Skip to main content
Log in

A comparative fatigue study of solder/electroless-nickel and solder/copper interfaces

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The fatigue resistance of the interface between electroless–nickel and the eutectic tin–lead solder alloy was examined in the as-reflowed and aged conditions and compared to fatigue behavior of the copper/solder interface under the same conditions. In the as-reflowed state, the fatigue resistance of the solder/electroless-nickel interface was slightly superior to that of the solder/copper interface. However, after long-term aging, the fatigue resistance of the solder/electroless-nickel interface became far worse in the high crack growth rate regime. Examinations of interfacial microstructures and crack growth mechanisms indicated that the differences in fatigue resistance between the two interfaces were not directly related to the thickness of the intermetallic phase at the interface, as commonly believed, but were due to differences in crack growth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Lau, Ball Grid Array (McGraw-Hill Press, New York, 1995).

    Google Scholar 

  2. D.W. Baudrand, in ASM Handbook, Volume 5, Surface Engineering, (ASM International, Materials Park, OH, 1994), p. 290.

    Google Scholar 

  3. S.V.S. Tyagi, V.K. Tandon, and S. Ray, Z. Metallkde. 76, 492 (1985).

    CAS  Google Scholar 

  4. Y.Z. Zhang, Y.Y. Wu, and M. Yao, J. Mater. Sci. Lett. 17, 37 (1998).

    Article  Google Scholar 

  5. B.G. Bagley and D. Turnbull, Acta Metall. 18, 857 (1970).

    Article  CAS  Google Scholar 

  6. K.L. Lin and P.J. Lai, J. Electrochem. Soc. 136, 3803 (1989).

    Article  CAS  Google Scholar 

  7. E.V. Makhsoos, E.L. Thomas and L.E. Toth, Metall. Trans. A 9A, 1449 (1978).

    Article  Google Scholar 

  8. R.C. Agarwala and S. Ray, Z. Metallkde. 79, 472 (1988).

    CAS  Google Scholar 

  9. R.C. Agarwala and S. Ray, Z. Metallkde. 83, 199 (1992).

    CAS  Google Scholar 

  10. P. Albert, Z. Kovac, H. Lilienthal, T. McGuire, and Y. Nakamura, J. Appl. Phys. 38, 1258 (1967).

    Article  CAS  Google Scholar 

  11. R.N. Duncan, in Proc. EN ’93 conference (Gardner Publications, Orlando, FL, 1993), p. 2.

  12. K.L. Lin and J.M. Jang, Mater. Chem. Phys. 38, 33 (1994).

    Article  CAS  Google Scholar 

  13. M. Inaba, K. Yamakawa, and N. Iwase, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-13, 119 (1990).

    Article  CAS  Google Scholar 

  14. S.K. Kang and V. Ramachandran, Scr. Metall. 14, 421–24 (1980).

    Article  CAS  Google Scholar 

  15. C.Y. Lee and K.L. Lin, Thin Solid Films 249, 201 (1994).

    Article  CAS  Google Scholar 

  16. W.J. Tomlinson and H.G. Rhodes, J. Mater. Sci. 22, 1769 (1987).

    Article  CAS  Google Scholar 

  17. K.L. Lin and C.J. Chen, J. Mater. Sci., Mater. Electron. 7, 397 (1999).

    Google Scholar 

  18. K.L. Lin and J.T. Chang, Scr. Metall. 30, 559 (1994).

    Article  CAS  Google Scholar 

  19. C.Y. Lee and K.L. Lin, Thin Solid Films 229, 63 (1993).

    Article  CAS  Google Scholar 

  20. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, and P. Thompson, J. Appl. Phys. 85, 8456 (1999).

    Article  CAS  Google Scholar 

  21. D. Olsen, R. Wright, and H. Berg, in Proc. 13th Am. Reliability Phys. Symp. (Vicks Lithograph, Las Vegas, NV, 1975), p. 80.

    Google Scholar 

  22. H.N. Keller, IEEE Trans. Comp. Hybrids, Manuf. Technol. CHMT-9, 433–39 (1986).

  23. D.R. Frear, F.M. Hosking, and P.T. Vianco, in Materials Developments in Microelectronic Packaging Conf. Proceedings (Montreal, Quebec, Canada, 1991), p. 229.

    Google Scholar 

  24. D.B. Bogy, J. Appl. Mech. 35, 460 (1968).

    Article  Google Scholar 

  25. D.B. Bogy, Int. J. Solids Struct. 6, 1287 (1970).

    Article  Google Scholar 

  26. D. Munz and Y.Y. Yang, J. Appl. Mech. 59, 857 (1992).

    Article  Google Scholar 

  27. J.R. Rice, J. Appl. Mech. 55, 98 (1988).

    Article  Google Scholar 

  28. J.W. Hutchinson and Z. Suo, in Advances in Applied Mechanics, edited by J.W. Hutchinson and E.M. Wu (Academic Press, San Diego, CA, 1992), Vol. 29, p. 64.

    Google Scholar 

  29. M.D. Thouless, Acta Mater. 38, 1135 (1990).

    Article  Google Scholar 

  30. Z. Zhang and J.K. Shang, Metall. Mater. Trans. A 27A, 205 (1996).

    Article  CAS  Google Scholar 

  31. P.L. Liu, Z. Xu, and J.K. Shang, Metall. Mater. Trans. A (2000, in press).

  32. D. Yao and J.K. Shang, Metall. Mater. Trans. A 26A, 2677 (1995).

    Article  CAS  Google Scholar 

  33. D. Frear, D. Grivas, and J.W. Morris, Jr., J. Electron. Mater. 16, 181 (1987).

    Article  CAS  Google Scholar 

  34. P.T. Vianco, P.F. Hlava, and A.C. Kilgo, J. Electron. Mater. 23, 583 (1994).

    Article  CAS  Google Scholar 

  35. P.T. Vianco, K.L. Erickson, and P.L. Hopkins, J. Electron. Mater. 23, 721 (1994).

    Article  CAS  Google Scholar 

  36. D.R. Frear and P.T. Vianco, Metall. Mater. Trans. A 25A, 1509 (1994).

    Article  CAS  Google Scholar 

  37. C.H. Raeder, L.E. Felton, V.A. Tanzi, and D.B. Knorr, J. Electron. Mater. 23, 611 (1994).

    Article  CAS  Google Scholar 

  38. P.L. Liu and J.K. Shang (unpublished research).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P.L., Shang, J.K. A comparative fatigue study of solder/electroless-nickel and solder/copper interfaces. Journal of Materials Research 15, 2347–2355 (2000). https://doi.org/10.1557/JMR.2000.0338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0338

Navigation