Skip to main content
Log in

Microstructure, Texture, and Tensile Properties of Ultrafine/Nano-Grained Magnesium Alloy Processed by Accumulative Back Extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An AZ31 wrought magnesium alloy was processed by employing multipass accumulative back extrusion process. The obtained microstructure, texture, and room temperature tensile properties were characterized and discussed. Ultrafine-grained microstructure including nano-grains were developed, where the obtained mean grain size was decreased from 8 to 0.5 μm by applying consecutive passes. The frequency of both low angle and high angle boundaries increased after processing. Strength of the experimental alloy was decreased after processing, which was attributed to the obtained texture involving the major component lying inclined to the deformation axis. Both the uniform and post-uniform elongations of the processed materials were increased after processing, where a total elongation of 68 pct was obtained after six-pass deformation. The contribution of different twinning and slip mechanisms was described by calculating corresponding Schmid factors. The operation of prismatic slip was considered as the major deformation contributor. The significant increase in post-uniform deformation of the processed material was discussed relying on the occurrence of grain boundary sliding associated with the operation of prismatic slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Mordike, T. Ebert: Mater. Sci. Eng. A, 2001, 302, 37-45.

    Article  Google Scholar 

  2. T. Al-Samman, G. Gottstein: Mater. Sci. Eng. A, 2008, 488, 406-14.

    Article  Google Scholar 

  3. H. Yan, R. Chen, E. Han: Mater. Sci. Eng. A, 2010, 527, 3317-22.

    Article  Google Scholar 

  4. S. Agnew, J. Horton, T. Lillo, D. Brown: Scripta Mater., 2004, 50, 377-81.

    Article  Google Scholar 

  5. J. Del Valle, F. Carreno, O. Ruano, Acta Mater., 2006, 54, 4247-59.

    Article  Google Scholar 

  6. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater., 2003, 51, 2055-65.

    Article  Google Scholar 

  7. S. Agnew, P. Mehrotra, T. Lillo, G. Stoica, P. Liaw: Mater. Sci. Eng. A, 2005, 408, 72-78.

    Article  Google Scholar 

  8. T. Al-Samman, X. Li, S.G. Chowdhury: Mater. Sci. Eng. A, 2010, 527, 3450-3463.

    Article  Google Scholar 

  9. S. Biswas, S. Singh Dhinwal, S. Suwas: Acta Mater., 2010, 58, 3247-61.

    Article  Google Scholar 

  10. S. Fatemi-Varzaneh, A. Zarei-Hanzaki: Mater. Sci. Eng. A, 2009, 504, 104-06.

    Article  Google Scholar 

  11. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, J. Cabrera, P. Calvillo: Mater. Chem. Phys., 2015, 149, 339-43.

    Article  Google Scholar 

  12. H. Wang, P. Wu, J. Wang: Comput. Mater. Sci., 2015, 96, 214-18.

    Article  Google Scholar 

  13. J. Wang, D. Zhang, Y. Li, Z. Xiao, J. Fouse, X. Yang: Mater. Des., 2015, 86, 526-35.

    Google Scholar 

  14. H. Fan, S. Aubry, A. Arsenlis, J.A. El-Awady: Scripta Mater., 2015, 97, 25-28.

    Article  Google Scholar 

  15. M. Quadir, M. Ferry, O. Al-Buhamad, P. Munroe: Acta Mater. 2009, 57, 29-40.

    Article  Google Scholar 

  16. J. Del Valle, P. Rey, D. Gesto, D. Verdera, J.A. Jiménez, O.A. Ruano: Mater. Sci. Eng. A, 2015, 628, 198-206.

    Article  Google Scholar 

  17. M. Gzyl, A. Rosochowski, S. Boczkal, L. Olejnik: Mater. Sci. Eng. A, 2015, 638, 20-29.

    Article  Google Scholar 

  18. S. Biswas, S. Suwas: Scr. Mater., 2012, 66, 89-92.

    Article  Google Scholar 

  19. R.B. Figueiredo, S. Sabbaghianrad, A. Giwa, J.R. Greer, T.G. Langdon: Acta Mater., 2017, 122, 322-31.

    Article  Google Scholar 

  20. W. Yuan, S. Panigrahi, J.Q. Su, R. Mishra: Scr. Mater., 2011,

  21. J. Xing, X. Yang, H. Miura, T. Sakai: Mater. Trans., 2008, 49, 69-75.

    Article  Google Scholar 

  22. Z. Zuberova, Y. Estrin, T. Lamark, M. Janecek, R. Hellmig, M. Krieger, J. Mater. Process. Technol., 2007, 184: 294-99.

    Article  Google Scholar 

  23. W. Kim, C. An, Y. Kim, S. Hong: Scr. Mater., 2002, 47, 39-44.

    Article  Google Scholar 

  24. H. Miura, G. Yu, and X. Yang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6981–92.

  25. Y. Wang and E. Ma: Acta Mater., 2004, vol. 52, pp. 1699–1709.

  26. Q. Yang, A. Ghosh, Acta Mater., 2006, 54, 5159-70.

    Article  Google Scholar 

  27. N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras: Mater. Sci. Eng. A, 2013, 584, 73-81.

    Article  Google Scholar 

  28. B. Bazaz, A. Zarei-Hanzaki, S. Fatemi-Varzaneh: Mater. Sci. Eng. A, 2013, 559, 595-600.

    Article  Google Scholar 

  29. S. Fatemi-Varzaneh, A. Zarei-Hanzaki: Mater. Sci. Eng. A, 2011, 528, 1334-39.

    Article  Google Scholar 

  30. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi, and A.A. Roostaei: J. Alloys Compd., 2010, vol. 507, pp. 207–14.

  31. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, J. Cabrera: J. Alloys Compd., 2011, 509, 3806-10.

    Article  Google Scholar 

  32. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, H. Paul: Mater. Charac., 2014, 87, 27-35.

    Article  Google Scholar 

  33. J.W. Cahn, Y. Mishin, and A. Suzuki: Acta Mater., 2006, vol. 54, pp. 4953–75.

  34. Y. Zhao, Y. Guo, Q. Wei, A. Dangelewicz, C. Xu, Y. Zhu, T. Langdon, Y. Zhou, E. Lavernia: Scripta Mater., 2008, 59, 627-30.

    Article  Google Scholar 

  35. W.F. Hosford and R.M. Caddell: Metal Forming: Mechanics and Metallurgy, Cambridge University Press, New York, 2011.

  36. H. Somekawa, T. Mukai: Philos. Mag. Lett., 2010, 90, 883-90.

    Article  Google Scholar 

  37. C. Cepeda-Jiménez, J. Molina-Aldareguia, M. Pérez-Prado: Acta Mater., 2015, 84, 443-56.

    Article  Google Scholar 

  38. M. Dahms, H.J. Bunge: J. Appl. Crystallogr., 1989, 22, 439-47.

    Article  Google Scholar 

  39. J. Koike: Metall. Mater. Trans. A, 2005, 36, 1689-96.

    Article  Google Scholar 

  40. R. Lapovok, P. Thomson, R. Cottam, Y. Estrin: J. Mater. Sci., 2005, 40, 1699-708.

    Article  Google Scholar 

  41. S. Yin, C. Wang, Y. Diao, S. Wu, S. Li: J. Mater. Sci. Tech., 2011, 27, 29-34.

    Article  Google Scholar 

  42. S. Agnew, Ö. Duygulu: Int. J. Plast., 2005, 21, 1161-93.

    Article  Google Scholar 

  43. I. Saxl and I. Haslinggerová: J. Phys. B, 1974, vol. 24, pp. 1351–61.

  44. S. Kleiner, P. Uggowitzer: Mater. Sci. Eng. A, 2004, 379, 258-63.

    Article  Google Scholar 

  45. H. Somekawa, T. Mukai: Metall. Mater. Trans. A, 2015, 46A, 894-902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Fatemi.

Additional information

Manuscript submitted November 19, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatemi, S.M., Zarei-Hanzaki, A. & Cabrera, J.M. Microstructure, Texture, and Tensile Properties of Ultrafine/Nano-Grained Magnesium Alloy Processed by Accumulative Back Extrusion. Metall Mater Trans A 48, 2563–2573 (2017). https://doi.org/10.1007/s11661-017-4029-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4029-6

Keywords

Navigation