Skip to main content

Advertisement

Log in

High cycle fatigue behavior of as-extruded ZK60 magnesium alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tensile and high cycle fatigue properties of hot extruded ZK60 magnesium alloy have been investigated, in comparison to that of hot-extruded plus T5 heat-treated ZK60 magnesium alloy which was named as ZK60-T5. High cycle fatigue tests were carried out at a stress rate (R) of −1 and a frequency of 100 Hz using hour-glass-shaped round specimens with a gage diameter of 5.8 mm. The results show that tensile strength greatly improved and elongation is also slightly enhanced after T5 heat treatment, and the fatigue strength (at 107 cycles) of ZK60 magnesium alloy increases from 140 to 150 MPa after T5 heat treatment, i.e., the improvement of 7% in fatigue strength has been achieved. Results of microstructure observation suggest that improvement of mechanical properties of ZK60 magnesium alloy is due to precipitation strengthening phase and texture strengthening by T5 heat treatment. In addition, fatigue crack initiations of ZK60 and ZK60-T5 magnesium alloys were observed to occur from the specimen surface and crack propagation was characterized by striation-like features coupled with secondary cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang Y, Liu YB (2008) Mater Charact 59:567

    Article  CAS  Google Scholar 

  2. Luo A, Pekguleryuz MO (1994) J Mater Sci 29:5259. doi:https://doi.org/10.1007/BF01171534

    Article  CAS  Google Scholar 

  3. Mordike BL, Ebert T (2001) Mater Sci Eng A 302:37

    Article  Google Scholar 

  4. Luo AA (2002) JOM (J Met) 54(2):42

    Article  CAS  Google Scholar 

  5. Luo AA (2005) SAE Trans-J Mater Manuf 114(5):411

    Google Scholar 

  6. Feng L, Yue W, Lihia C, Zheng L, Jiyang Z (2005) J Mater Sci 40(6):1529. doi:https://doi.org/10.1007/s10853-005-0597-8

    Article  Google Scholar 

  7. Zhou HT, Zhang ZD, Liu CM, Wang QW (2007) Mater Sci Eng A 445–446:1

    Article  Google Scholar 

  8. Figueiredo RB, Langdon TG (2007) Mater Sci Eng A. doi:https://doi.org/10.1016/j.msea.2008.04.080

    Article  Google Scholar 

  9. Lapovok R, Thomson PF, Cottam R, Estrin Y (2005) Mater Sci Eng A 410–411:390

    Article  Google Scholar 

  10. Wang CY, Wu K, Zheng MY (2008) Mater Sci Eng A 487:495

    Article  Google Scholar 

  11. Gray JE, Luan B (2002) J Alloys Compd 336:88

    Article  CAS  Google Scholar 

  12. Unigovski Ya, Eliezer A, Abramov E, Snir Y, Gutman EM (2003) Mater Sci Eng A 360:132

    Article  Google Scholar 

  13. He SM, Peng LM, Zeng XQ, Ding WJ, Zhu YP (2006) Mater Sci Eng A 433:175

    Article  Google Scholar 

  14. Xie GM, Ma ZY, Geng L (2008) Mater Sci Eng A 486:49

    Article  Google Scholar 

  15. Xu DK, Liu L, Xu YB, Han EH (2007) J Alloys Compd 431:107

    Article  CAS  Google Scholar 

  16. Ishihara S, Nan ZY, Goshima T (2007) Mater Sci Eng A 468–470:214

    Article  Google Scholar 

  17. Nan ZY, Ishihara S, McEvily AJ, Shibata H, Komano K (2007) Scripta Mater 56:649

    Article  CAS  Google Scholar 

  18. Das SK, Chang CF (1992) Magnesium alloys and their applications[M]. FRG.DGM Internation Sgesellschaft, Manchester, p 487

  19. Polmear IJ (1989) Light alloys: metallurgy of light metals[M], 2nd edn. Edward Arnold, London, p 210

    Google Scholar 

  20. Chun JS, Byrne JG (1969) J Mater Sci 4:861. doi:https://doi.org/10.1007/BF00549777

    Article  CAS  Google Scholar 

  21. Sturkey L, Clark JB (1959) J Inst Metal 88:177

    Google Scholar 

  22. Clark JB (1965) Acta Metall 13:1281

    Article  CAS  Google Scholar 

  23. Kim WJ, Hong SI, Kim YS, Min SH, Jeong HT, Lee JD (2003) Acta Mater 51:3293

    Article  CAS  Google Scholar 

  24. Hilpert M, Styczynski A, Kiese J, Wagner L (1998) In: Mordike BL, Kainer KU (eds) Magnesium alloys and their applicacation. Wiley-VCH, Weinheim, Frankfurt, Germany, p 319

  25. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Scripta Mater 45:89

    Article  CAS  Google Scholar 

  26. Galiyev A, Kaibyshev R, Gottstein G (2001) Acta Mater 49:1199

    Article  CAS  Google Scholar 

  27. Zhang SQ (1989) Acta Metall Sin 25(5):346; in Chinese

    Google Scholar 

  28. Duly D, Simon JP, Brechet Y (1995) Acta Metall Mater 43(1):101

    CAS  Google Scholar 

  29. Higashi K, Hirai Y, Ohnishi T (1985) Jpn J Inst Light Met 35:520

    Article  CAS  Google Scholar 

  30. Ogarevic VV, Stephens RI (1990) Annu Rev Mater Sci 20:141

    Article  CAS  Google Scholar 

  31. Reed-Hill RE, Abbaschian R (1994) Physical metallurgy principles, 3rd edn. PWS Publishing, Boston, p 194

    Google Scholar 

Download references

Acknowledgements

This project is sponsored by National Ministry of Science and Technology (Grant No. 2007CB613703), Shanghai Pujiang Program (Grant No. 06PJ14062), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.C., Dong, J., Zhang, P. et al. High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J Mater Sci 44, 2916–2924 (2009). https://doi.org/10.1007/s10853-009-3385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3385-z

Keywords

Navigation