. Eng. 63 (1), 012075 (2014).

    Article  CAS  Google Scholar 

  67. D.R. Nugmanov, O.S. Sitdikov, and M.V. Markushev: Microstructure evolution in MA14 magnesium alloy under multi-step isothermal forging. J. Mater. Sci. Lett. 1, 213 (2011).

    Article  Google Scholar 

  68. H. Miura, X. Yang, and T. Sakai: Ultrafine grain evolution in Mg alloys, AZ31, AZ61, AZ91 by multi directional forging. Rev. Adv. Mater. Sci. 33 (1), 92 (2013).

    CAS  Google Scholar 

  69. H. Miura, X. Yang, and T. Sakai: Evolution of ultra-fine grains in AZ31 and AZ61 Mg alloys during multi directional forging and their properties. Mater. Trans. 49 (5), 1015 (2008).

    Article  CAS  Google Scholar 

  70. K.U. Kainer: Magnesium Alloys and Technology (DGM: Wiley-VCH, Weinheim, Germany, 2003).

    Book  Google Scholar 

  71. M. Shahzad and L. Wagner: Thermo-mechanical methods for improving fatigue performance of wrought magnesium alloys. Fatigue Fract. Eng. Mater. Struct. 33 (4), 221 (2010).

    Article  CAS  Google Scholar 

  72. J. Müller, M. Janeček, S. Yi, J. Čížek, and L. Wagner: Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys. Int. J. Mater. Res. 100 (6), 838 (2009).

    Article  CAS  Google Scholar 

  73. M. Shahzad, D. Eliezer, W.M. Gan, S.B. Yi, and L. Wagner: Influence of extrusion temperature on microstructure, texture and fatigue performance of AZ80 and ZK60 magnesium alloys. Mater. Sci. Forum 561–565, 187 (2007).

    Article  Google Scholar 

  74. W. Liu, J. Dong, P. Zhang, Z. Yao, C. Zhai, and W. Ding: High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J. Mater. Sci. 44 (11), 2916 (2009).

    Article  CAS  Google Scholar 

  75. H. Miura, G. Yu, and X. Yang: Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng., A 528 (22–23), 6981 (2011).

    Article  CAS  Google Scholar 

  76. C.Y. Wang, X.J. Wang, H. Chang, K. Wu, and M.Y. Zheng: Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng., A 464 (1–2), 52 (2007).

    Article  CAS  Google Scholar 

  77. T. Homma, N. Kunito, and S. Kamado: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61 (6), 644 (2009).

    Article  CAS  Google Scholar 

  78. S. Kamado and Y. Kojima: Development of magnesium alloys with high performance. Mater. Sci. Forum 546–549, 55 (2007).

    Article  Google Scholar 

  79. T. Al-Samman and G. Gottstein: Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng., A 490 (1–2), 411 (2008).

    Article  CAS  Google Scholar 

  80. I. Shimizu: A stochastic model of grain size distribution during dynamic recrystallization. Philos. Mag. A 79 (5), 1217 (1999).

    Article  CAS  Google Scholar 

  81. R.B. Bergmann and A. Bill: On the origin of logarithmic-normal distributions: An analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 310 (13), 3135 (2008).

    Article  CAS  Google Scholar 

  82. R.B. Figueiredo and T.G. Langdon: Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Mater. Sci. Eng., A 501 (1–2), 105 (2009).

    Article  CAS  Google Scholar 

  83. H. Mughrabi and H.W. Höppel: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32 (9), 1413 (2010).

    Article  CAS  Google Scholar 

  84. H.W. Höppel, M. Korn, R. Lapovok, and H. Mughrabi: Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties. J. Phys.: Conf. Ser. 240 (1), 012147 (2010).

    Google Scholar 

  85. R. Lapovok, Y. Estrin, M.V. Popov, and T.G. Langdon: Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv. Eng. Mater. 10 (5), 429 (2008).

    Article  CAS  Google Scholar 

  86. R. Lapovok, R. Cottam, P. Thomson, and Y. Estrin: Extraordinary superplastic ductility of magnesium alloy ZK60. J. Mater. Res. 20 (6), 1375 (2005).

    Article  CAS  Google Scholar 

  87. A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet. Mater. Sci. Eng., A 486 (1–2), 545 (2008).

    Article  CAS  Google Scholar 

  88. S.M. Razavi, D.C. Foley, I. Karaman, K.T. Hartwig, O. Duygulu, L.J. Kecskes, S.N. Mathaudhu, and V.H. Hammond: Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr. Mater. 67 (5), 439 (2012).

    Article  CAS  Google Scholar 

  89. S.X. Ding, C.P. Chang, and P.W. Kao: Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metall. Mater. Trans. A 40A (2), 415 (2009).

    Article  CAS  Google Scholar 

  90. S.R. Agnew, G.M. Stoica, L.J. Chen, T.M. Lillo, J. Macheret, and P.K. Liaw: Equal channel angular processing of magnesium alloys. In TMS Annual Meeting (The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2002); p. 643.

    Google Scholar 

  91. C. Ma, M. Liu, G. Wu, W. Ding, and Y. Zhu: Tensile properties of extruded ZK60–RE alloys. Mater. Sci. Eng., A 349 (1–2), 207 (2003).

    Article  Google Scholar 

  92. M.O. Pekguleryuz: 1-Current developments in wrought magnesium alloys. In Advances in Wrought Magnesium Alloys, C. Bettles and M. Barnett, eds. (Woodhead Publishing, Cambridge, U.K., 2012); p. 3.

    Chapter  Google Scholar 

  93. D.R. Nugmanov, O.S. Sitdikov, and M.V. Markushev: Texture and anisotropy of yield strength in multistep isothermally forged Mg–5.8Zn–0.65Zr alloy. IOP Conf. Ser.: Mater. Sci. Eng. 82 (1), 012099 (2015).

    Article  CAS  Google Scholar 

  94. D.R. Nugmanov, O.S. Sitdikov, and M.V. Markushev: About fine-grain structure forming in bulk magnesium alloy MA14 under multidirectional isothermal forging. Bas. Probl. Mater. Sci. 9 (2), 230 (2012).

    Google Scholar 

  95. D.R. Nugmanov, O.S. Sitdikov, and M.V. Markushev: Structure of magnesium alloy MA14 after multistep isothermal forging and subsequent isothermal rolling. Phys. Met. Metallogr. 116 (10), 993 (2015).

    Article  Google Scholar 

  96. Y. He, Q. Pan, Y. Qin, X. Liu, and W. Li: Microstructure and mechanical properties of ultrafine grain ZK60 alloy processed by equal channel angular pressing. J. Mater. Sci. 45 (6), 1655 (2010).

    Article  CAS  Google Scholar 

  97. X.Y. Yang, Z.Y. Sun, J. Xing, H. Miura, and T. Sakai: Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Trans. Nonferrous Met. Soc. China 18, S200 (2008).

    Article  CAS  Google Scholar 

  98. S. Suresh: Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1991).

    Google Scholar 

  99. H.W. Höppel, H. Mughrabi, and A. Vinogradov: Fatigue Properties of Bulk Nanostructured Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009).

    Book  Google Scholar 

  100. O.B. Kulyasova, R.K. Islamgaliev, Y. Zhao, and R.Z. Valiev: Enhancement of the mechanical properties of an Mg–Zn–Ca alloy using high-pressure torsion. Adv. Eng. Mater. 17 (12), 1738 (2015).

    Article  CAS  Google Scholar 

  101. L. Kunz and S. Fintová: Fatigue behaviour of AZ91 magnesium alloy in as-cast and severe plastic deformed conditions. Adv. Mater. Res. 891–892, 397 (2014).

    Article  CAS  Google Scholar 

  102. S.S. Manson and G.R. Halford: Fatigue and Durability of Structural Materials (ASM International Novelty, OH, USA, 2006).

    Google Scholar 

  103. T.V. Duggan and J. Byrne: Fatigue as a Design Criterion (Macmillan Press Ltd., London, 1977).

    Book  Google Scholar 

  104. A. Esin: A method for correlating different types of fatigue curve. Int. J. Fatigue 2 (4), 153 (1980).

    Article  Google Scholar 

  105. P. Lukas and L. Kunz: Effect of grain-size on the high cycle fatigue behavior of polycrystalline copper. Mater. Sci. Eng. 85 (1–2), 67 (1987).

    Article  CAS  Google Scholar 

  106. A. Vinogradov: Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. J. Mater. Sci. 42 (5), 1797 (2007).

    Article  CAS  Google Scholar 

  107. R. Klemm: Zyklische Plastizität von Mikro- und Submikrokristallinem Nickel (Technische Universität Dresden, Dresden, Germany, 2004).

    Google Scholar 

  108. E. Vasilev, M. Linderov, D. Nugmanov, O. Sitdikov, M. Markushev, and A. Vinogradov: Fatigue performance of Mg–Zn–Zr alloy processed by hot severe plastic deformation. Metals 5 (4), 2316 (2015).

    Article  Google Scholar 

  109. F. Nový, M. Janeček, V. Škorík, J. Müller, and L. Wagner: Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys. Int. J. Mater. Res. 100 (3), 288 (2009).

    Article  CAS  Google Scholar 

  110. Y. Fouad, M. Mhaede, and L. Wagner: Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy. Fatigue Fract. Eng. Mater. Struct. 34 (6), 403 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This manuscript could not have been completed without cooperation from my colleagues—professors Y. Estrin (Monash University, Australia), D. Orlov (Lund University, Sweden), and H. Miyamoto (Doshisha University, Japan). Special thanks go to Prof. M. Markushev and his team (Ufa Institute for Metals Superplasticity Problems, Russia) who performed SPD-processing of the materials for this study as well as to my colleagues from Togliatti State University (Russia)—Prof. D.L. Merson, M. Linderov, and E. Vasilev who carried out a large part of experimental work included in this overview. Financial support from the Russian Science Foundation through the grant-in-aid No. 15-19-30025 is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Vinogradov.

Additional information

Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 80th birthday. It is my pleasure and honor to dedicate this paper to Professor Haël Mughrabi, who has been a mentor and a colleague to me over the years, in appreciation of his outstanding contributions and accomplishments in the area of fatigue of advanced materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradov, A. Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60. Journal of Materials Research 32, 4362–4374 (2017). https://doi.org/10.1557/jmr.2017.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.268

Navigation