Skip to main content
Log in

Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article presents room-temperature deformation mechanisms in polycrystalline Mg alloys. Dislocation slip of basal 〈a〉 and prismatic 〈a〉 types are shown to occur nearly at the same ease when the basal planes are tilted in such a way that the Schmid-factor ratio (equivalent to the critically resolved shear stress (CRSS) ratio) of prismatic 〈a〉 to basal 〈a〉 slip is larger than a value ranging from 1.5 to 2.0, depending on the initial texture distribution and grain size. Grain-boundary sliding (GBS) also occurs at room temperature up to 8 pct of total strain, enhanced by plastic anisotropy as well as by the increasing number of grain-boundary dislocations. Twinning plays an important role in both flow and fracture behaviors. Twins are induced mostly by stress concentrations caused by the anisotropic nature of dislocation slip. Twins can be classified into two types based on their shape: a wide lenticular type and a narrow banded type. The wide twins are \(\{ 10\bar 12\} \) twins appearing in the early stage of deformation and accompany little change of surface height. The narrow twins are \(\{ 10\bar 11\} \) or \(\{ 30\bar 32\} \) appearing in the late stage of deformation and accompany a substantial change in surface height. The formation of the narrow twins seems to give rise to highly localized shear deformation within the twin, leading to strain incompatibility and to final failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 1958, vol. 50, p. 856.

    Google Scholar 

  2. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 4, p. 134.

    CAS  Google Scholar 

  3. W.F. Sheerly and R.R. Nash: Trans. TMS-AIME, 1960, vol. 218, p. 416.

    Google Scholar 

  4. T. Obara, H. Yoshinaga, and S. Morozumi: Acta Metall., 1973, vol. 21, p. 845.

    Article  CAS  Google Scholar 

  5. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 5, p. 14.

    Google Scholar 

  6. J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, p. 1313.

    CAS  Google Scholar 

  7. ASM Specialty Handbook, Magnesium and Magnesium Alloys, M.M. Avedesian and H. Baker, eds., ASM INTERNATIONAL, Materials Park, OH, 1999, p. 17.

    Google Scholar 

  8. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Scripta Mater., 2001, vol. 45, p. 89.

    Article  CAS  Google Scholar 

  9. T. Mukai: National Institute for Materials Science, Tsukuba, Japan, private communication, 2003.

  10. S.L. Couling and C.S. Roberts: Acta Cryst., 1956, vol. 9, p. 972.

    Article  CAS  Google Scholar 

  11. R.E. Reed-Hill and W.D. Robertson: Acta Metall., 1957, vol. 5, p. 728.

    Article  CAS  Google Scholar 

  12. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 4, p. 1.

    CAS  Google Scholar 

  13. B.C. Wonsiewicz and W.A. Backofen: Trans. TMS-AIME, 1967, vol. 239, p. 1422.

    CAS  Google Scholar 

  14. M.A. Meyers, O. Vöringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, p. 4025.

    Article  CAS  Google Scholar 

  15. T. Takasugi, O. Izumi, and N. Fat-Halla: J. Mater. Sci., 1978, vol. 13, p. 2013.

    Article  CAS  Google Scholar 

  16. S. Miura, K. Hamashima, and K.T. Aust: Acta Metall., 1980, vol. 28, p. 1591.

    Article  CAS  Google Scholar 

  17. C. Rey and A. Zaoui: Acta Metall., 1982, vol. 30, p. 523.

    Article  CAS  Google Scholar 

  18. P. Sittner and V. Paidar: Acta Metall., 1989, vol. 37, p. 1717.

    Article  CAS  Google Scholar 

  19. K. Maruyama, M. Akabori, and S. Karashima: Trans. JIM, 1981, vol. 22, p. 723.

    CAS  Google Scholar 

  20. V. Jayaram: Acta Metall., 1987, vol. 35, p. 1307.

    Article  CAS  Google Scholar 

  21. C.K. Chyung and C.T. Wei: Phil. Mag., 1967, vol. 15, p. 161.

    CAS  Google Scholar 

  22. T. Kobayashi, J. Koike, Y. Yoshida, S. Kamado, M. Suzuki, K. Maruyama, and Y. Kojima: J. Jpn. Inst. Met., 2003, vol. 67, p. 149.

    CAS  Google Scholar 

  23. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi: Acta Mater., 2003, vol. 51, p. 2055.

    Article  CAS  Google Scholar 

  24. R. Ohyama, J. Koike, M. Suzuki, and K. Maruyama: J. Jpn. Inst. Met., 2003, vol. 68, p. 27.

    Article  Google Scholar 

  25. J. Koike and R. Ohyama: Acta Mater., 2005, vol. 53, p. 1963.

    CAS  Google Scholar 

  26. S.R. Agnew and O. Duygulu: Mater. Sci. Forum, 2003, vols. 419–422, p. 177.

    Google Scholar 

  27. R.A. Lebensohn and C.N. Tomé: Acta Metall., 1993, vol. 41, p. 2611.

    Article  CAS  Google Scholar 

  28. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48, p. 1003.

    Article  CAS  Google Scholar 

  29. P.A. Turner and C.N. Tomé: Acta Mater., 1994, vol. 42, p. 4113.

    Google Scholar 

  30. A. Styczyncki, Ch. Hartig, J. Bohlen, and D. Letzig: Scripta Mater., 2004, vol. 50, p. 943.

    Article  CAS  Google Scholar 

  31. G.I. Taylor: J. Inst. Met., 1938, vol. 62, p. 307.

    Google Scholar 

  32. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, p. 4277.

    Article  CAS  Google Scholar 

  33. P. Anderson, C.H. Cáceres, and J. Koike: Mater. Sci. Forum, 2003, vols. 419–422, p. 123.

    Article  Google Scholar 

  34. M.R. Barnett, Z. Keshavarz, AG, Beer, and D. Atwell: Acta Mater., 2004, vol. 52, p. 5093.

    Article  CAS  Google Scholar 

  35. M.A. Meyers and E. Ashworth: Phil. Mag. A, 1982, vol. 46, p. 737.

    CAS  Google Scholar 

  36. H.H. Fu, D.J. Benson, and M.A. Meyers: Acta Mater., 2001, vol. 49, p. 2567.

    Article  CAS  Google Scholar 

  37. C.H. Cáceres, T. Sumitomo, and M. Veidt: Acta Mater., 2003, vol. 51, p. 6211.

    Article  CAS  Google Scholar 

  38. F.E. Hauser, C.D. Starr, L. Tietz, and J.E. Dorn: Trans. ASM, 1955, vol. 47, p. 102.

    Google Scholar 

  39. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 1956, vol. 48, p. 986.

    Google Scholar 

  40. R.C. Gifkins and T.G. Langdon: J. Inst. Met., 1964–1965, vol. 93, p. 347.

    Google Scholar 

  41. S. Hwang, C. Nishimura, and P.G. McCormick: Scripta Mater., 2001, vol. 44, p. 1507.

    Article  CAS  Google Scholar 

  42. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Mater. Trans., 2003, vol. 44, p. 445.

    Article  CAS  Google Scholar 

  43. J.A. Chapman and D.V. Wilson: J. Inst. Met., 1962–63, vol. 91, p. 39.

    Google Scholar 

  44. P. Mussot, C. Rey, and A. Zaoui: Res. Mechanica, 1985, vol. 14, p. 69.

    Google Scholar 

  45. T. Watanabe, M. Yamada, S. Shima, and S. Karashima: Phil. Mag. A, 1979, vol. 40, p. 667.

    CAS  Google Scholar 

  46. R.Z. Valiev and O.A. Kaibyshev: Acta Mmetall., 1983, vol. 31, p. 2121.

    Article  CAS  Google Scholar 

  47. T. Takahashi and R. Horiuchi: J. Jpn. Inst. Met., 1984, vol. 48, p. 461.

    CAS  Google Scholar 

  48. S. Ando, T. Gotoh, and T. Tonda: Metall. Mater. Trans. A, 2002, vol. 33A, p. 823.

    CAS  Google Scholar 

  49. S. Ando and T. Tonda: Mater. Trans. JIM, 2000, vol. 41, p. 1188.

    CAS  Google Scholar 

  50. S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, p. 851.

    CAS  Google Scholar 

  51. P. Klimanek and A. Pötzsch: Mater. Sci. Eng. A, 2002,vol. A324, p. 145.

    CAS  Google Scholar 

  52. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, p. 409.

    Google Scholar 

  53. P.G. Partridge: Metall. Rev., 1967, p. 169.

  54. J. Koike, Y. Yoshida, T. Kobayashi, and S. Kamado: unpublished research, 2004.

  55. H. Asada and H. Yashinaga: J. Jpn. Inst. Met., 1958, vol. 23, p. 67.

    Google Scholar 

  56. M.R. Barnett, M.D. Nave, and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. A386, p. 205.

    CAS  Google Scholar 

  57. M.D. Nave and M.R. Barnett: Scripta Mater., 2004, vol. 51, p. 881.

    Article  CAS  Google Scholar 

  58. P. Yang, Y. Yu, L. Chen, and W. Mao: Scripta Mater., 2004, vol. 50, p. 1163.

    Article  CAS  Google Scholar 

  59. R.E. Reed-Hill and W.D. Robertson: Acta Metall., 1957, vol. 5, p. 717.

    Article  CAS  Google Scholar 

  60. S. Miura: Hokkaido University, Hokkaido, Japan, unpublished research, 2004.

  61. R.E. Reed-Hill: Trans. AIME, 1960, vol. 218, p. 554.

    Google Scholar 

  62. H. Yoshinaga, T. Obara, and S. Morozumi: Mater. Sci. Eng., 1973, vol. 12, p. 255.

    Article  CAS  Google Scholar 

  63. E. Roberts and P.G. Partridge: Acta Metall., 1966, vol. 14, p. 513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Phase Transformations and Deformation in Magnesium Alloys,” which occurred during the Spring TMS meeting, March 14–17, 2004, in Charlotte, NC, under the auspices of ASM-MSCTS Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koike, J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall Mater Trans A 36, 1689–1696 (2005). https://doi.org/10.1007/s11661-005-0032-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0032-4

Keywords

Navigation